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Motivated by the possibility of developing new computational techniques for studying mul-
tiphoton ionization of atoms by monochromatic radiation, we have analyzed, in a nonrigorous
fashion, the behavior of the ac quasienergy as a function of the complex field strength I'. We
elaborate upon earlier work of Manakov and Fainshtein [Theor. Math. Phys. 48, 815 (1981)jand
conjecture that the ac quasienergy is a multivalued analytic function E,(F) whose branches
originate from different unperturbed (real or "shadow") atomic levels for real values of F. AVe

further conjecture that the branch points of E„(F)are of the square-root type. These branch
points occur at complex values of I' where two branches coalesce, and, as I' sweeps along the
real axis, the passage past a branch point coincides with the passage past either an intermediate
multiphoton resonance (R) or a multiphoton ionization threshold (T). Branch points of type-
8, group into quadruplets, while branch points of type-T group into pairs. The two branches
that intersect at a type-8 branch point are both physically accessible, and originate from real
levels, while only one of the two branches that intersect at a type-T branch point is physically
accessibl- the unphysical type-T branch is a "shadow" eigenvalue, which corresponds to a
state with unphysical boundary conditions. We discuss the probability for the atom to make a
transition from one branch to another when I" is a slowly varying function of time. Normally,
a type-8 branch point enhances the ionization signal, while a type-T branch point diminishes
the signal. In partial support of some of our conjectures, we present results of an accurate
numerical study of the quasienergy (and its perturbation expansion) for the ground state of
both the hydrogen atom and a model atom (an electron bound to a, zero-range potential).

I. INTRODUCTION

Several powerful techniques are now available for calcu-
lating the dc shift Ad, (F) and the dc width I'd, (F) of the
energy level of an atom in a dc field of arbitrary strength
F. The development of these techniques (see, for exam-
ple, Refs. I—5) has rested in part on an understanding of
the analytic structure, in the complex I" plane, of the dc
quasienergy Ed, (F) =— Ep + Adc(F) —iI'd, (F)/2, where
Eo is the unperturbed energy of the level of interest. In
particular, a dispersion relation connecting the real and
imaginary parts of Ed, (F) has been constructed, demon-
strating that I'd (F) can be calculated from a knowledge
of dd, (F).

In this paper, we study the analytic structure of the ac
quasienergy E (F) in the complex F plane, where now
F/~2 is the root-mean-square strength of a monochro-
matic radiation field. (F = +8+I/c, where I is the in-
tensity of the light. ) We write E,(F) = Ep + A, (F)—
iI', (F)/2, where A (F) and I' (F) are the ac shift and
ac width. Our discussion is heuristic and certainly not
comprehensive; we give no rigorous proofs, and we con-
centrate on those features of E,(F) that are of physical
relevance. In part, our motivation for this study is that
it may open the possibility for developing techniques for
calculating Eac(F) that are similar to, and as powerful
as, those developed for calculating Ed (F). It is natu-

ral to expect that E«(F) has physically significant sin-
gularities near real values of I'" at which the ionization
signal exhibits structure. Two different observable phe-
nomena come to mind. The first is the substructure in
the above-threshold peaks of the photoelectron energy
spectrum, seen initially by Freeman et al. by ionizing
Xe with short-pulsed light. This substructure is due to
Rydberg levels of Xe shifting in and out of resonance
with the light as I" varies. Near a resonance an enhance-
m e nt of the ionization signal is obser ved. The second
phenomenon is the disappearance of an above-threshold
peak in the photoelectron energy spectrum, seen initially
by Kruit et al. The disappearance of a peak is due to
a channel closing as I" sweeps past a multiphoton ion-
ization threshold; the minimum number of photons that
the atom must absorb to ionize increases by unity. Near
a threshold a reduction in the ionization signal would be
seen were it not for Rydberg levels accumulating at each
threshold. In the case of multiphoton detachment of the
negative hydrogen ion a reduction in the calculated yield
for neutral atoms is found as I" sweeps by a detachment
threshold.

The analytic structure of E (F), and its relevance to
the convergence of the perturbation series for E,(F),
was discussed earlier by Manakov and Fainshtein; we
amplify some of their statements. We conjecture that, in
general, E,(F) is nonsingular everywhere in the finite
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complex F plane except for branch-point singularities of
the square-root type, where two branches join. As F
sweeps along the real axis, the passage past a branch
point coincides with the passage past either an interme-
diate multiphoton resonance (R) or a multiphoton ion-
ization threshold (T). The two branches that meet at a
branch point of type R do so in the E plane at a com-
plex value of E; both branches are physically accessible
and normally originate from a real bound or quasibound
level at F = O. However, the two branches that meet
at a branch point of type T do so in the E plane at a
real value of E, coincident with a threshold; but only one
of these branches is physically accessible —the unphysi-
cal branch corresponds to a "shadow" state, ~2 in which
the emergent photoelectron, at asymptotically large dis-
tances from the residual atomic core, is represented (in
at least one channel) by an ingoing wave rather than
an outgoing wave. The probability for depopulating the
physical branch, when a type-T branch point is passed,
is related to the probability for the atom to ionize as
this branch point is passed, and this turns out to be
very small if the passage is rapid. As we will see, due
to symmetry with respect to a shift in the origin of time
by one half-cycle, for any branch point at Fb, there is
another one, on the same sheet of the Riemann F sur-
face, at —Fb, . Type-R branch points group into quadru-
plets; if the two atomic levels participating in the res-
onance are only weakly coupled to the continuum, the
branch points occur in conjugate pairs, but in general the
members of a quadruplet are not necessarily distributed
over all four quadrants of the F plane. Type-T branch
points group into pairs, one at Fb„ the other at —Fb, .
Only type-T branch points were discussed by Manakov
and Fainshtein, and their relevance to shadow states was
not explored. We present a unified treatment of both
types of branch points. For simplicity, in our discussion
of E,(F) we regard the atomic potential as a screened
Coulomb potential, which supports only a finite number
of bound states. The situation is somewhat different, and
more complicated, for an unscreened Coulomb potential
since the latter potential supports an infinite number of
bound states which accumulate at each threshold, and
so the type-7" branch points may, in fact, be essential
singularities when the atomic potential is pure Coulomb.
However, in practice all atomic potentials are screened.

We do not fully understand the limit in which the fre-
quency ~ of the light vanishes; but it is clear that in this
limit the thresholds disappear. For any finite value of
cu there are infinitely many type-T branch points (since
there are infinitely many thresholds), and those branch
points that are at a finite distance from the origin of the
F plane, when u is finite, accumulate at the origin as u
vanishes (see Sec. IV C). The real axis is a natural branch
cut for Ed (F), with the origin an essential singularity
of Ed, (F). However, we do not know what happens to
those branch points that are infinitely far from the ori-
gin of the F plane, when ~ is finite; presumably they
simply fade away. (Similar considerations apply to type-

R branch points. ) That Eg, (F) is singular at F = 0 is
already implied by the fact that the perturbation expan-
sion of Ed, (F), in powers of F, has no imaginary part,
and therefore yields (erroneously) a vanishing dc width.
On the other hand, the perturbation expansion of E,(F)
does yield a nonvanishing ac width, if terms in powers of
F at least as large as No are retained, where No is the
minimum number of photons that the atom must absorb
to ionize in a very weak field. Thus we do not normally
expect E,(F) to be singular at F = O. is The radius of
convergence of the perturbation expansion of a particu-
lar branch of E (F) is the distance of the closest branch
point from the point F = 0 on that sheet of the Rie-
mann F snrface on which the branch is defined; there
may be branch points on other sheets that are closer
to the origin, but they do not determine the radius of
convergence of the perturbation expansion of the branch
of interest. That E~(F) has a nonzero radius of conver-
gence (at most frequencies) has been proved rigorously.

In Sec. II we introduce the Floquet ansatz, which leads
to the eigenvalue problem for E (F), and we discuss
qualitatively the nature of E~(F). In Sec. III we in-
troduce the scattering operator and examine its analytic
structure in the energy plane. In Sec. IV we analyse in
more detail the behavior of E~(F) near its branch points
in the F plane. In Sec. V we discuss the probability for
the atom to make a transition from one branch to the
other. In Sec. VI we present some results of a numerical
study of the ground-state branches of the quasienergy for
both the hydrogen atom in a linearly polarized field and a
model atom (an electron bound to a zero-range potential)
in a circularly polarized field. We numerically illustrate
some of the features that we discuss in the preceding sec-
tions; in particular, we show that the branch points are of
the square-root type, and that their positions determine
the radii of convergence of the perturbation series.

II. THE EIGENVALUE PROBLEM

A. Quasienergy

Let H, denote the Hamiltonian of the bare atom, with
H(t) = H + V(t) the Hamiltonian of the dressed atom
We regard the atom as having only one electron, and we

describe the radiation as a classical monochromatic field.
We work in the velocity gauge, in which the atom-field
interaction V(t) is, in the dipole approximation,

V(t)=(—it )A(t) I
—Ct t+P f4/~

(la)
(Ib)

where A(t) is the vector potential of the field and where

e, p, and p are, respectively, the charge, reduced mass,
and (center-of-mass) canonical momentum of the elec-
tron. We have omitted the A(t)~ term from V(t) (it can
always be removed by a simple gauge transformation). If
we write the oscillating electric field as F(Reee '~'), with
cu the frequency, e the unit polarization vector (e* e = I),
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and t the time, we have A(t) = (c/u)F(lmee ' ').
Therefore we have V+ —— i(e/2pcu)Fe p and V

i(—e/2pcu)Fe' p. The intensity of the field is I =
cF2/(8~).

Provided that I varies suKciently slowly with time—
that is, provided that I is almost constant over one
cycle (so that the frequency bandwidth is small com-
pared to u), and provided that the state of the atom
does not change appreciably over a cycle as I varies-
we can treat E as an adiabatic parameter, and regard
V(t) as periodic in t with period 2~/cu. Under these
conditions we can make the Floquet ansatz (see, for ex-
ample, Refs. 15 and 16): Thus we replace the exact state
vector of the atom by e '+-&+&iI"IP(t)), where P(t))
is periodic in t with period 27r/u. The ac quasienergy
emerges naturally as an eigenvalue. Substituting the Flo-
quet ansatz into the time-dependent Schrodinger equa-
tion ih(d/dt)I@(t)) = H(t)I4'(t)), making the harmonic
expansion P(t)) = P„e '" 'IP„), and using Eq. (Ib),
yields the following set of coupled equations for the time-
independent harmonic components IX„):

(E-+»~ —H. )I&-) = V+I&--r)+ V-I&-+r) (2)

where, for brevity, we have dropped the argument F of
E,(F), as we do on other occasions. Since this set of
equations for the harmonic components is homogeneous,
it forms, together with appropriate boundary conditions
(see below), a standard eigenvalue problem. The eigen-
value E (F) is determined in principle by a single char-
acteristic equation that has no singularities in the finite
F plane. [An explicit example of this characteristic equa-
tion is given by Eq. (24) below. ] Presumably, therefore,
E,(F) is a single (multivalued) analytic function of F
with (infinitely) many branches, each branch being a dif-
ferent eigenvalue solution of the characteristic equation.
The fact that E,(F) is a single analytic function implies
that if one branch of E,(F) is known along a segment
of the real F axis, all other branches can in principle be
calculated by analytic continuation around the branch
points in the complex F plane. Note that Eq. (2) is linear
not only in E~, but also in F—recall that the operators
Vy are proportional to E. Rather than regard E as
the eigenvalue, we could fix its value and regard F as the
undetermined eigenvalue. In fact, in calculations carried
out so far, we have always found the eigenvalue problem
for E more easy to solve than the eigenvalue problem
for E . Equation (2) is also linear in cu, and we can, of
course, also fix E and F and regard cu as the eigenvalue;
we plan to report on a study of the quasienergy in the
complex u plane elsewhere.

