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This paper is concerned with the spectral profile of spontaneously emitted radiation from A and
cascade models of driven three-level atoms, and with the absorption spectra of a weak probe. The
atoms are excited by a pair of coherent external fields that are resonant or nearly resonant with the
two dipole-allowed transitions of each of these two models. The main aim of this work is to extend
earlier studies of the V-model configuration of three-level atoms and to present a comprehensive
survey of the emission and absorption features of these systems. In addition to a derivation of exact
formulas for the spectra and explicit analytic approximations in the high-intensity limit, we provide
an explanation for the existence of simultaneous stationary population inversion between pairs of
atomic levels and explore the effect of Doppler broadening on the absorption profile of the weak
probe. In view of the latter analysis, in particular, we conclude that gain features persist even in the
presence of inhornogeneous broadening. This suggests the possibility of experimental tests in a cell
rather than an atomic-beam environment.

I. INTRODUCTION

The spontaneous emission from excited atoms, while a
natural focus of early quantum mechanics, became an
especially active area of research during the 1970s, '

after the development of narrow-band tunable lasers. To-
day, it is again at the forefront of quantum optics
research, following the recent advances in the construc-
tion of atomic traps and the direct observation of emis-
sion and absorption of individual quanta from isolated
atoms. Thus, it is reasonable to expect that continued
progress in experimental sophistication should provide
even more refined measurements of resonance Auores-
cence than currently possible with atomic-beam technolo-
gy, a prospect that adds impetus to our interest in finer
theoretical details of the behavior of driven atoms.

In a recent paper we proposed that the fIuorescence
spectrum of a driven pair of atomic levels can undergo
significant changes when the lower state of the atomic
transition is coupled to a third level by a second coherent
field (the V model). The most significant modifications
affect the total radiated intensity and the linewidths of its
spectral components; the linewidths, in particular, be-
come a mixture of the individual atomic-decay parame-
ters with weight factors that depend on the strength of
the applied fields. Thus, for example, under appropriate
conditions the spontaneous-emission spectrum can be-
come even narrower than expected on the basis of the or-
dinary Wigner-Weisskopf theory. In fact, a recent ex-
periment by Mossberg and collaborators has provided a
convincing verification of this prediction with a beam of
Ba atoms driven by two narrow-band tunable dye lasers.

In addition to these features of the emission spectrum,

our calculations have also shown interesting new facts
concerning the absorption spectrum of a weak probe after
it emerges from the interaction with a gas of driven
atoms. It has been known for some time that a weak
probe can be amplified as it propagates through a collec-
tion of driven two-level systems; this gain manifests it-
self through the appearance of regions of negative ab-
sorption in the spectrum of the transmitted probe. The
novelty of the predictions advanced in Ref. 6 is that the
entire absorption profile can turn into a gain profile, a
fact which is connected with the surprising appearance of
steady-state population inversion between each of the two
excited states of the V system and the ground level.

In the course of our study of the spectral properties of
arbitrary three-level atoms we have discovered significant
differences, and not just quantitative variations, between
the behavior of V systems and the other two possible al-
ternatives, the A (or inverted V) and the = (or cascade)
configurations (see Fig. 1). Because, experimentally, one
structure may be more easily accessible than the others to
the existing tunable sources of radiation, it may be useful
to collect a brief survey of the behavior of the A and the
:" models to complement the results presented in Ref. 6.
The physical setting of interest is the same as that of Ref.
6, aside from the fact that different pairs of allowed tran-
sitions are coupled by the resonant driving fields. For
this reason we limit our presentation to a sketch of the
procedure and a description of the results, in the interest
of providing a useful collection of theoretical guidelines
for possible future experiments.

As in Ref. 6, here also we focus on the emission line
shapes of the driven atoms and on the absorption spec-
trum of a weak probe using a standard master equation
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FIG. 1. Schematic representation of the (a) A model and (b)
:- model; co& and co& are the carrier frequencies of the driving
fields and 6& and 62 the respective detuning parameters.

approach and the regression theorem. In addition, we in-
vestigate some of the effects of inhomogenous broadening
on the predicted line shapes, an aspect of the problem
that we did not consider in our earlier work. As expect-
ed, the narrow features of the emission spectra are des-
troyed by inhomogeneous broadening, but some of the
relevant absorption or gain features are preserved.

