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Quantum nondemolition measurement of a photon number using electron interferometers
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We discuss eff'ects of quantized electromagnetic fields upon the electronic conduction in inter-
ferometers of semiconductor microstructures. An optical field in an arbitrary quantum state is as-
sumed to hit the interferometer, and the time evolution of the coupled photon-electron system is
evaluated. It is found that the interferometer works as a quantum nondernolition photodetector if
the interferometer is designed such that the interaction is switched adiabatically.

Electronic conduction in microstructures of metals or
semiconductors is a subject of growing interest. ' Most
previous works discussed effects of static magnetic or
electric fields upon the electronic conduction. ' A few
works have appeared recently that discussed the conduc-
tance modulation by classical electromagnetic fields. In
this paper we discuss effects of quantized electromagnetic
fields upon the electronic conduction in semiconductor
interferometers of a "mesoscopic*' size. An optical field
in an arbitrary quantum state, such as a number state or
a coherent state, is assumed to hit the mesoscopic inter-
ferometer, and the time evolution of the coupled photon-
electron system is evaluated. Various quantities, such as
a quantum-mechanical noise in the electron-interference
current, are given in closed forms. Most importantly, it
is found that the interferometer works as a quantum non-
demolition (QND) photodetector if the interferometer
is designed such that the interaction is switched adiabati-
cally. That is, one can measure the photon number
without "backactions" upon the photon number by
measuring the electron-interference current. In contrast,
ordinary measuring apparatus contaminate the observ-
able of interest (the photon number) by backactions of the
measurements. Due to the specific natures of the elec-
trons in semiconductor microstructures as probe quanta,
the operation principle of the present QND scheme is
different from any of the previously proposed ones. "

To contrast the present case with the case of classical
optical fields, and also to reduce mathematical complexi-
ties, we employ the structure of Fig. 1 as a model system,
although experiment may be more easily performed in
other structures, as mentioned later. Our structure is ba-
sically the one described in Ref. 2, except that the "elec-
tron mode converter" is employed and both of the quad-
rature components of the interference currents, J+ andJ, are measured. This improvement has been made to
avoid rejections of electrons back to the source region,
and also, as explained later, to improve the signal-to-
noise ratio (SNR) of the device. Two quantum-well wires
(QWW's) of diferent well widths, the narrow (N) and the
wide ( W) ones, constitute an Aharonov-Bohm ( AB)
geometry. We assume that the size of the ring is small
enough ( —l p,m typically) for the electrons at the Fermi

surface to move ballistically from the source to the drain
regions. This can be realized in, say, high-quality
GaAs/AlAs QWW's at low temperatures. An optical
field polarized in the z direction propagates in the +y
direction, and is confined in the center region (which we
call the interaction region) by an optical waveguide struc-
ture, where the optical field interacts with electrons in the
QWW's. If the photon energy fico is slightly detuned
from the inter subb and transition energies, or, more
rigorously, if the right-hand side (rhs) of Eq. (3) is small
enough, the interaction induces only 'virtual transitions"
so that no photons are absorbed. The virtual transitions
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FIG. 1. Schematic structure of the quantum nondemolltion
photodetector used in the analysis. The optical field propaga-
ting in the +y direction is confined in the center dotted region,
with the transversal mode function u (x,z), which is schemati-
cally shown in the upper side. The band diagrams and subband
eigenfunctions in the source and center regions are shown in the
lower side, where the arrows indicate the directions of the opti-
cal Stark shifts.
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cause phase shifts in the electron wave functions, and
thus give rise to changes in the electron-interference
currents, from which we can deduce the photon number.