For any branch of the quasienergy there is another
branch that divers by exactly rnh~, where rn is any in-
teger, since H(t)—:H + V(t) is periodic in time with
frequency u. r rs However, branches of E«(F) that differ
by an integral multiple of h~ are not physically distin-
guishable (if they are of the same symmetry). In the
limit of vanishing F, each branch of E«(F) approaches
a discrete eigenvalue of H~. A discrete eigenvalue of

H, may be real and negative, in which case it corre-
sponds to a bound-state level of the unperturbed atom,
or it may be complex, in which case it corresponds to
a quasi-bound-state level of the unperturbed atom. In
this paper, we are primarily interested in, and in fact we

restrict our discussion to, bound-state branches —those
that originate from a bound state. On a bound-state
branch, I'«(F) vanishes as F vanishes, but A«(F) van-
ishes only on the branch that approaches Eo, for other
bound-state branches, ED+A, (0) is the energy of an un-

perturbed bound-state level different from the one of in-

terest, unless A, (0) is an integral multiple of hw. When
we expand E,(F) as a Taylor series about Eo, in powers
of F, we are expanding a particular branch, and so we

are performing the expansion on a particular sheet of the
multisheeted Riemann F surface. Therefore the radius
of convergence of the perturbation expansion of the shift
and width of a particular level is determined by the lo-
cation of the branch point closest to the origin on the
appropriate sheet of the Riemann surface.

Note that, with the A(t)2 term removed from V(t),
the threshold of the continuous spectrum of the atom,
which we can choose to be at zero energy, is unshifted
by the field. This can be understood as follows: If the
cycle-averaged energy of the atom in the field is at or
above the continuum threshold, the electron can escape
to infinity, and in a stationary state it spends most of
the time as a free particle, far from the residual atomic
core. If the cycle-averaged energy of the atom is exactly
at the continuum threshold, the drift momentum of the
electron, when it is far from the atomic core, is zero. Now,
in the velocity gauge the canonical momentum of a free
electron is the drift momentum. Hence the A(t) p term
cannot shift the continuum threshold; this is true for all
values of F in the finite complex E plane. It follows that
the continuum threshold energy remains zero for all F.

B. Confluence of branches

To illustrate how the branch points arise, we consider
the multiphoton ionization of an atom that is initially
in the bound state a. As the intensity of the light is
varied, the energy level a and other levels shift. Let us
suppose that at a certain intensity there is an intermedi-
ate N-photon resonance between levels a and 6, that is,
we suppose that N photons can almost resonantly excite
the level b from a. At this (real) intensity the differ-
ence of the shifted binding energies of states a and 6 is
close to, and may even equal, Nh~; but the diA'erence
of the a and b branches of the quasienergy E«(F) do
not differ by exactly Xhu (recall the "no crossing rule"
of Wigner and von Neumann) since bound states decay
so that the bound-state branches of the quasienergy are
complex [I (F) g 0] for nonzero rea! F However, if we.
allow F to become complex we introduce another degree
of freedom, and in general there is a nearby comp/ex value
of F, which we denote by F„„for which the difference
of the a and b branches of the E,(F) is ezactty Nhu
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If we now recall that for any branch of the quasienergy
there is another branch that differs by exactly an inte-
gral multiple of hu, it follows that at F«, the a branch
and the branch displaced by —Nhu from the b branch
coincide exactly. In other words, F«, is a branch point
of E,(F), of order two (since two branches meet there).
Therefore F„, is a square-root branch point, and if it is
to have a significant physical effect, F«, must not lie far
from the real axis. Note, incidentally, that there may be
other physically significant (X+ 2m)-photon resonances
between levels a and b, where m is an integer.

There are, as discussed in the Introduction, also branch
points associated with the confluence of branches at chan-
nel thresholds. Let us denote by Nmj„ the minimum num-
ber of photons that the atom must absorb in order to
ionize from the state a at a given intensity. Thus N;„ is
the smallest integer N for which Ep + A~, (F) + +fr~ is

positive. As F increases, energy level a shifts. Suppose
that this level shifts downward relative to the (unshifted)
continuum threshold of the atomic spectrum. Then an
intensity may be reached at which the rea/ part of the a
branch of the quasienergy is exactly Nmj„k& at slightly
higher values of the intensity, that is, at slightly larger
values of real F, the atom must absorb an additional
photon to ionize from state a. In general, there is a
nearby complex value of F, which we denote as Fth„
at which the a branch of the quasienergy, not just the
real part, is exactly —N;„h~. At Fth, the branch of
the quasienergy that is displaced from the a branch by
N;„bc' coincides exactly with the continuum threshold.
Now, at this threshold, outgoing waves in the N;„th
channel are indistinguishable from ingoing waves, and
therefore Fqh, is a square-root branch point of E,(F),
at which a branch with outgoing-wave character meets a
br anch with ingoing-wave char aeter.

C. Boundary conditions

We have already remarked that branches of E,(F) of
the same symmetry which differ by an integral multiple
of hen are not physically distinguishable. Other branches
are distinguishable by the asymptotic boundary condi-
tions on the harmonic components. The atom is initially
bound, and when the field induces it to ionize, the photo-
electron moves outwards, away from the residual atomic
core. Thus the physically relevant boundary conditions,
which pertain to F real, must describe a photoelectron
that, asymptotically, moves outwards, not inwards. The
position space representation (x~P„) of a harmonic com-
ponent must be regular at r = 0 (where r = ~x~) and, in
the velocity gauge, must be a superposition of outgoing
(or exponentially decaying) waves at r oo:

where x is the unit vector x/r, and where k (E) (which
we often abbreviate as k ) is the wave number for chan-
nel m:

(4)

If the outgoing electron sees a charged atomic core we
must include the Coulombic logarithmic distortion in
the exponent on the right-hand side of Eq. (3). Each
harmonic component contains open and closed channels;
channel m is open or closed depending if the real part
of (E,+ mtra) is positive or negative, respectively. is If,
for real F, channel m is physically accessible, Irnk (E,)
must be positive if the channel is closed, while Rek (E,)
must be positive if the channel is open; this follows be-
cause the exponential e' " must decay if the channel is
closed (the atom has absorbed an insufficient number of
photons to ionize) while e'" " must behave as an outgo-
ing wave if the channel is open (ingoing waves cannot be
present if the atom is initially bound). The probability
for finding the electron in some finite volume V centered
at the atomic core is

and this probability must decay in time, so that if F
is real, I (F) must be positive on physical branches of
E,(F) Hence, if. the mth channel is open, and F is real,
Imk~ ( 0; therefore e'" " explodes as r increases. Al-
though the divergence of e'"-" may seem unphysical at
first sight, it is reasonable provided that I', (F) is small
compared to the energy pv~ /2 of the outgoing photo-
electron in the mth (open) channel. To see this, note
first that

pv /2—:Re(E„+mh~),

and, with I' small, hk pv —i(I' /2v ). Therefore
the outgoing (spherical) electron wave in channel m con-
tains the exponential e' ~"e ' "'~" e' ~&" "~'&. The
magnitude of this exponential is smaller than or equal
to unity, since in a quantum-mechanical wave-packet de-
scription, the photoelectrons leaving the atom in channel
rn correspond to a component of the wave packet that
is bounded by the wave front propagating according to

v t. [Were I' (F) to be negative, for real F, on
physical branches, e' " would decay as r increases in all
channels m, and the eigenvector would be normalizable.
When acting on a normalizable state, the Hamiltonian is
Hermitian, and it follows that E (F) should be real and
hence that I' (F) should be zero, in contradiction with
our assumption. ]

Two branches that differ by lb~, with l an integer, can-
not be distinguished by the asymptotic boundary condi-
tions since k for one branch is equal to k +t for the
other, and so the two branches have the same sequence,
(k„,), of channel wave numbers. Whenever two physi-
cally distinguishable branches intersect, at a branch point
of E,(F), the asymptotic boundary conditions for the
two branches become identical, and therefore states cor-
responding to two difFerent branches are physically indis-
tinguishable at their common branch point. Type-R and
type-T branch points have difFerent characteristics. Two
branches a and b that intersect at a type-R (resonance)
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branch point Fres have, at heresy a common value Eres that
is complex; E,~, lies op the real axis of the energy plane.
Except in the neighborhood of F«„ the two branches are
distinguishable by the atomic characters of the states n

and b, as well as by the photoelectron energy spectrum,
Both branches are physically accessible (for F real). On
the other hand, two branches that intersect at a type-T
(threshold) branch point Fth, have a common value Et~,„
that is real; Et-,h, ———mba, where I, is the channel num-
ber of the threshold at which the two branches intersect
in the energy plane. At the mth threshold k vanishes,
and in the neighborhood of Ft-h„ the two branches have
values of k that are almost equal but opposite. One of
the branches is physically accessible, the other is not since
k has the wrong sign; for the unphysical branch, Imk
is negative if channel m is closed (so e'" " explodes),
and/or Rek is negative if channel m is open (so e'"-"
behaves as an ingoing wave). Thus, except in the neigh-
borhood of Fth„ the two branches are distinguishable by
the arrow of time.