In Sec. II we describe the two models and derive their
equations of motion. We analyze the emission and ab-
sorption spectra in Sec. III using a slightly different and
somewhat more convenient procedure than adopted in
Ref. 6. Section IV is devoted to a survey of the numerical
results and to a comparison of the various predictions for
the different atomic configurations. In this section we
also discuss the effect of Doppler broadening on the ab-
sorption features of selected transitions. One of the unex-
pected conclusions of our calculations, as already men-
tioned, is the existence of a steady-state population inver-
sion between each of the excited states and the lowest lev-
el; in Sec. V we develop a simple rate-equation argument
to show that this phenomenon is related to competing
Raman transitions in the three-level atoms. Considerable
analytic progress can be made with the derivation of ex-
plicit spectral line shapes in a suitable high-intensity lim-
it; in Sec. VI we show how this limit leads to the analytic
derivation of simple formulas which we also list in detail
for possible future reference. Section VII contains a sum-
mary of our results and some concluding comments.

rier frequencies are co& and co2, as illustrated schematical-
ly in Figs. 1(a) and 1(b). The A model [Fig. 1(a)] is driven
at the transition frequencies 1 —+3 and 2~3, while in the
:- model levels 1 —+2 and 2~3 are coupled by the exter-
nal fields [Fig. 1(b)]. A common feature of these systems,
which makes them rather different from the V model, is
that the field at frequency ~2 has no effect on the atomic
dynamics in the absence of the first, assuming of course
that all the atoms are initially in their ground state and
no other excitation mechanism in present.

In our description we adopt the semiclassical approxi-
mation in which the atomic degrees of freedom are de-
scribed by appropriate fermion operators and the fields
are c-number functions with Rabi frequencies g &

and g2.
The levels that are coupled by the applied fields have
dipole-allowed transitions so that, for reasons of parity,
the 1 —+2 transition of the A model and the 1 —+3 transi-
tion of the " model are forbidden. Decay rates W~ (i )j)
characterize the spontaneous deexcitation of the higher
levels, while upward rates (i (j) are virtually zero be-
cause of the negligible thermal-excitation probability, as
long as the energy spacing between levels is large, relative
to kT.

The common unperturbed Hamiltonian of the A and:-
models is

3

H, = g E, ata, , (2.1)

l CO~t I CO2t

+Agz(e ' a 3a J +e ' a 2a3 )

l C01 t
H, =A'g, (e ' a&a, +e ' ataz)

l C02t l CO2t+&g&(«a3a, +e a,a3)

(2.2a)

(2.2b)

where the Rabi frequencies g& and g2 are real, for simpli-
city. The evolution of both systems in the interaction
representation is governed by the master equation

= ——[H', ,p']+ Ap', (2.3)
at

where H& denotes either H& or H& in the interaction
representation and Ap' is the irreversible part that de-
scribes the effects of spontaneous emission and, possibly,
other collisional relaxation processes. The specific form
of the irreversible term for an arbitrary multilevel sys-
tem is

Ap' = g [a; ajp'a, a, ( JI... + Aj",,j )

where E; (i = 1,2, 3) are the energy eigenvalues of the iso-
lated atoms and a; and a; are the fermion operators that
describe the creation of an electron in level i or its remo-
val. The two interaction Hamiltonians in the rotating-
wave approximation are

col E l CO) t
H, =kg, (e 'a3a, +e 'a, a3)

II. DESCRIPTION OF THE MODEL AND EQUATIONS
OF MOTION

We are interested in the evolution of two models of
three-level atoms driven by coherent sources whose car-

I I
aj JP JllJ P J aj jlJj ] (2.4)

where 2 „are complex rate constants related to the pop-
ulation transition rates 8'", the polarization decay rates
y, , and the frequency shifts AO," by the equations
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y 'j y Re( Atkkj + Aj/ckj )

=
—,
' g ( W;k+8'Jk),

k

(2.5a)

(2.5b)

point r, measured from the position of the scattering
center. Because the master equation (2.3) involves only
atomic operator degrees of freedom, we need a relation
between these and the scattered quantum field; in the far
zone, this is provided by the well-known formula

b, Q, = —QIm(A kk +. A, pk;) .
k

(2.5c) E'+ '(r, t) =E'+ '(r, t)
COo

n X (n Xd)P'+' t ——,(3.2)
c r C

In the following we shall ignore both level shifts and pure
phase-relaxation effects due to elastic collisions, i.e., we
assume AQ;. =0 and A;;;; =0.

