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Nonlinear atomic homodyne detection: A technique to detect macroscopic superpositions
in a micromaser
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We propose a measurement scheme to detect the multiphoton coherences inherent in the macro-
scopic quantum superpositions that can be generated in a superconducting micromaser cavity. The
scheme is a nonlinear version of a single-atom homodyne detector. It is shown that the ionization
probability of a single test atom is given in terms of the Wigner characteristic function of the field.

I. INTRODUCTION

With the recent refinement of experimental techniques
in quantum optics, it now appears possible to generate
macroscopic quantum superpositions (Schrodinger cats')
under laboratory conditions. A number of potential
nonlinear optical schemes to achieve this goal have re-
cently been analyzed. In particular, it has been pointed
out that a coherent state propagating through an optical
Kerr medium may evolve into a superposition of two ma-
croscopically distinct coherent states 180 out of phase.
Another proposal uses nonde generate parametric
amplification and mixing of two modes via rotating of
their polarization to generate optical Schrodinger cats.
Most recently, the possibility to generate superpositions
of macroscopically distinct number states in the field of a
micromaser cavity has been discussed. In this
scheme, a superconducting micromaser cavity is pumped
by a stream of polarized two-level atoms. For weak
enough cavity damping, the stationary state of the field
inside the cavity is almost pure and is very close to a
coherent superposition of number states, called "co-
tangent state. "

This latter scheme is particularly attractive in that it
produces macroscopic quantum superpositions in steady
state, a result that might appear surprising as such super-
positions are notoriously fragile in the presence of dissi-
pation. Indeed, it is generally believed that the coupling
of a Schrodinger cat to the environment erases the mac-
roscopic coherences quasi-instantaneously, leaving one
with a incoherent mixture of states. The reason why the
micrornaser cotangent states are quite insensitive to dissi-
pation ' is that the micromaser is an open system: the
polarized atoms successively injected inside the cavity re-
build the quantum coherence of the field at a rate that
precisely balances the loss of coherence due to dissipa-
tion.

Although a number of formidable technical challenges
need to be met to generate such a macroscopic superposi-
tion, it appears that none of them is fundamental and
that this goal can be achieved with available technology.

Indeed, the major difhculty seems to reside not so much
in the generation of such states as in their detection. This
is due in large part to the lack of appropriate photo-
counters operating in the microwave regime, and hence
to the impossibility to directly measure the micromaser
field. Micromaser experiments provide only an indirect
access to the state of the field, which is inferred from the
state of the atoms as they exit the cavity, as measured by
state-selective field ionization. ' The goal of this paper is
to propose and analyze a measurement scheme that
respects this basic constraint while at the same time pro-
viding a direct measurement of the Wigner characteristic
function of the field, and hence of the field itself.

This paper is organized as follows. Section II discusses
the basic difficulty in inferring the complete state of the
micromaser field from simple atomic ionization rates.
This discussion suggests using nonlinear atomic homo-
dyne detection as a solUtion to the problem. A simple
model for this measurement scheme is developed. Sec-
tion III analyzes this scheme and finds that the resulting
state-selective atomic ionization rate is a direct measure
of the Wigner characteristic function of the field. Hence
it contains all possible information on its state. Finally,
Sec. IV is a summary and conclusion.

II. NONLINEAR ATOMIC HOMODYNE DETECTION

In micromasers, the injected atoms play a dual role of
pumps and measurement devices: they generate the field
inside the cavity while at the same time acting as single-
atom photon detectors. They interact with the cavity
mode via the Jaynes-Cummings Hamiltonian, "so that an
absorption process is always followed by an emission pro-
cess. In other words, their state depends only on a very
restricted class of combinations of field annihilation and
creation operators that are sums of terms of the forms
(at )", (ata)"at, or (ata)"a, where n is an integer. Phys-
ically, this means that the atoms only probe coherences
between neighboring Fock states of the field. However,
to detect macroscopic superpositions one needs a mea-
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surement scheme sensitive to coherences between vastly
different Fock states, and what we would need instead is
an atomic response that is sensitive to more general prod-
ucts of field creation and annihilation operators, of the
generic form a a a a a aaa - a.

We have just seen that this is not possible in the dipole
and rotating-wave approximation if the atom interacts
with a single mode of the electromagnetic field. Howev-
er, the situation changes drastically if two modes of the
field are present: although it is still true that an absorp-
tion process must be followed by an emission process, one
can well imagine situations where, say, absorption from
the first mode is followed by emission into the second
mode, then again by absorption from the first mode, etc.
In such situations, the atomic response would indeed be
sensitive to coherences between distant Fock states of the
field mode under investigation.