III. THE SCATTERING OPERATOR;
ANALYTIC STRUCTVRE IN THE E PLANE

It is useful to introduce the operator S(E,F), whose
matrix elements form the scattering matrix for an elec-
tron to scatter with an incident drift energy E from the
atomic core in the presence of a monochromatic radia-
tion field of strength F. In a physical scattering process,
which pertains to real values of E and F, the ingoing elec-
tron is represented by a superposition of ingoing spherical
waves, and S(E,F) contains the information about the
amplitudes of the outgoing spherical waves that repre-
sent the scattered electron. [If S(E,F) = I there is no
scattering. ] We can analytically continue S(E,F), from
the real energy axis, into the complex E plane. However,
S(E,F) has infinitely many branches, and must be de-
fined on a Riemann energy surface with infinitely many
sheets. The difIerent branches arise from the ambiguity
in the sign of k (E) that appears in taking the square
root of (E+ mhu). Thus k~(E) is a two-valued func-
tion of E, with a branch point at E+ mba = O. Hence
S(E,F) has branch points in the E plane at each of the
channel thresholds, that is, at the points mku with m any
integer. Vfe draw cuts in the lower half of the E plane,
along the lines Re(E + mhu) = 0, as indicated in Fig.
1. We define the "physical" sheet of the Riemann energy
surface as the one on which 3'/4 ) arg(k ) ) —x/4 for
all m. Other ("unphysical" ) sheets are reached by cross-
ing one or more of the cuts. On an unphysical sheet,
3n /4 ( arg(k~) ( 7x/4 for at least one value of m.

In the zero-field limit, the scattering operator has sim-
ple poles at the discrete eigenvalues of the atomic
Hamiltonian H . As F is changed continuously from
zero, these poles move around in the complex E plane,
following the trajectories of the discrete branches of
E ~(F). Thus S(E,F) has simple poles at (gener-
ally complex) values E that coincide with the discrete
branches of E (F). At these poles the analytically con-

(2)
(a)

p

(&)

I

ReE

FIG. 1. A schematic diagram, in the E plane, of the
trajectories followed by some different branches of the
quasienergy as the field strength I" is varied along the positive
real axis. All of these branches originate from the same bound
state at I" = 0; we have chosen this bound state so that the
atom must absorb a minimum of two photons to ionize in a
weak field. A zigzag line is a branch cut emanating from the
threshold whose channel number is shown at the threshold.
The dominant branch (d) is shown as a solid line, and each
shadow branch is specified by the label (n), where n is the
channel number of the threshold at which the shadow pole
changes places with the dominant pole. Note that as E in-
creases the shadow branch (1) crosses the cnt emanating from
threshold 1, whence it becomes a dominant branch, so that
there are simultaneously two dominant branches.

tinued wave function satisfies asymptotic boundary con-
ditions similar to Eq. (3), for which there are either no
ingoing or no outgoing waves. (Both ingoing and out-
going waves can only be present in channels that are
radiatively decoupled from all other channels. ) In the
zero-field limit all channels are uncoupled, and therefore
S'(E, O) has only a single branch point, at E = 0. Sup-
pose that Eo is a bound-state eigenvalue of II, and let
No denote the value of N;„ in the weak-field limit (so the
atom must absorb at least No photons in order to ionize
from this bound state in a weak field). Thus S(E,0) has a
pole at Eo on the negative real axis of the physical sheet,
between the thresholds at —Nohur and (No —I)hcu. —Sup-
pose that we analytically continue S(E,O) along a path
which starts at Eo on the physical sheet and terminates
at Eo on another sheet. Provided that this path does
not encircle the branch point at E = 0, S(E, O) is sin-

gle valued, and hence S(E, 0) has a pole at E = Eo on
this other sheet. In other words, if S(E, O) has a bound-
state pole on the physical sheet, it also has poles at the
shadows cast by the first pole on all sheets that can be
reached from the physical sheet by crossing cuts emanat-
ing from any threshold, but avoiding the cut emanating
from threshold with channel number O. If, now, F is in-
creased from zero, the bound-state pole on the physical
sheet moves downward into the lower half of the energy
plane, and its associated poles also move. However, in
general each member of this family of poles moves in a
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different way. We refer to the pole which is on the20,21

physical sheet, at any given value of F, as the dominant
pole, and, following Eden and Taylor 2i we refer to the
associated poles, on unphysical sheets, as shadow poles.
If F is suKciently small, the dominant pole is the one
that was originally at F0 on the physical sheet, but if
F is increased further this pole may cross a cut and)

thereby move onto another (unphysical) sheet. (Hence-
forth, we continue to use the term "crossing" a cut to
mean that the cut is traversed so as to pass from one
sheet of the Riemann surface onto another. ) When th'en is

appens, a shadow pole normally crosses the cut also, at
about the same value F, provided the cut emanates from
the negative-energy axis; see Fig. 1. This shadow pole
is the one that was originally on the sheet reached from
the physical sheet by following a path that crosses the
cut, and therefore when this pole crosses the same cut it
moves onto the physical sheet. Hence the pole that we
called dominant just before it crossed the cut becomes a
shadow pole, and one of the poles that we called shadow
becomes dominant. In general, each time the dominant
pole is about to cross a cut emanating from a threshold
on the negative-energy axis, a shadow pole moves onto
the physical sheet to take its place. In Fig. 2 we show
typical mth channel wave numbers k~ for the dominant
and shadow poles.

Sometimes a shadow pole may stray far from the path
followed by the dominant pole as F increases along the
positive real axis, and eventually it may also become a
dominant pole. For example, it is often observed that if
N0 & 2 a shadow pole moves in the direction of the pos-
itive energy axis as F increases along the positive real
axis, and it crosses all the appropriate cuts so as to move
onto the physical sheet. & & 22 In this circumstance there)

are simultaneously two dominant poles at large values of
F (stemming from the same bound state —see Fig. I) and
each of these dominant poles may come into resonance
with another dominant pole, or even with each other. We
conclude this section by noting that for any dominant or
shadow pole of S(E,F) there is a sequence of (dominant
or shadow) poles, each pole separated from the next by
hw, since to any branch of E (F) are associated physi-
cally indistinguishable branches that dier by an integral
multiple of h~. We call these additional poles "sponta-
neous" poles, since they appear only when the field is
turned on; in other words, the residues of the sponta-
neous poles vanish as F does. When the field is turned
on, channel Q becomes radiatively coupled to channels
n g 0, and a bound- (or quasi-bound-) state pole in
channel 0 appears in all other channels. [However, the
scattering operator is not periodic in the energy variable:
S(E+ nb~, F) g S(E,F).]

IV. THE QUASIENERGY;
ANALYTIC STRUCTURE IN THE E PLANE

A. Symmetry

FIG. 2. A schematic diagram of the mth channel wave
numbers for the dominant (d) and shadow (s) branches. The
wave number k for the dominant branch lies in the hatched
region, in the lower right quadrant when the mth channel is
open, and in the upper left quadrant when the mth channel
is closed. The wave number k~ for the shadow branch lies
in the open reqIon, and in general is not exactly equal and
opposite to k

A shift in the origin of time by one half-cycle vr/u is
equivalent to a change in the sign of F. However, the
quasienergy is a cycle-average energy, and is therefore
independent of the origin of time. It follows that for any

the perturbation expansion of Ea~(F) is a series in even
powers of F. Furthermore, if there is a branch point at
Fb„ there is another one at —Fb, on the same sheet of
the Riemann F surface.

Thhe Hamiltonian of the full system consisting of the
atom plus the radiation field is time-reversal invariant.
However, H(t) = H + U(t) includes only the covphng of
the atom to the field; we treat the radiation field as exter-
nal. Under the operation of time reversal the rotational
sense of the polarization and the direction of propagation
of the field are reversed. Therefore, in order to consider
the eA'ect of time reversal we must introduce the coupling
of the atom to the time-reversed field; this interaction is

V i(e/2pw)Fe p. —Let T be the operator that
eA'ects time reversal on only the space of atomic coordi-
nates. Since T complex conjugates c numbers and anti-
commutes with p, it follows that if the harmonic com-
ponents P'„) form a solution of Eq. (2), with eigenvalue
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E,(F) at field strength F, the harmonic components
7 ~P„) form a solution of an equation that differs from Eq.
(2) through the replacement of Vy by V++, and the eigen-
value is E+(F) = E', (F*) (where the asterisk e denotes
"complex conjugate"). Consequently, if any two branches
of E,(F) have the same value at F = Fj,„, the corre-
sponding two (time-reversed) branches of E,(F) must
have the same value at F = F&, Th.us, if E (F) has
a branch point at F = Fi,„, the quasienergy E,(F) has
a branch point at F = Fb, . If the polarization of the
light is real, we have i = e*, and therefore V~ ——Vy, so
that the functions E (F) and E+(F) are one and the
same. If the polarization is elliptic, E (F) and E (F)
are still one and the same since the Hamiltonian H of
the atom is rotationally invariant and reflection invari-

ant. (Reflections reverse the rotational sense of the po-
larization. ) However, no matter what the polarization
is, the time-reversed branch is physically distinguishable
from the original branch since T changes the asymptotic
boundary conditions —it changes outgoing waves into in-

going waves, and vice versa. Therefore, although E,(F)
has branch points at both F = Fbr and F = F r these
two branch points are on different sheets of the Riemann
F surface.

A conjugate pair of branches cannot be joined at any
point in the F plane (except possibly at F oo). For a
fixed value of F, we can join a conjugate pair of branches
by following a path in the E plane, which encircles all
open-channel thresholds. To see this, let us for simplic-
ity take F to be real. We start our path in the E plane
at E (F), we move parallel to the real negative-energy
axis, crossing this axis at —oo, and we move back along
the other side of the real axis, terminating at the point
E;(F), opposite to E .(F). This path crosses the cuts
emanating from the open channels, but not the cuts ema-
nating from the closed channels, and the wave number k~
of each (closed or open) channel changes to —k*; hence
the state vector transforms into the conjugate state vec-
tor. Now, since we have fixed F to be real, E*,(F) is an
eigenvalue, corresponding to the conjugate eigenvector.
Therefore, when we analytically continue S(E,F) along
our path in the E plane, we find that it has poles at both
E,(F) and E', (F); but the pole at E',(F) lies on a sheet
different from the one on which the pole at E ~(F) lies,
since our path crosses (infinitely) many cuts. Therefore,
in order to transform a wave function into its conjugate,
we have to follow a contour in the complex F plane which
wraps around the appropriate type-T branch points cor-
responding to open channels.

We can analytically continue the shift and width from
the real F axis into the the complex F plane, thereby
defining analytic (multivalued) functions A~(F) and
I' (F). For any F we have E (F) = Ep + A (F) +
il (F)/2, but in general E,(F) and I' (F) are not
real if F is not real (an exception occurs at a type-T
branch point). It follows from inversion symmetry that
any given branches of A(F) and I'(F) are even in F.
Since the functions b' (F*) and I'*,(F*) are also ana-

lytic on a domain including the real F axis, and since
A, (F) and I' (F) are real if F is real, we have (the
Schwarz reflection principle)

A„(F) = 0",(F'), (7a)

I'.,(F) = r*.,(F*) (7b)

If E~(F) has a branch point at F = Fi,„, both A, (F)
and I' (F) must necessarily have branch points at Fj,„.
[It follows that the perturbation expansions of A (F)
and I (F) have the same radii of convergence. ] From
Eqs. (7), it follows that 0 (F) and I', (F) have branch
points at F = Fb„on the same sheet as that on which the
branch point at Fj„ lies, but this is merely a consequence
of the mathematical construction of the shift and width,
and there is no reason to suppose that E has a branch
point at Fb, on the same sheet as Fb, . Nevertheless,
as we see in a moment, if Fb, is a type-R branch point
there is another branch point, on the same sheet, which
is sometimes very close to Fb, .