We will investigate the time evolution of the initial
(i.e., prior to the interaction) photon state of the general
form: If)=g„a„ln ), where In ) is the number state,
which is defined according to the following quantized op-
tical electric field:

6,(r)=
' 1/2

[au (x,z)e'PY+H. c.],
where e is the dielectric constant, a is the photon annihi-
lation operator, u (x,z) is the normalized transversal
mode function, 13 is the propagation constant, and I. is a
normalization length in the y direction. Electrons are
supplied from the source region. We note that the wave
function of each electron must be a wave packet of some
finite length t'. Previous experiments on a neutron
source and an electron source' suggest that the wave
packet has a Gaussian-like envelope and that l is close to
the length determined by the uncertainty principle. It is
thus natural to consider that the electron wave function
in our case also has the Gaussian envelope of the length
1=vI;~&, where v~ is the Fermi velocity and ~& is the
phase breaking time' in the source region (r& wou. ld be
shorter than that in the AB ring region). We can safely
employ this assumption because our final results are in-
dependent of the length and detailed forms of the wave
packet. " For the same reason, we will not write explicit-
ly the Gaussian envelope function in the following equa-
tions. We will also drop in the equations the eigenener-
gies and eigenfunctions corresponding to the y-direction
confinement, because they play no important roles. "

By appropriately designing the widths and alloy com-
positions of the wells, we can easily make the lowest
subband energies of the two QWW's to satisfy e, =e,

An electron wave packet emitted from the source
region will be split into two, and its wave function with

the Fermi energy of E~=E, +iri k /2m * becomes of the
form

+ADAII y &n

where ~1 is the characteristic time that it takes for the
photon-electron interaction to switch, y is the maximum
value of y (x) [see Eq. (7)], and lb, l—:min(lb~I, ID~I)
[see Eq. (6)]. This equation is the standard expression for
the validity of the ADA in time-dependent problems, and
thus demonstrates that our QND device relies upon the
adiabatic switching of the interaction. ~1 is of the order
of the shorter one of ~„ the transit time of the electron
through the interaction region, and the optical-pulse
duration ~ . Owing to the smooth profiles of the optical
fields as a function of x and y, as described by u (x,z) (see
Fig. 1) and the optical-pulse shape, the collision of the
electron moving in the +x direction with the optical field
becomes adiabatic with the switching time of ~1. This
should be contrasted with the situation of the Jaynes-
Comming model, where the collision occurs abruptly, re-
sulting in the quantum Rabi fIopping. In the numerical
example discussed below, r, —1 pm/v~ —10 ps for
vz-10 cm/s, so that, if we assume r ~ 10 ps, the error
due to the ADA's is estimated to be as small as 10

Because the full analysis is quite lengthy and compli-
cated, " we will describe essential points only. As the
electron proceeds to the interaction region, the electron
and the photons will be coupled by the interaction,
Ht = —

ezra,

(r). Since this interaction does not commute
with 6', the photon number is not conserved during the in-
teraction 'Each com. ponent e'""Iy~)ln ) in IV), where

q =Xor 8' evolves into the dressed state of the form

1/ k /Kgexp i f dx 'Kg(x ')
0

&(co»'.Iq.' & ln &+»ne„'Iq ) ) In —1)), (4)

where

tan9~(x)=y ( x)V' n/b,

IEy ) =(e'" l(p&) +e'kxly~) )/i/2 (2)

&q = (e) —E,' )
—A'co,

1/2
27TQCO u(, , )(q)l —e Iy,') . (7)

where y, (z) is the lowest-subband eigenfunctions of X
or W. Hence, the initial state of the total system (elec-
tron plus optical field) is IV)—:lg) 4). We can analyti-
cally solve the time-dependent Schrodinger equation to
obtain the time evolution of this initial state, using an
adiabatic approximation (ADA) to separate the x and z
coordinates of the electron, another ADA to treat pulsed
optical fields, the rotating-wave approximation (RWA),
and the Wentzel-Kramers-Brillouin (WKB) approxima-
tion. " The total resulting error is estimated to be —1%%A,

which is dominated by the RWA. However, the RWA as
well as the WKB approximation are irrelevant to the
QND property of the device because the neglected terms
cause no real transitions. " It is found that the error re-
sulting from the two ADA's, which is related with de-
struction of photons, is given by"