This observation suggests an alternative detection
scheme that is essentially a nonlinear version of a single-
atom homodyne detector. ' To measure the macroscopic
superpositions that have been generated in mode a (the
"signal" ), a second mode b is excited (the "local oscilla-
tor") bringing the cavity into the state p"" =p'p . A test
atom is then injected into the cavity, where it interacts
with both modes. After the atom has left the cavity, the
state of the atom is measured. We show in the following
that this measurement indeed provides full information
on the state of the field in mode a.

There are some practical problems associated with this
scheme, the most important one being that the local os-
cillator mode should not interact with the atoms used to
prepare the macroscopic superposition to be detected.
This problem can be solved by using different atoms for
the preparation and the measurement stages, so that the
"preparation atoms" have selection rules such that they
are coupled to the first mode only, while the "measure-
ment" atoms are coupled to both modes. This could be
achieved by considering, e.g., two cavity modes of or-
thogonal propagation directions and orthogonal polariza-
tions.

Let us assume then that the micromaser a mode has
been prepared in a macroscopic quantum superposition,
and consider a test atom injected inside the cavity in the
state described by the density matrix

where
l 1 ) and

l
4 ) stand for its upper and lower state, re-

spectively. The atom-field interaction energy is given by
the generalized Jaynes-Cummings Hamiltonian

H=A~[o+(a+b)+(a +b )o ]=v'2R~(cr+A + A o ),

where ~ measures the atom-field interaction strength.
(For the sake of simplicity, we assume that the transition
l 1 )~l J, ) is in resonance with the both fields. Doppler-
effect corrections can be trivially corrected for by an ap-
propriate detuning of the local oscillator field. ) The sig-
nal and local oscillator modes are described by the pairs
of boson operators a, a and b, b, respectively, where
[a,a ]=[b,b ]=1. The atomic polarization operators

are represented by the fermion operators o. + and o.

where [o.+, o ] = l. In Eq. (2) we have also introduced
the annihilation and creation operators A and A of the
composite mode, with

—(a+&),1

2

and [A, At]=1.'3
The Hamiltonian (2) implies the conservation law

[H,K+cr+o].=0,
where

(3)

(4)

=cos(&2i~r+K + 1)o.+o. +cos(+2i~r&K )o. o.+

. sin(+2xw+K ) t . sin(&2irrVK + 1)o —i Ao+K K+1

is the propagator of the Hamiltonian (3) in the interac-
tion picture.

III. IONIZATION PROBABILITIES

After the atom leaves the cavity, it interacts with a dc
electric field weak enough for ionization to be possible
from its upper state only (state-selective field ioniza-
tion). ' Ensemble averaging the results of a series of ex-
periments started from the same initial conditions yields
the upper-state ionization probability

p =Tr( Up'p p'"'U o + o. )

=
—,
' + —,'p~ ( cos(2&2irr&k + 1) )

—
—,'pq(cos(2&2~r&K ) ),

where the angular brackets denote the expectation value
(X):—Tr(p'p X).

To proceed, we assume that the local oscillator is
prepared at the beginning of every measurement in a
strongly populated coherent state

with P)) 1, so that the b mode can be described classical-
ly and the quantum-mechanical operators b and b can be
replaced by their classical amplitudes P and P*. We fur-

K = A A = ,'(b b+—a a+a b+b a)

denotes the number operator of the A photons. The
physical meaning of the conservation law (4) is that the
number of A photons can change during the interaction
with the test atom by at most 1, the "1"being contained
in the atom operator o.+o. . However, the number of a
photons may change individually by more than 1, open-
ing up the possibility to trace the multiphoton coherences
in the a mode.

When the atom leaves the cavity after an interaction
time w, the combined atom-field density matrix has
evolved towards p(r) = Up""p"" U, where

—(i IA)H~
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ther assume that the a mode is weakly excited,
(a a ) «(b b ), which allows us to set ata +btb
= ~p! =I, where I denotes the classical intensity of the b
mode. Under these conditions we have

i/K+ 1=&K = —i/I + — —a + —a
1 — 1 P t P*

v'2 v'2 2v'I 2v I

Tr(~O)(N~e~' -~ ')

=e I@I'/2Tr()0) (N[e"' e " ')

=e !-&! "(N(e~' [0)

e
—Ivl'/2

i/N! (14)

p =
—,'+ —,'(pt —pi) —,'[e' "' y(p)+c. c.], (10)

where g(A, ) denotes the Wigner characteristic function'
of the signal mode

Inserting this expression into Eq. (7), the ionization
simplifies to

where the Baker-Campbell-Hausdorff formula was used
to disentangle the exponential operator in the first line,
while cyclic invariance of the trace and the identity
a~O) =0 was used in the second line. The ket ~p) in the
third line denotes a coherent state with amplitude p. By
inserting the expression (14) into (13) and making use of
Eq. (12) one finds