B. Type-R (resonance) branch points

At a type-R branch point in the F plane, two branches
of the quasienergy that stem from different bound-state
levels of the unperturbed atom intersect; they intersect at
F = F«» where they have a common value E«» which is

generally complex. For F F«» the scattering operator
S(E,F) has two simple poles on the physical sheet of
the E plane in the neighborhood of E«„ these two poles
correspond to the two different atomic levels, and when
F = F«, the poles coalesce at E«, . The singularity of
S(E,F«, ) at E = E„,is also a simp/e pole, since there is

only a single state when F = F«» recall that at a branch
point of E~(F) the asymptotic boundary conditions for
the two branches are identical.

Intermediate resonances sometimes occur between lev-

els that have widths that are very small compared to
the shifts —this may be the case, for example, when the
levels a and b are connected by a one-photon transition
while ionization from these levels occurs only through the
absorption of many photons. In such a case, it, is reason-
able to ignore the widths of the a and b branches, and
approximate these branches of E~,(F) by Ep + A, (F);
but the branch points of A, (F) occur in conjugate pairs,
and therefore, within this approximation, if the function
E~,(F) has a branch point at F«, it has another one on
the same sheet at F,*„.We can make the argument more
quantitative as follows: Suppose that, at a given inten-

sity, the atom must absorb at least N;„or N;„photons(a) (S)

to ionize from the levels a or 6, respectively. We can de-
termine E,(F) approximately by solving the truncated
set of equations that results from excluding, in Eq. (2),
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where E„,(F) and C„„(F)are smoothly varying, nonsin-
gular, functions of F in the neighborhood of F„,and F,'„,
and where the choice of sign preceding C„,(F) fixes the
branch. If we follow a closed circuit in the F plane around
just one of the branch points, F,'e, say, the correspond-
ing trajectories of each of the two branches of E (F)
wrap around E,'„=E, (F,'„), but not completely24-
the trajectories in the E plane are not closed, but rather
one pole trajectory terminates where the other pole tra-
jectory started, and vice versa. However, if we follow a
closed circuit in the F plane around bo/h branch points,
both branches of E,(F) form closed circuits around E„,
and E,'„ in the E plane. It is reasonable that there are
closed circuits in the F plane that yield closed circuits for
E, around E„, and E,'„since S(E,F) is single valued
along a closed circuit2 in the E plane about E„„or/and
Eres In fact, if F is in t,he neighborhood of Fres and Fres)
and if E is in the neighborhood of E„,and E,'„,we may

approximate S(E,F) by

l/S(E, F)

= S„,[ E —E„,(F)
+C-.(F)V'(F —F-.)(F —F,',.)1 (9)

harmonic components ~P„) with photon index n greater
than or equal to the smaller of N~', l„and K;„.Within
this approximation, the widths of the a and b branches
are identically zero, since we have neglected the coupling
to the continuum, and therefore if these branches meet
at F«s they also meet at F,'„=F,*„.VVe now gradually
increase the coupling to the continuum by including more
and more harmonic components ~j„). Once the photon
index n & Nml„) XII„) we still expect to find two branch
points, at F«, and F,'„, but there is no longer any rea-
son for F,'„ to lie exactly at F,*„. This suggests that, ,

in general, for any type-R branch point at F«s there is
a nearby "conjugate" one on the same sheet at a point
F,'„, where F,', is close to F,*„when the widths of the
two branches are small compared to the shifts. Actually,
we can change this latter condition to the requirement,
that the diA'erence of the widths of the two branches be
small compared to the difI'erence of the shifts, since if this
new condition is fulfilled the branch points occur where
the shifts of the two branches are (very nearly) equal,
and those points occur in conjugate pairs. Furthermore,
due to inversion symmetry, there must be branch points
at —F„, and F,'„, on —the same sheet, so that type-R
branch points group into quadruplets.

In the vicinity of the branch points at F«s and F,'e, the
quasienergy E,(F) behaves like a product, rather than
a sum, of gF —F„, and gF —F,'„; if E (F) were to
behave like a sum it would have four, rather than two,
branches associated with a single resonance. Therefore
we must have

E.,(F) = E„.(F) ~ C„.(F)g(F —F„.)(F —F;,.),

YVe see that when F is difrerent from Fres and Fres) there
are, from the two-valued square root in Eq. (9), two iso-
lated poles, but when F is equal to either F«s or F,'„,
Eq. (9) yields only a single simple pole.

C. Type-T (threshold) branch points

At a type-T branch point, at Fqhr in the F plane,
two branches of E,(F) intersect at a threshold in the
E plane, where they have a common rea/ value E&h, ——

—mh~, with rn the channel number of the threshold. Vfe
can label these branch points by the channel number. As
we explain shortly, physically significant type-T branch
points occur only with positive channel number. In the
neighborhood of a type-T branch point, the two branches
have values of k that are almost equal but opposite; at
F = Fqh, the two branches coalesce and k vanishes.
The physically accessible branch, which we call the dom-
inant branch, corresponds to a dominant pole of S(E,F)
in the E plane. The physically inaccessible branch, which
we call the shadow branch, corresponds to a shadow pole
of S(E,F) The do.minant and shadow poles are simple,
and when F = F&h, these poles presumably coalesce into
one simple pole at E = Eig„. [We note that S(E,F) also
has a branch point at E = Eih„.] Two branches which
intersect at a type-R branch point are both dominant,
since a type-R branch point arises from the conAuence of
two poles that bo/h lie on the physical sheet.

We can, of course, solve Eq. (2) to find a value of F
for which k = 0 for any integer rn; but it does not
follow that E,(F) has a branch point associated with
every threshold. We saw, in Sec. III, that if, when F is
infinitesimally small, the scattering operator S(E,F) has
a bound-state pole, at some point on the physical sheet of
the Riemann E surface, there are also shadow poles, but
they lie only on those sheets that can be reached from the
physical sheet without crossing the cut emanating from
the threshold at channel number 0. Therefore there is
no shadow branch associated with the zeroth threshold.
Hence the point F~h, o in the F plane at which ko ——0 is
not a branch point. It must, in fact, be a saddle point.
This follows because if Fqh, 0 is not a branch point, a sin-
gle circuit in the F plane around Fqh, o must produce a
double circuit in the E plane around E = 0 since S(E,F)
has a square-root branch point at the threshold at E = 0
(and we must return to the same point on the same sheet
of the E plane when we follow a complete circuit in the F
plane around a nonsingular point); hence, for F = Fqh, p

we have E (F) Cqh, p(F —Fqh, p), where C&h, p is a
constant. There might, be branch points at those values
of F for which k = 0 when rn ( 0, but such values of F
must lie far from the real F axis (otherwise there would
be real values of F for which an atom could ionize by ab-
sorbing a negative number of photons); hence physically
significant type-T branch points occur only with positive
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channel number.
We can easily show that E~(F) cannot have type-T

branch points at both Fth, and F,*h, on the same sheet
of the F plane: If this were the case, E,(F) would have
the same value E&h, at Fthr and F~h, since Et;h, is real.
Furthermore, we know that if E~(F) has a branch point
at Fqh„ the conjugate branch has a branch point at Fth„
where its value is E,h,

——Et-,h, . Therefore the conjugate
and original branches would join at Ft-,h„ in conflict with
the discussion of Sec. IV A above. We can make this ar-
gument stronger, and extend it to show that not only
is there no second branch point at F~'&„ there is no sec-
ond one very close to Fth, (or Fth„): For if there were two
nearby branch points, at Fth, and F„'h, say, E,(F) would
behave as the product of gF —Fth, and gF —F,'h, near
these branch points. [E (F) would not behave like
the sum of the square roots since that would give four
branches. ] Therefore a closed circuit in the F plane
around both Fth, and F~'h, would give closed trajecto-
ries in the E plane around Eth„= E~(Fth„) = E~(Fth„);
but this is in conflict with the fact that S(E,F) is not
single valued along a closed path in the E plane around

Eqh, . Hence we must have

E„(F)= Eth, (F) 6 Cth, (F)/F —Fth„, (10)

where Eth, (F) and Cth, (F) are smoothly varying, non-
singular, functions of F in the neighborhood of Ft-h, , we

denote Eth„(Fth, ) by simply Eth„where Eth„——mhto,
with rn the channel number of the relevant threshold.
Due to inversion symmetry, there is also a type-T branch
point at —Eqh, . Note, however, that in the F2 plane,
rather than the F plane, any branch of E~ that has a
type-T branch point also has a branch point at infinity;
in contrast, a type-R branch point in the F plane does
not have an associated branch point at infinity.

If, to simplify matters, we assume that the square-root
term on the right-hand side of Eq. (10) dominates when
F is very close to ReFqh„we obtain

dA,"(F= ReFth, )

= +2(—ImF, h„) '~'(Ree ' Cth, ) . (Ilb)

It follows that

I', (F = ReFth„)

= p(lmFth„)[da (F = ReFth, )/dF], (12)

where P = 4. However, although the square-root term
dominates when F is sufficiently close to Ft,h„ it is cer-

I', (F = ReFth, ) ~2(—ImFth, ) (Ree '
Cth, ),

(11a)

tainly not always true that this term dominates when F
is very close to ReFth, . (At F = ReFth„ the shadow pole
and the dominant pole are about to interchange their
roles. In order that this interchange evolves smoothly,
their imaginary parts should not be too different. How-
ever, if the square-root behavior were to dominate, their
imaginary parts would be the same, but of opposite
sign. ) In fact, the linear behavior of Eth„(F)—viz. ,

Eth (F) Eth + [dEth (F —Fth )ldF](F Fth )—may
be more significant when F is very close to ReFth, . We
expect the linear behavior to dominate when, for exam-
ple, the light is circularly polarized, for then the thresh-
old (if its channel number is larger than I) has only a
barely noticeable efI'ect on the ionization rate, as we il-
lustrate in Sec. VIB. Even if the linear behavior does
dominate, Eq. (12) remains valid in form, provided that
Fth, is not far from the real axis; the only difference is
that P has the value 2 rather than 4. [However, if both
the linear and square-root terms are important, Eq. (12)
does not hold. ] Now, since I' (ReFth„) is positive on a
dominant (bound-state) branch, so is the right-hand side
of Eq. (12). Therefore, if Eq. (12) is valid, and if, on
a dominant branch, the shift decreases (increases) as F
increases along the positive real axis towards ReFth„ the
branch point at Fth, lies in the lower (upper) right quad-
rant of the complex F plane, provided that Ft-,h, is not
far from the real axis.