Here, z~ denotes the z coordinate of the QWW q, and
Kg(x) is the local wave number, which is shifted from k
due to the local (i.e., x-dependent) optical Stark shift. 8

yq(x) n/2b,
Kg(x) = k 1+

A' k /2m* (8)

where we have dropped the common factor
exp(ikx —i eFt/fi}, and the phase shifts are given by

When the electron further proceeds off the interaction re-
gion, the interaction is over and each component of I 4 )
adiabaticaIly returns to its original form, but with a
phase shift

'" 'ln &(e' "Iq~f&+e "lq ~&)/&2,
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0'i=( n plus terms independent of n, where g is the
e+ectiue coupling constant given by

(10)

The electron then enters the mode converter, which con-
sists of the crossed QWW's and the thin barrier layer of
50% transmittance (see Fig. 1). Just as the 50% beam
splitter for optical fields, the mode converter transforms
the electron wave function in Eq. (9) into

Note that a similar expression for 5n„, was obtained for
the QND measurement based upon the optical Kerr
effect, although the operation principle of such a QND
photodetector and that of the present one are very
different (for example, in the former one n is conserved
throughout the measurement ). This is because Eq. (16)
rejects the general principle of quantum mechanics that
many particles in the same state are needed to measure
the phase of the particle's wave function. In our case, N
is determined by the quantized conductance' e /M and
thus is given by

lq") = &a„e '""ln &(c„+lip+ &+c„ lip &), N=e~ Nd„VsD/mA, (17)

where cp+ and y are eigenfunctions of the final two out-
put channels, and, for cr =+1,

i(8„+680/2) i(8„—680/2)
(12)

Here, 600 is a phase that is determined by the structures
of the mode converter. We finally measure the currents
of the two output channels: J =jo l q) ) ( y l, where jo is
a constant.

Based upon the above results for the system of optical
field plus single electron, we next consider the actual case
when many electrons at the Fermi surface travel from the
source to the drain regions. To do this, we note that (i)
there is no coherence between different electron wave
packets emitted from the source region, and (ii) they do
not overlap each other for a small source-drain current,
such as the one we are treating. In this case, the calcula-
tions on the system of optical field plus X traveling elec-
trons become straightforward. " Here, X is not the total
number of electrons in the QWW's, but the number of
electrons detected as interference currents during the
measurement [see Eq. (17)]. Let us first consider how we
can deduce the photon number from the measurements of
J+. In order to get the maximum sensitivity at n=O, let
us design the device such that b, 80= —m/2. In this case,
we can define the readout variable &, by

J+ —J
sin(gR'„) =

J++J (13)

( sin(gR'„) ) = ( sin(gR') )0,
([5sin(gR'„)] ) =([5sin(gR')] )0+(cos (g&))0/X,

(14)

(15)

where ( )()= (gl l)t/) denotes the average over the initial
photon-number distribution. Equation (14) ensures that
the device works as a photon-number counter. In partic-
ular, if g(R) «1, it is reduced to (R'„)=(R &o. On the
other hand, Eq. (15) is reduced to ( 5h„) = ( 5R ) 0
+5n„„where 5n„, is the measurement error (or
quantum noise in the measurement), which is given by

where g =aviv
—g)r is the overall effective coupling con-

stant of the device, and the rhs is well defined because
[J+,J ]=0. It can be shown that

i(~(m —n) igiv(m —n) iV (18)