5p cT ~coc~~ e " cos 2icrv I +NI
«I" —

!..!~/2

N! 2

X cos(N pb +$0 p~ ), — (15)
and p is given by

. «P i ( Pb + m /2)
p =i —=w~ev'I (12)

2t Kw"(/ I
4 z

XTr[(cocg~0)(
~
N+cc&o~ )N(0~)e"' e i' ']+c.c. ,

(13)

where o., =p& —p&. The trace over the displaced opera-
tor ~O ) (N~ is easily calculated as

where we have introduced the phase pb of the local oscil-
lator.

Equation (10) is the main result of this paper. It shows
that for a classical local oscillator, the ionization proba-
bility (10) is proportional to the characteristic function
(11) of the signal mode. The significance of this result re-
sides in the well-known fact that the characteristic func-
tion of a distribution contains all possible information
about that distribution. As seen from Eq. (12), the
characteristic function can be fully determined by vary-
ing the interaction time between the test atoms and the
field or, more conveniently, the phase of the local oscilla-
tor. Hence the ionization probability p(r, pb) reveals all

information about the state of the signal mode, a very sa-
tisfactory result indeed. '

What distinguishes an incoherent mixture from a
coherent superposition of number states are the off-

diagonal elements p„, num, of the field density matrix.
Upon comparing the ionization probabilities p' and p

' for
a coherent superposition and its incoherent counterpart
where the off-diagonal density matrix elements p„have
been set equal to zero, one observes that the difference

6p =p' —p' is solely determined by the off-diagonal part
of the coherent superposition. To illustrate this point, we
consider the simple situation of a superposition of two
number states ~0) and ~N ) with amplitudes co and cz,
respectively. In this case the difference 6p between the
ionization probabilities is given by

5p= — exp[ ——'(«) ] .1 (iver)

2 v'N!

For fixed X, this expression assumes a maximum

15p,„=— exp[ —
—,'N+ —,'N ln(N)]= —,'(2irN)

for an optimum interaction time

(17)

opt (18)

The approximate equality in Eq. (17) holds up to
corrections of relative magnitude exp[0(1/N)]. The
weak N dependence of 6p,„,which makes it hard to dis-
tinguish a coherent superposition from an incoherent
mixture in the large-X limit, is a result of the homodyne
detection of the number state of the signal mode. Indeed,
by inspection of Eq. (14) one sees that the homodyne
detection results in a coherent displacement of the states
by an amount p, where ~p~ =i/N if 5p is maximal. The

behavior of 6p,„simply results from the projec-
tion of the coherent state ~p=VN ) onto the number
state ~N ).

Finally, we remark that the result of Eq. (18) can be in-
tuitively understood by noting that the time between suc-
cessive photon emissions (or absorptions) into the a mode
is given by the inverse of its Rabi frequency,
r, =1/i~i/N. The N successive emission (or absorption)
acts necessary to detect the coherences therefore need a
time Nr, = i/N /ir =r,„,

where the phases Po and P~ of the coherent amplitudes co
and c& have been introduced.

The second cosine function in Eq. (15) can be maxim-
ized by a proper choice of the phase of the local oscilla-
tor, while the first cosine function becomes maximal by a
proper choice of its intensity I. Furthermore, the prefac-
tor is maximum for initially fully inverted test atoms and
for equal probability amplitudes co and cz. Under these
conditions we find simply
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IV. SUMMARY AND CONCLUSION

In this paper, we have proposed a nonlinear atomic
homodyne detector scheme that enables us to distinguish
macroscopic coherent superpositions from incoherent
mixtures. The essential role of the local oscillator is that
it provides the possibility of N successive emission acts
into the mode to be characterized without interruption
by an absorption from this mode. The combined effects
of the local oscillator and of the mode under study on the
nonlinear response of a test atom reveal then the macro-
scopic coherences in the signal mode. Specifically, for a
classical local oscillator, the ensemble-averaged ioniza-
tion probability from the upper state of the test atoms is
given in terms of the Wigner characteristic function of
the signal mode and hence contains all information about
its quantum state.

Clearly, this scheme requires one to prepare both the

signal and the local oscillator properly before each mea-
surement and to perform ensemble averages in the con-
ventional quantum-mechanical fashion. The reason is
that the coupling of the local oscillator to the signal
mode through the measurement atom changes the state
of the signal mode significantly and may even destroy its
macroscopic coherences. The back action imposed by
the measurement process on the state of the signal mode
is presently under study and will be the subject of future
work.
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