We can prove this last point, without resorting to the
approximation of Eq. (12), by appealing to the Cauchy-
Riemann relations:

OlmE, (F)
BlmF

OReE (F)
OReF (13a)

cjlmE, (F) OReE, (F)
OReF OlmF

However, before doing this we briefly discuss the behav-
ior of the lines along which ReE (F) and ImE (F) are
constant, for a dominant bound-state branch of E,(F).
We show a fairly typical map of these lines Fig. 3. We
have assumed that No, the minimum number of pho-
tons the atom must absorb to ionize in a weak field,
is large compared to unity. We may also asssume that
for F real the shift is negative, and monotonically de-
creases as F increases; therefore, as F increases along
the positive real axis, E~(F) moves past the threshold
of the (Np + 1)th channel, and the minimum number
of photons the atom must absorb to ionize increases to
Np + 1, . . . and so on. Except at the origin (F = 0) the
lines ReE, (F) = const are perpendicular to the lines
ImE~(F) = const at their points of intersection. In the
vicinity of the origin we have, according to perturbation
theory, E (F) Ep + EyF (unless a branch point sits
at the origin) and therefore the origin is a saddle point
of E,(F), through which the lines ~Ep~ + ReE, (F) = 0
and ImE (F) = 0 pass. Since Np ) 1, Et is real (and
negative). Therefore, at F = 0, the lines ImE, (F) = 0
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FIG. 3. A schematic diagram showing the distribution, in the F plane, of T-type branch points (the solid circles) for the
dominant branch. The lines ReE=const and ImE=const are the lines along which the real and imaginary parts of the dominant
branch of E,(F) are constant. The dominant branch originates from a bound state in which the atom must absorb a minimum
of

¹
photons to ionize in a weak field. We have assumed that Eo && 1, and that as I' increases along the positive real axis

the shift decreases monotonically. The unhatched regions are those in which ImE ( 0.

are tangential to the real and imaginary F axes, and
the lines IEcI+ ReE (F) = 0 make angles of 45' with
these axes. Along the real F axis, ImE, (F) is equal
to —I' c(F)/2, and this is negative if F g 0. Hence
the lines ImE, (F) = 0 cannot intersect the real F axis,
except at F = O. Now, the T-type branch points lie
along the lines ImE c(F) = 0, at the intersections with
the lines nba + ReE, (F) = 0, with n an integer. The
physically significant T-type branch points lie along the
line ImE c(F) = 0 that is closest to the real F axis (the
line that is tangential to the real axis at, F = 0). In
the right half of the F plane, this line is in the lower

(upper) right quadrant if BlmE (F)/BlmF is positive
(negative) when evaluated on the positive real F axis,
since ImE, (F) becomes negative as the real F axis is ap-
proached. From Eq. (13a) we see that OlmE (F)/OImF
is equal to dA~(F)/dF on the real F axis, and there-
fore the physically significant type-T branch points lie in
the lower (upper) right quadrant if A, (F) decreases (in-
creases) as F increases along the positive real F axis. If
the Nth type-T branch point (associated with the Nth
threshold) lies close to the origin, we may estimate its po-

sition Fth, N by putting E (F) = —Nhuf Ep+ EyF
to give Fthr rv g—(Ep+ Nhcd)/Et, so (with Eq neg-
ative) this branch point lies (almost) on the real axis if
N ) No or (almost) on the imaginary axis if N ( Np.
Since the Neth and (No —l)th branch points lie closest
to the origin, it is always one of these two branch points
which determines the radius of convergence of the pertur-
bation expansion of E,(F), provided there is no type-R
branch point which lies still closer to the origin.

We draw the type-T branch cuts in the F plane as
vertical lines. As we let F vary along these branch cuts
we do not reproduce the vertical branch cuts in the E
plane shown in Fig. 1. Rather, as we let F vary along
the cut starting from the Nth branch point, we produce a
curved line in the lower half of the E plane starting from
Nhu. Actually, this curved line in the E plane is not
unique since the dominant and shadow branches follow
diA'erent trajectories in the E plane as F varies.

let us now turn our attention to the movement of the
type-T branch points when varying the frequency. If we
vary cu, the branch points and the lines ReE~(F)
const and ImE~(F) = const move. If u is very small
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(that is, No » 1) we have A~(F) P—, where
P = (e2F /4pu ) is the ponderomotive shift. In this
case, we have Ei —(e /4@~~ ), and hence Fqh, ~
(2u/~e~)gp(EO + Nhu), so that as u vanishes infinitely
many type-T branch points accumulate at the origin, as
pointed out earlier by Manakov and Fainshtein. i Sup-
pose that we increase ~; those branch points that lie on
the section of the line ImE~(F) = 0 that is almost paral-
lel to the imaginary F axis move towards the origin, and
those that lie on the section of the line that is almost par-
allel to the real F axis move away from the origin. If we

choose u such that NAu+ Eo ——0, the Nth branch point
sits at the origin F = 0; if we increase w slightly, the Nth
branch point moves from the origin along the positive F
axis, and accordingly No decreases to N (fewer photons
are required to ionize the atom). As we continue to in-
crease u, the Nth branch point cannot move back across
the origin since the equation Nh~+ Eo —0 has only one
solution for fixed ¹ Furthermore, this equation cannot
be satisfied for N & 0, so that branch points associated
with thresholds that have channel numbers N & 0 can-
not pass through the origin. This, of course, is consistent
with the fact that an atom cannot ionize by absorbing a
negative number of photons. Moreover, there is no sin-

gularity associated with the zeroth threshold —there is a
saddle point rather than a branch point —and if this sad-
dle point were to pass through the origin, one of the lines
ImE (F) = 0 emanating from it would cross the positive
real F axis, contradicting the fact that ImE, (F) ( 0 on
the real F axis. The X = 1 branch point does, of course,
reach the origin, and presumably passes through it as
u increases beyond ~EO~/6. Restricting the remainder
of this paragraph to cu & ~EO(/h, we have, at least in
the weak-field limit, No ——1, and the coeKcient Ey, in
the expansion E (F) Ep + EiF2, becomes complex.
Therefore the lines ImE, (F) = 0 are no longer tangen-

tial to the real and imaginary F axes at F = 0, and the
lines ~EO~ + ReE (F) = 0 no longer make angles of 45'
with these axes. When ~ && ~EO~/h, the shift is normally

positive (if F is real) and it normally (the model atom
discussed in Sec. VI 8 is abnormal) decreases monotoni-
cally as F increases. [Thus the line (Eo(+ReE,(F) = 0,
which lies in the upper right quadrant, crosses the real
axis and turns into the lower half plane as ~ increases
beyond ~EO~/h. ] Assuming this is the case, the minimum
number of photons that the atom must absorb to ion-
ize cannot increase as F increases along the positive real
axis. Hence the lines ImE, (F) = 0 along which the
branch points specified by positive channel numbers lie,
must sharply diverge from the real F axis as they move
away from the origin [for otherwise the (No+ 1)th branch
point would be physically significant, and the minimum
number of photons required for ionization would increase
to %0+ 1 or more as F increases]. Presumably the lines
ImE~(F) = 0, along which the branch points specified
by negative channel numbers lie, must eventually con-
verge towards the real F axis as they move away from
the origin since the ac width vanishes as F increases
along the positive real axis.

V. ADIABATIC VERSUS DIABATIC
TRANSITIONS

A. Resonances

At any point in the neighborhood of two type-R branch
points, at F«, and F,',» the two branches are separated
by the distance IbE (F) ~, where

6E,(F) = 2C, Q(F —F'„.)(F —F„'„)
= 2C„,.([F——,'(F„,+ F,',.)]'

i (F FI )2)l/2

(14a)

(14b)

where here C„, is the (approximately) constant value of
C«, (F) in the vicinity of the branch points. There are
two extreme cases of interest, which we label as (a) and

(b), and which we now discuss.
In case (a) we have F,'„F„*„,which applies when

the difference of the widths of the two branches is small
compared to the difference of the shifts. In this case we
have

bE„(F) —2C„,(F —F„,) .

Provided that C«, is still approximately real, we see that
now the real parts of the two branches exhibit very nearly
a true crossing at F«„while the imaginary parts exhibit
an avoided crossing.

We can join the two branch points at F«, and F,'„
by a branch cut. If we follow a closed path in the F
plane that encircles both branch points, without crossing
the cut, any given branch returns to its original value,
at the point where we started. However, suppose that
we follow a continuous path along the real F axis. In
case (a), where F„, and F,'„ lie on opposite sides of the
real axis, we must cross the cut, and this results in a
switchover between branches. (Note that the discontinu-
ity in the shift of a given branch, on each side of the cut

6E,(F) = 2C„,Q(F —ReF„,)'+ (ImF„„)' .

If F is confined to the real axis, the separation of the
real parts of the two branches, and simultaneously the
separation of the imaginary parts (the widths), are at a
minimum at F = ReF«, . Thus the real parts undergo
an avoided crossing on the real axis at ReF„„as do the
imaginary parts. The gap between the real parts at the
avoided crossing is 2~(ReC„,)(lmF„,)~, and this is the
Rabi coupling energy hOO between the levels a and 6

(where Qo is the Rabi flapping frequency). 2~ The gap be-
tween the imaginary parts is 2~(lmC„, )(lmF„„)~. Actu-
ally, C„, is approximately real since, in the present case,
6E,(F) is approximately the difference of the shifts, and
they are real if F is real. Therefore the imaginary parts
of the two branches very nearly exhibit a true, rather
than an avoided, crossing at F = ReF«, .

In case (b) we have F,'„F„„.Numerical studies
indicate that this case may apply when the difference of
the widths of the two branches is large compared to the
difference of the shifts. In case (b) we have
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P, =
/
exp ]

—— dt' E,(F) [ /

i

('2
= exp

~

—Im
h

dt' E,(F)

where E (F) is the appropriate branch of the
quasienergy, and where F is a function F(t) of time f,

(a) (b)

at ReF,~„ is, up to a sign, hQp. ) On the other hand,
in case (b), where F„, and F,'„ lie on the same side of
the real axis, we avoid the cut, and there is no switchover
between branches. Thus, if the atom starts out in atomic
level a, and if F is varied slowly along the real F axis,
past a pair of type-R branch points, the atom evolves
adiabatically into atomic level b in case (a), but remains
in atomic level a in case (b). Of course, the atom can
adjust to a change of character in its state, in case (a),
only if the cut is crossed suf5ciently slowly. If the cut
is crossed rapidly, the atom evolves diabatically, and the
character of its state is preserved. In a diabatic passage
through the cut, the atom follows the same branch of
the ac quasienergy. Mathematically, this amounts to dis-
torting the path along the real F axis into the contour
C that passes around one of the branch points, thereby
avoiding the branch cut; see Fig. 4(a). Physically, this
amounts to the atom undergoing a transition across the
energy gap of the avoided crossing of the real parts of
the two branches of the quasienergy, at F« = P'eF«„
and the probability for this to occur is significant only if
the avoided crossing is passed in a time bt such that h/bt
is comparable to or larger than the energy gap.