If the initial photon state is a number state (a„=5„„),
0

we can see that the photon wave function is unchanged
by the measurement, which means an absence of backac-
tions. For other initial states, the photon wave function
must be reduced by measurement (even when it is a QND
measurement). However, Eq. (18) tells us that the final
photon-number distribution for the statistical ensemble is

la„l, which is just that of the initial photon state. In
particular, (R) =(R')0, (5R' ) =(5R' )o. This invari-
ance of the distribution, together with the fact that 5n „,
can be made sufficiently small, are just those required for
general QND measurements. On the other hand, the
phase of the photon state is randomized through the mea-
surement. To see this, we assume a coherent state for
the initial state, and evaluate the fluctuation of the cosine
operator. '" Then, for (n ) »1 and for g X «1, the
phase Auctuation of the final photon state is evaluated to
be (5p ) = (5$ )0+5$BA, where 5$)iA is the backaction
phase noise' given by

where ~ is the optical-pulse duration or the detection
period (in the case of cw optical fields), VsD is the
source-drain voltage, and we have assumed that an array
of Nd„devices are used as a single photodetector. We
can make N arbitrarily large by increasing Nd„or by
confining the optical field in a cavity and thereby making

long, as discussed later. Hence, 5n„, can be made ar-
bitrarily small: for example, we can realize
5n„, &(5R' )0 when X&1/g (5R )0. Note also that X
itself fluctuates from measurement to measurement at a
microscopic level, because the electron emissions from
the source region are random processes. This fluctuation,
however, is irrelevant to the above results because N is
canceled between the numerator and the denominator on
the rhs of Eq. (13). Hence, the SNR is better for the
present structure than that of Ref. 2.

Let us next consider the final photon states. The final
density operator traced over the electron coordinates is
evaluated to be

i(n —m)co
l ) (Pph ~ m n

n, m

n 2 = 1/g2N 5$BA=Ng /4 . (19)
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Note that the minimum uncertainty relationship
holds: 6n „,5$&A = —,'.

We finally consider a numerical example. For the same
structural parameters as in Ref. 2, the readout [Eq. (14)],
which increases with the light intensity I, reaches its
maximum value 1 when I =I „k——2 MW/cm . If ~ = 10
ps, this corresponds to 10 photons. The resolution is
determined by the measurement error, and is given byI „k/v'N =0.7 kW/cm for, say, N =10 . This corre-
sponds to 300~hotons, which is smaller than the quan-
tum noise &n of n = 10 coherent state. To realize
N =10, we may confine the optical field and thereby
make ~ long, or we may increase Xd„. For the latter
case, for example, we can estimate Xd„by noting that
Vso should be kept small. ' When VsD =0.1 mV, we ob-
tain, from Eq. (17), Nd, „=2 X 10 . If we assume a
20X10 array of the devices with a 200-A period, the
length of the array in the direction of light propagation is
2 cm, which is much shorter than the interaction length
of QND photodetectors based on optical nonlinearities
due to virtual transitions. ' In actual experiments, one
may measure a highly stabilized optical field in an open
cavity, ' where ~ can be made large and thus the above
large scale integration is unnecessary. Also, the electron
interferometer of Fig. 1 can be replaced with other ones
such as those proposed in Ref. 15 and Fig. 3 of Ref. 3,
which are much easier to fabricate.

In summary, we have analyzed the collision between
photons in ari arbitrary quantum state, and electrons in a
semiconductor microstructure, which constitutes an elec-
tron interferometer. By evaluating the time evolution of
the coupled photon-electron system, we have shown that
the interferometer works as a quantum nondemolition
photodetector if it is designed such that the interaction is
switched adiabatically. The measurement error 6n„, de-
creases with X, the number of detected electrons as in-
terference currents, in proportion to I/+N. A backac-
tion of the measurement occurs as the increased phase
noise 5$B&( cc &N) in the photon state. Here, 5n„„and
5giiA satisfy the minimum uncertainty relationship;
5n „,6PBA = —,'. Owing to the high efficiency of the
photon-electron interaction, the required length is typi-
cally as small as 2 cm to achieve 6n„, (&n for n = 10 .

Note added. After the submission of the present paper,
there appeared two papers on QND photodetectors by
M. Brune et al. [Phys. Rev. Lett. 65, 976 (1990)] and by
M. D. Levenson [Phys. Rev. A 42, 2935 (1990)]. Their
operation principles are, in a way, analogous to the
present one.
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