In the absence of a resonance, the probability for the
atom to remain in a particular state that develops adia-
batically (continuously) as the (real) field strength varies
with time is

with F(g) real when t is real. [We assume that F(t')
varies slowly on the time scale of a cycle, so that both
the Hamiltonian and the state vector depend paramet-
rically on F.] This probability decays exponentially as
t increases [the imaginary part of E (F) is negative if
F is real] since the population in the adiabatic state is
depleted by ionization according to the well-known decay
law P, = exp( —(I/h) f dt' I', [F(t')]). Suppose that
at some value of F there is a resonance, described by case
(a), with the two type-R branch points on opposite sides
and equidistant from the real F axis. Let us calculate the
probability for a diabatic transition at this resonance. As
F(t) sweeps along the real axis, the cut joining the two
branch points is crossed, and the atomic character of the
adiabatic state changes, from a to 6 say. There is another
adiabatic state whose character changes from 6 to a as
the cut is crossed. The probability for the atom to un-
dergo a diabatic transition to this other adiabatic state,
so that the atom remains on the same a branch of the
quasienergy, is

2
P, = exp

(

—Im
(h

Ch E,(Fj)

where C' is the contour in the t plane that corresponds
to the contour C in the F plane, which circumvents the
branch point F„„asshown in Fig. 4(a). We are assum-
ing that the value of P obtained by integrating along
C, around F„„is smaller than unity (for otherwise we

cannot interpret P as a probability); if this value is not
less than unity, we must integrate around F,"„,along the
contour that is the image of C—this simply amounts to
reversing the sign of ImF„, in Eq. (19a) below, and does
not alter the final result of Eq. (19b). In the neighbor-
hood of the avoided crossing, at F = F„—:ReF„„we
can write F(t) F„+F,„(t—f,), where t,„ is the (real)
time at which the crossing occurs, so that F(t«) = F,„,
and where F„ is the (real) time derivative of F(t) at t„
Therefore, provided that F«, is sufFiciently close to the
real axis, we have

1, res

2, res

F
3, res (

P =exp )

—
~ Im

hF,„

Fres
dF bE (F)

F
2. , res

ReF

F1, res

ReF where bE, (F) was defined by Eq. (15); we have chosen a
sign convention so that if F is on the cut, the discontinu-
ity in the a branch of E (F) as the cut is crossed, in the
direction that F(t) changes as f increases from just below
to just above t„, is bE, (F). Setting—F = F,„+iz, we
obtain

FIG. 4. A schematic diagram showing the locations, in
the I" plane, of two type-R branch points associated with a
single resonance. In (a) the difference of the widths of the two
resonant branches is negligible compared to the diR'erence of
the shifts, and the two branch points are conjugates of each
other. The contour C wraps around the section of the cut
in either the upper half (as we have shown) or the lower half
(see text) of the F plane. In (b) the diff'erence of the widths
is large compared to the difference of the shifts, and the two
branch points lie on the same side of the real F axis.

( 4P = exp — . Re
hF„

—nowt=e )

~ITIFres

dx C„,Q(lmF„, )~ —x2

(»a)
(19b)

where hQO —— 2~(ReC, ,) (ImF, ,) ~

and where bt

(ir/2) (I mF/ F~. Therefore the probability P, for the
atom to make a diabatic transition, in case (a), is less
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than unity, as it should be, but it is close to unity if the
field varies sufficiently rapidly that the avoided crossing
is passed in a time bt such that h/bt is large compared
to the energy gap hOp. (In other words, P, 1 if the
resonance is passed so rapidly that there is no time for
the atom to undergo Rabi Hopping. ) In the adiabatic
limit, where I"« ~ 0, the time bt becomes infinite, P
vanishes, and the atom switches branches as I" passes
along the real axis past the branch points.

Note that Eq. (19b) is analogous to the usual Landau-
Zener formula for the probability of a diabatic transition
in an atomic collision. In that context, I" is replaced by
the internuclear separation R of the two colliding atoms.
A study of the quasienergy for one atom perturbed by
another, in the complex R plane, has been carried out by
Solov'ev, 2s and of course there are many analogies with
the present study. There are also important difIerences:
First, I", unlike R, is under the control of the experi-
mentalist. Second, the energy transfer that results from
absorbing photons is quantized. (The energy transfer
that results from varying I", like that which results from
varying B, is not quantized; it arises from stimulated pho-
ton scattering between modes within the finite frequency
bandwidth of the light. ) Third, this quantization leads to
a series of resonance branch points associated with the
same two atomic levels. Fourth, this quantization also
implies the existence of channel thresholds, separated in
the energy plane by units of hu, which gives rise to a
series of shadow branch points associated with the same
single atomic level. It is towards the shadow branches
that we now turn our attention.

ReF

FIG. 5. A schematic diagram showing the location, in the
plane, of a T-type branch point. The contour C wraps

around the branch cut in the lower half of the I' plane.

cut from a type-T branch point so that it vertically
crosses the real E axis and extends to infinity, as in Figs.
2 and 5. As F(t) sweeps along the real axis, the real and
imaginary parts of E (F) each exhibit avoided crossings
at F,„=F(t„), where now F,„=ReFih„.

The atom starts out on a dominant branch. However,
if, as F(t) increases, a threshold is passed, the cut em-
anating from a type-T branch point is crossed, and the
character of the adiabatic state changes (continuously)
to that of a shadow branch. The probability for making
a diabatic transition so as to remain on the dominant
branch (i.e. , the survival probability) is

B. Thresholds
t'

Pd ——exp — . Im
«hr

dF bE„(F) (21)

At any point in the neighborhood of a type-T branch
point, at Eth„ the two branches are separated by the
distance )bE,(F) (, where now

bE, (F) = 2Cih. +F —Fih. ,

with C&h, the (approximately) constant value of C&h„(F)
in the vicinity of the branch point. We draw the branch

I

where bE (F) is defined by Eq. (20), with the sign con-
vention chosen so that bE, (F) is t—he discontinuity in
the dominant branch of E (F) as the cut is crossed in the
direction that F(t) changes as t increases from just below
to just above t«, and where again I"« is the time deriva-
tive of F(t) evaluated at t = t,„Setting F. = F„+iz,
we obtain

ImE', h,
dz Cih, e' gx —(ImFih, .)

4
Pd ——exp — . RehF„p

= exp . (—Imt, e,) &'Re(C, e,e" '))3hF„
( 41mFih„= exp

~

— . "64„(F„))
3hF,„

(2'2b)

(22c)

where bA, (F„) = —2C—ih, g—ilmFih, is the discon-
tinuity in the shift of the dominant branch as the cut
is crossed at F,„= ReF),.h, in the direction that F(t)
changes as t increases from just below to just above t, .
If we define bI" so that, with the branch the dominant

one, bE~~(E«) =—[dA ~(F)/dF]SF, where dA~(F)/dF
is evaluated just before the threshold is passed, we can
rewrite Eq. (22c), assuming the validity of Eq. (12), as

p —I', bt/5
g

——e
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where now 6't = 46F/(3PF«). The quantity bt is the
characteristic time associated with the passage past the
threshold, although this cannot make sense if bt is nega-
tive. Note, however, that if bt were negative, the shadow
pole would lag behind the dominant pole as (real) t in-
creases towards t«—the shadow pole would lag behind as
the poles move, in the E plane, towards the threshold-
and therefore the shadow pole would not be "ready" to
take over its role as a dominant pole. Thus we assume
that bt is positive. If the threshold is passed very slowly,
so that F„ is small, and bt is long compared to h/I
we have P& 0—the atom completely ionizes. On the
other hand, if the threshold is passed in a time bt that
is short compared to h/I' „we have Pd 1—the atom
remains on the dominant branch, as normally happens in
practice.

VI. NUMERICAL STUDY

W/cmz, the real parts of the 1s branch and the 3d branch
undergo an avoided crossing. The branch points that cor-
respond to this ls-3d resonance occur in the complex F
plane at Fy, 3d, 0.0175+i0.0040 and at F1s-3d F1s-3d
where we use atomic units (a.u.). The 3s and 3d branches
meet at F = 0, but this is not a branch point since the
two branches are uncoupled there. However, these two
branches meet again at F3 -3d, 0.0165+ i0.0043, in a.u.
(The uncertainty in the numerical estimates of the posi-
tions of all the branch points is 0.0005 a.u. The branch
points were located by allowing F to vary around circles
of small radii, and diA'erent centers, and by inspecting,
each time, whether the basis-set composition of a branch
has changed after a complete circuit in the F plane —if
it did, the new branch was identified by determining the
bound state from which it originates in the limit of van-
ishing F.) All three branch points are shown in Fig. 6.
Note that while F3 -3g is numerically very close to F] -3d,

In this section we present results of a numerical study
of the ground-state branch of the quasienergy. We first
report results for the hydrogen atom, irradiated by lin-
early polarized light, to illustrate some features of type-R
branch points. The calculations for hydrogen were car-
ried out by Potvliege by solving the system of equations
(2) using a complex Sturrnian basis~2(b) ~s with a single
wave number & & for the basis functions. In order to
detect shadow branches, a basis containing more than
one wave number must be used, ~ & & and since the corn-
puter code has not yet been adapted to utilize a basis
containing more than one wave number, type-T branch
points have not been studied for hydrogen. However,
we have studied type-T branch points for a model atom,
irradiated by circularly polarized light. This model, orig-
inally studied in depth by Berson and by Manakov and
Rapoport, 3 consists of an electron initially bound to
the zero-range potential

4zh 0
b(x)—~ .

2pK Bp

This potential supports a bound state with energy E( ) =
h z /(2p), but no other discrete (bound or quasibound)
levels. Hence, within this model, the quasienergy has
only type-T branch points, and no type-R branch points.
(See, however, the end of Sec. III.)

A. Hydrogen atom

When the hydrogen atom is irradiated by 204-nm lin-
early polarized light there is an intermediate two-photon
resonance, at an intensity close to 1 x 10~4 W/cmz, be-
tween the 1s state and a superposition of 3s and 3d states.
In the zero-field limit there are two diA'erent degenerate
superpositions of 3s and 3d states; both are of even par-
ity, but one superposition, which we label as 3s, is pre-
dominantly 3s, while the other, which we label as Bd, is
predominantly Bd. As the intensity is varied past 1 x 10

FIG. 6. The branch points associated with the two-photon
resonance between the 1s and a superposition of 3s and 3d
states of the hydrogen atom irradiated by 204-nm linearly
polarized light. The curves labeled (1)—(4) are sections of
circles of the same radius 0.0065 and centers at (1) 0.0220—
20015, (2) 0.021 90 —i0.000 25, (3) 0.021 00 + i0.000 25, (4)
0.02170+ i0.001 25. Units are a.u.
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FIG. 7. Trajectories in the E plane, starting on the 3d

branch and following one or more loops of a circle in the
E plane, for atomic hydrogen irradiated by 204-nm linearly
polarized light. Each trajectory in the E plane is numbered
according to the number labeling the circle in the I' plane, as

given by the caption to Fig. 6.

the branch point at F3, 3d, lies on a difFerent sheet from
the one at Fy, 3d, since the latter branch point is at the
intersection of the 1s and 3d branches, while the former
is at the intersection of the 3s and 3d branches. Thus, al-
though Fs -sd is (slightly) closer to the origin than Fq, sq,
it does not influence the radius of convergence of the per-
turbation series for the 1s branch.

In Fig. 7 we show the trajectories in the E plane, start-
ing on a particular dominant branch of E~„ for vari-
ous closed trajectories in the F plane. The trajectories
in the F plane are circles, all of the same small radius
0.0065 a.u. , but with difFerent centers. Thus we write
F = F, + 0.0065e', where 0 varies from 0 to 2m', with
rn a positive integer equal to the number loops in the F
plane. We start, at 0 = 0, where F = F, + 0.0065, on the
(dominant) 3d branch. (This branch can be reached by
starting on the 1s branch at F = 0 and following a tra-
jectory that crosses the cut joining F~, 3d and Fz, 3d, or
it may be reached by starting on the 3d branch at F = 0
and following a trajectory that avoids the cut. ) Circle (1)
in the F plane encloses the branch point at Fq, 3d, but no
other branch point. After one loop around this circle, the
3d branch becomes the Is branch. After a second loop
around this circle, the 3d branch is recovered, indicating
that the branch point is indeed of the square-root type.
Circle (2) encloses the branch points at both Fq, sg and

Fg ~ 3&, but not the branch p oint at F3g-3d . The branch
does not change after one loop around this circle (it re-
mains 3d). Circle (3) encloses all three branch points.
After one loop around circle (3) the 3d branch becomes
the 3s branch, and after a second loop the 3d branch is
recovered. Finally, circle (4) encloses the branch points
at Fy, 3g and F3, 3g, but not the branch point at F&, 3d.
After one loop around circle (4) the 3d branch becomes
the 3s branch; this change occurs before the cut joining
Fq, 3d and F&, 3& is crossed, and so this cut has no ef-

fect. After a second loop around circle (4) the 3s branch
becomes the 1s branch; the 3s branch first switches to
the 3d branch, and from there to the ls branch. After a
third loop around circle (4), the 3d branch is recovered.

If we express the Rayleigh-Schrodinger perturbation
series for the ls branch as E,'l(F) = P„oEI„'lF2",
the series converges for ~F

~
& R, where, by the ratio test,

the radius of convergence R is the limit, as n tends to
infinity, of ~E&~„'l/E&~„*+~&~ ~ . In Table I we show the ra-

tios ~E2~„' /Ez„'+~&~~~ versus n for various wavelengths.
Let us focus on the wavelength 204 nm. (For '204 nm,
we calculated the perturbation series through 34th order
in F. The coefFicients E&„' are complex for n & 3 since
the atom ionizes if it absorbs three or more photons. We
note that the perturbation series for the 1s branch of
the hydrogen atom has been studied by Pan, Taylor, and
Clark over various wavelengths, but only up to the term
in F ', where No is the minimum number of photons
the atom must absorb to ionize). At the wavelength 204

nrn the ratios ~Ez„'l/E&„'+z~ ~ behave erratically with n. ,

and have not settled down by n = 17; nor does Pade ex-
trapolation yield a converged result. However, the results
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TABLE I. The square root of the absolute ratio of successive coeKcients )E~~„'~/E~„'+2) ~ of
the power series expansion of the ground-state branch of the quasienergy for the hydrogen atom
irradiated by linearly polarized light of wavelengths 204, 355, and 140 nm. The fifth column is a
Pade extrapolation (Ref. 36). Units are a.u.

1
2
3

5
6
7
8
9
10
11
12
13
14
15
16
17

204 nm

0.0388
0.0188
0.0193
0.0198
Q.0207
0.0221
0.0251
0.0395
0.0115
0.0133
0.0164
0.0182
0.0200
Q.0225
0.0292
0.0174
0.0122

355 nm

0.165 656
0.030 241
0.018 730
0.017 886
0.017542
0.017 590
0.017 585
0.017 586
0.017 587
0.017 588
0.017 589
0.017 589
0.017 590

140 am

0.078 622
0.068 485
0.061 081
0,057 633
0,055 653
0.054 361
0.053 452
0.052 776
0.052 253
0.051 838
0.051 499

140 nm (Pade)

0.048 382
0.048 249
0.048 180
0.048 165
0.048 169
0.048 168
0.048 168

are not inconsistent with a radius of convergence equal to
)F] —3d) —0.017. We note that at 204 nm three photons
only barely ionize the hydrogen atom from the 1s state,
and so there is a type-T branch point not far from the
origin of the F plane; we do not know exactly where it is,
but perhaps its presence is responsible for the erratic be-
havior of the ratios of the coeKcients. It is not so diFicult
at every wavelength to estimate the radius of convergence
of the perturbation series from the coeKcients of the se-
ries. For example, in Table I we see that for 355 nm the
ratios )Ez~„')/E2~„'+)2)i~2 converge steadily, and yield a ra-
dius of convergence of 0.0176 a.u. For light of wavelength
355 nm there is a three-photon ls-2p resonance at an in-
tensity of about 1 x 10is W/cms. This resonance gives
rise to a true crossing of the real parts of the 1s and 2p
branches, and the two branch points bo/h lie in the upper
right quadrant of the F plane, and therefore on the same
side of the real F axis. These branch points are at about
0.0172+ i0.0030 and 0.0175+ i0.0027 a.u. , in good agree-
ment with the radius of convergence of 0.0176 a.u. At
the wavelength of 140 nm the ratios )E2~„')/E2~„'+)2) ~ de-
crease monotonically, and although they converge rather
slowly as n increases, the convergence can be readily ac-
celerated by Pade extrapolation, to yield a radius of
convergence of 0.0481684. In fact, 140-nm light is only
slightly detuned from an intermediate one-photon reso-
nance at weak intensities. The relative shift of the 1s
and 2p levels is in the wrong direction for the resonance
to become more sharply tuned as the intensity increases.
One of the branch points corresponding to this resonance
lies almost on the imaginary F axis, at F~, ~z i0.048
a.u. , in accord with the previous estimate of the radius
of convergence. (Another branch point lies, of course, at
—Fq, 2z, which is almost at F&*, 2P, but we do not know

where the "conjugate" branch point Fi, 2„lies.) Further
details will be presented elsewhere.

B. Model atom

( I)n+s(& + nw)s+1 j2p2s
1+ i =0.

(s —n) t(s + n)!(2s + 1)
(24)

This equation gives not only the dominant branch but
also the shadow branches, as can be seen by writing
(e + nw)'+i~2 = (2k„)2'+i and choosing the sign of k„
as discussed above. To find the branch point associated
with the confluence of a shadow branch and a domi-
nant branch at the rnth channel threshold we numerically
solve Eq. (24) for the value of F for which e = —mw.
We specify energies in units in which Eo ———1 (so that
E, = c) and we specify field strengths in units in which
eh/(p ~ )Eo) ~ ) = 1 (so that v = F). Throughout our-
calculations for the model atom, we set the ratio of the
frequency to the binding energy to be m = 0.525, so that
(at weak fields) the atom must absorb a minimum of two
phot, ons to ionize.

For this value of to the quasienergy has a type-T branch
point very close to the real axis in t, he F plane, at

Fth, 2 ——0.164 420 289 825 400 2
—i0.000 026 465 838 787 61;

We now consider the model atom, whose p oten-
tial was defined above. Following Berson32 we in-
troduce the scaled quantities e = E,(F)/)Ep), v

ehF/(p ~—)Eo)s~ ), w = h~/)Eo), and p = ~2v/w2.
The characteristic equation from which the bound-state
branch of the quasienergy E (F) may be determined is
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at this branch point the dominant branch coincides with
a shadow branch at the channel 2 threshold in the E
plane, at Eth, p ———1.05. In Fig. 8 we demonstrate that
this type-T branch point is of the square-root type. We
find that Ct, h, (Fqh, 2) is extremely small; in fact, the nu-
merical evidence is that Cqh, (F) vanishes as (F—Ft;h. 2)
when F approaches Ft,.h, 2 so that E,(F)—Eth, q behaves
approximately as (F—Ft h„2) i', as indicated in Fig. 8(a).
This result is not altogether surprising, and is related to
the Wigner threshold law, as we now explain. When
E,(F) approaches the threshold with channel number

in a direction such that the Nth channel changes
from being open to closed, the partial rate for ioniza-
tion by N photons vanishes as (Ea, —Eth, ~){2'+i}~2,
where Et;h, ~ ———Nhu, and where / is the lowest allowed
value of the orbital angular momentum quantum num-
ber; for circularly polarized light / = N. Now, provided
that Fqh, ~, the position of the branch point at which
E,(F) = Eqh, ~, is not far from the real F axis, and
provided (E,—Eqh, iv) is approximately proportional to
(F —F,h, Iv) as F varies along the real axis, we expect
that the partial rate for N-photon ionization behaves as

(F—Fqh, iv){ + }~ near the threshold; this suggests that
Cgh, (F) behaves as (F —F,h, iv)'. However, we cannot
draw this conclusion for all of the branch points; we have
verified it holds also for N = 1, but it may not hold
for N & 2 since Ft-,h, ~ may be insuKciently close to the
real axis. Note that the background term E,h, (F)—see
Eq. (10)—is linear in the neighborhood of F,h„2, as is
apparent from Fig. 8(b), and that this term swamps the
square-root behavior.

As noted in Sec. IV, the point Fqh„o in the F plane at
which ko ——0 is not a branch point but a saddle point. We
demonstrate this numerically in Fig. 9. We denote the
second branch, which meets the dominant branch E&"&

when F = Fth, o, by E~'~, but we are not sure where this
second branch originates from. Note that the diA'erence
of E("}and E('}behaves as (F —Fqh, o)4.

It is instructive to look at the behavior of the
quasienergy in the E plane as F moves by the branch
point at Fth, 2. In the upper box of Fig. 10 we show
four diA'erent trajectories, in the E plane. These tra-
jectories start from either a point d on the dominant
branch or a point 8 on the shadow branch, and they
terminate at either a point d' on the dominant branch
or a point 8' on the shadow branch. The trajectories in
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FIG. 8. Behavior in the F plane of the dominant (E("})
and shadow (E{'})branches of the bound-state quasienergy
near a type-T branch point for the zero-range model atom,
for the case where w, the ratio of the frequency to the un-
perturbed binding energy, is 0.525. The shadow branch is
the one associated with the threshold of channel 2, and the
branch point is at Fih, = F,h„,2, given by Eq. (25) of the text.
Note that Eo, the unperturbed binding energy, is —1. The
units are defined in the text.

FIG. 9. Behavior in the F plane of the dominant (E{"})
and shadow (E{'})branches of the bound-state quasienergy
near a type-T saddle point for the zero-range model atom
(with m = 0.525). The shadow branch is the one associated
with the threshold of channel 0, and the saddle point is at
I"th, = Eth, o

——0.125234+ i0.774159. The units are defined
in the text.
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FIG. 10. In the upper box we show four diferent trajec-
tories, in the E plane, of the bound-state quasienergy for the
zero-range model atom (with w = 0.525). These trajectories
correspond to the trajectories in the F plane shown in the
lower box, and they start from either a point d on the domi-
nant branch or a point s on the shadow branch, terminating at
either a point d' on the dominant branch or a point s' on the
shadow branch. Each trajectory in the E plane corresponds
to the trajectory in the F plane with similar markings. The
units are defined in the text; the vertical scale is marked in
these units reduced by 10

the E plane correspond to the trajectories in the F plane
shown in the lower box of Fig. 9. If a trajectory in the I"

plane crosses a branch cut, the corresponding trajectory
in the E plane also crosses a branch cut, and there is a
switchover of branches. This occurs for the trajectories
marked by open circles and open squares. In order to
remain on the same branch, a trajectory in the I" plane
must be chosen so as to avoid the branch cut; this occurs
for the trajectories marked by crosses and asterisks. I et
us illustrate this for a path in the I" plane along which
the branch remains dominant. It is helpful to turn to
Fig. 3, taking No ——2 to be specific. In order to arrive
on the dominant branch at a point F on the real axis
on the right of ReFqh„starting at a point on the left of
ReFt, h„we see from Fig. 3 that ImE must first increase
through zero and become positive, while ReE decreases;

TABLE II. Absolute ratio of successive coefficients of the
power series expansion of the bound-state quasienergy for the
zero-range model atom, for the case where m, the ratio of the
frequency to the unperturbed binding energy, is 0.525. The
third column is a Pade extrapolation (Ref. 36) of these ratios.
For units see text.

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

I &2-/E2-+~ I

23.51971
0.052 61
0.106 44
0.174 59
0.168 97
0.091 36
0.062 76
0.054 36
0.04856
0.04442
0.041 67
0.039 70
0.038 19
0.037 01
0.036 05
0.035 27
0.034 61
0.034 04
0.033 56
0.033 14
0.032 77
0.032 44
0.032 15
0.031 88
0.031 65
0.031 43
0.031 24
0.031 06
0.030 89

Pade

0.194 744 255 9
—0.034 205 3194

0.044 576 020 9
0.055 478 134 3
0.025 595 805 8
0.020 255 726 4
0.014 965 386 3
0.027 377 022 0
0.026 577 1189
0.027 125 721 3
0.027 382 299 9
0.027 011480 3
0.027 034 170 1
0.027 034 414 8
0.027 033 895 8
0.027 034 093 8
0.027 034 040 9
0.027 034 012 5
0.027 034 005 8
0.027 034 006 9
0.027 034 010 0
0.027 034 013 6
0.027 034 016 8
0.027 034 019 6
0.027 034 021 8

then ImE must become negative again as the real I" axis
is approached. This is indeed the behavior that we find
in the upper half of Fig. 10.

We can also generate, from Eq. (24), the Rayleigh-
Schrodinger perturbation series for the ground-state
branch of Ea, (F); this can be done most easily by it-
eration, to successively higher powers of v, using sym-
bolic manipulation software. Expressing the perturba-
tion series as E~(F) = P„Eq„F", we show, in Ta-
ble II, the ratios IEq„/Eq„+zI. The ratios IEq„/Eq„+2I
converge only very slowly as n increases, but, as before,
we accelerated the convergence by Pade extrapolation.
The radius of convergence of the power series is

»m„~ IE2„/Eg„+g I
= +0.027 034 03 = 0.164 420 3.

We found that the branch point of E,(F) closest to
the origin is the one associated with the confluence of
the dominant and shadow eigenvalues at the two-photon
threshold (which is not surprising since Eo is not far from
this threshold), and the distance of this branch point
from the origin —see Eq. (25)—is in excellent agreement
with the radius of convergence of the power series Fur-.
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Ap

+ F' —Ft'h, ) .B (F' —Ft'h. )" .
n=O

(26)

thermore, we studied the perturbation series for the shift
and width functions, A, (F) and I',(F), and we con-
firmed that these series have exactly the same radii of
convergence, equal to that of the perturbation series of
E,(F). Calculations of the radius of convergence of the
Rayleigh-Schrodinger perturbation series for this model
atom were recently carried out over a wide range of fre-
quencies by Alvarez and Sundaram. ss As noted by them,
as u varies, the radius of convergence rises and falls, drop-
ping to zero each time the condition Nh~ + Ep ——0 is
satisfied, where N is a (positive) integer.

It is not diKcult to find the positions of the type-T
branch points in the F plane since we know their location
in the E plane, and, as noted in Sec. II, the eigenvalue
problem for F is relatively easy to solve. Once we know
where these branch points lie in the F plane, we can (if
there are no type-R branch points to worry about —and
there are not for the zero-range potential) analytically
continue the origina/ perturbation series for E,(F) be-
yond its radius of convergence. There are many ways
to do this, and we give just one example. We expand
E,(F) about E (Fth„) in powers of (F —F,h„), where
+Fqh, are the branch points nearest to the origin. Thus
we write

Ap

E,(F) = ) A„(F —F,„,)"

If we expand the right-hand side of Eq. (26) about the
origin of the F plane, we can determine the 2np+ 2 coef-
ficients A„and B„by matching this series to the original
Rayleigh-Schrodinger series P„"'o+ E2„F2" truncated
after the term in F "'+ . Of course, we should find that
Ap —Ephor g, where, in the present case, E&~, 2

——1.05;
we should also find, in the present case, that the coef-
ficients Bo and Bt are (close to) zero. In fact, choos-
ing n p

——29 we find that Ao ———1.050 000 000 000 041 +
22.3 x 10, whereas Ay ———1.850 37 —i0.001 64, and
that Bp ——4.5 x 10 —i6.7 x 10 ' and B~ —2.4 x
10 + i2.7 x 10 8, whereas B2 ———0.039 233 —i0.000 086.
The series of Eq. (26) has a rather large radius of con-
vergence since there are no other type-T branch points
close to Fqh, . Furthermore, due to the presence of the
(two-valued) square root in Eq. (26), this series yields
both the dominant and shadow branches. In Table III
we show estimates of the dominant and shadow branches,
based on the series (26) with no ——29, for various values
of F along the positive real axis, and we compare these
estimates with the exact values to illustrate the high ac-
curacy of the estimates. As F increases along the positive
real axis, from below ReFqh, 2 to above, the branch that
was a dominant one becomes a shadow one, and vice
versa. The point at which this switchover takes place de-
pends on where we draw the branch cut of the square root

F —F,h, 2. We continue to draw the cut along a verti-
)

cal line that starts from F&h, 2 and crosses the real F axis.
Thus the switchover takes place at ReFqh, 2

—0.164, and

TABLE III. The dominant (tt) and shadow (s) branches of the bound-state quasienergy for the zero-range model a.tom
(with to = 0.525) vs F . The shadow branch is the one associated with the threshold of channel 2. The third column contains
the results based on the series expansion given by Eq. (26) of the text, while the fourth column contains the exact results.
(Units are given in text. )

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E,(F) (series)
—1.000 000 000 000 0 —i0.000 000 000 000 0
—1.000 005 393 441 4 + i0.000 001 602 662 2
—1.018 488 354 266 1 —i0.000 001 155 921 9
—1.018 488 649 362 2 —i0.000 QQ0 676 480 7
—1.036 985 641 032 8 —i0.000 007 043 833 Q

—1.036 985 643 682 6 —i0.000 006 865 219 2
—1.055 488 318 824 0 —i0.000 021 416 699 9
—1.055 488 365 134 1 —i0.000 021 417 146 3
—1.073 995 360 701 —i0.000 046 318 566
—1.073 998 659 588 —i0.000 046 333 594
—1.092 506 165 47 —i0.000 082 547 10
—1.092 527 791 01 —i0.000 082 642 20
—1.111020 505 3 —i0.000 130 182 3i
—1.111097 932 1 —i0 ~ 000 130 533 9i
—1.129 538 264 —i0.000 188 733
—1.129 744 711 —i0.000 189 698
—1.148 059 29 —i0.000 257 23
—1.148 520 48 —i0.000 259 71
—1.166 583 0 —i0.000 334 3
—1.167 498 3 —i0.000 340 6
—1.185 107 —i0.000 419
—1.186 777 —i0.000 432

E,(F) (exact)
—1.000 000 000 000 0 —i0.000 000 000 000 0
—1.000 000 00Q 000 0 —i0.000 000 000 000 0
—1.018 488 354 266 1 —iQ. QQO QQ1 155 921 9
—1.018 488 354 233 2 —iQ. QQQ 000 749 501 4
—1.036 985 641 032 8 —iQ. QQQ 007 Q43 833 0
—1.036 985 64Q 787 8 —iO. QQQ Q06 865 748 9
—1.055 488 318 824 I —iQ. QQQ 021 416 700 0
—1.Q55 488 365 134 3 —iQ, QQQ 021 417 146 1
—1.Q73 995 360 707 —iQ. QQQ 046 318 56Q
—1.073 998 659 597 —iQ. QQQ 046 333 601
—1.092 506 165 44 —iQ. QQQ Q82 547 57
—1.092 527 790 93 —iO. QQQ Q82 642 26
—1.111020 506 9 —iQ. 000 130 181 Qi

—1.111097 935 0 —iO. QOQ 130 535 Gi
—1.129 538 251 —iQ. QQO 188 722
—1.129 744 692 —i0.000 189 721
—1.148 059 20 —iQ. QOQ 257 29
—1.148 520 31 —iQ. QQQ 259 63
—1.166 583 0 —i0.000 334 8
—1.167 498 2 —i0.000 339 6
—1.185 109 —iQ. QQQ 420
—1.186 780 —iQ. QQQ 429
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if we were to show, in Table III, values of the branches
on the left and right edges of the cut we would see a very
small discontinuity, determined by the second term on
the right-hand side of Eq. (26).
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