The master equation (2.3), when written in terms of the
matrix elements p,', yields nine coupled linear equations
of which only eight are linearly independent by virtue of
the trace condition, Trp'=1. These equations contain
time-dependent oscillating factors that we must eliminate
in order to apply the regression theorem in the con-
venient form described below. This step can be accom-
plished by a suitable redefinition of the relevant variables,
as summarized in the Appendix, and the final result can
be cast in the form of the compact vector equation

together with its Hermitian adjoint, where Eo+' is the
positive-frequency part of the solution of the homogene-
ous wave equation, coo is the frequency of the incident
field, n is the unit vector in the direction of observation,
and d is the unit vector along the atomic dipole moment.

Because our setting involves simultaneously two
different fields, usually with very different carrier frequen-
cies, each field generates a scattered contribution of the
type (3.2), after inducing an appropriate atomic polariza-
tion. The positive-frequency parts of the polarization
operators for the A model are

A1 P13 1 3 A2 P23 2 3
(+) — T (+) (3.3a)

f(r) =Lg(r)+I,
d7

(2.6)
where the indices 1 and 2 in P A+ ' refer to the two driving
fields [see Fig. 1(a)]; for the = model they are

where ~= W»t for the A model and ~= W21t for the =
model. The two Rabi frequencies are also scaled into di-
mensionless form by using W31 or W21, respectively, as
the unit rates. The same is done with the remaining rate
constants of the problem whose scaled versions will be la-
beled with a "tilde" in the following discussion. The rela-
tion between the eight components g, of the column vec-
tor g and the original matrix elements p', . is listed in the
Appendix. The inhomogeneous vector I that appears in
Eq. (2.6) originates from the elimination of p» from Eq.
(2.3) and its replacement with 1 —

pz2
—

p33 according to
the trace condition. Its explicit form is also listed in the
Appendix.

We do not need to worry about the explicit time-
dependent solution of Eq. (2.6) (except formally in our
implementation of the regression theorem), but we do
need the steady-state solution. This is given by

P —
1 =P12a ~1a2, P'-2 ' =P23a 2a 3 ~ (3.3b)

(3.4)

As already shown in Ref. 6, a convenient way to handle
the two-time expectation value (3.4) is by way of the re-
gression theorem. " We outline the procedure adopted in
this calculation for one specific case [one of the four list-
ed in Eqs. (3.3)] following a slightly different and perhaps
more transparent procedure than in Ref. 6. Thus for the
purpose of illustration, consider the correlation function

The symbols p; denote the magnitudes of the transition
dipole moments between levels i and j.

In view of Eq. (3.2), and apart from numerical factors
that we need not specify for our purposes, the required
correlation functions have the general form

g(oo)= L—
or, in component form, by

(2.7a)

(2.7b)

(3.5)

The starting point is the evaluation of the single-time
average (P~, '(r&) ) whose explicit form is

(Pw& '(r, ) ) =Tr[p(ri) ~i ]=pi3exp(+coiri)A(ri)

(3.6)

III. THE CALCULATION OF THE SPECTRA

We begin with the construction of the spectrum of the
spontaneously emitted radiation. This is given by the
Fourier transform of the field-correlation function

p(1 7 )= (E' '(r, r, ) E'+'(r, r, ) ) (3.1)

where E' —' denotes, respectively, the positive and nega-
tive parts of the total-field operator at the observation

where coi denotes co, /W31. The formal solution of eq.
(2.6) is

P(r, )=exp[L (r, —ro)]f(ro)
T]+ J dr'exp[L (~, )]Ir, —

Vo
(3.7)

and the polarization expectation value (3.6) can be writ-
ten explicitly in terms of the "initial conditions"

hatt (ro)
(j =1, . . . , 8) as follows:
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7
1

&P~, '(7, ) & =p»exp(i 02, 7., ) g Iexp[L(71 —70)]I2JQ~(70)+ dr'[exp[L (7,—7')]I&~I~
J 0

(3.8)

The next step in the application of the regression theorem
is to cast the initial values g (rp) in the form of expecta-
tion values of suitable system operators. Thus, for exam-
ple, with the help of Eqs. (A3), we have

leading to

(rp) & =P13exp[ i(@1 ~2)rp]P32(70)

JLc 13exP( —i co27 0 )47( 7 0 ) (3.10b)

itjl(7'0) =exP[ '(Pil @2)70]P12(70)

p[ —( — ) ]& l2&& ll &,, (3 9)

Similar calculations must be performed for the remaining
elements of i'(7.0). With respect to the inhomogeneous
term, which contains no dependence on t/i(7. 0), the ap-
propriate replacement analogous to (3.10a) is

Now we carry out the replacement

& I» &11&.,~ & I» & 1IP1A+1'(rp) &,

1—:& 1 & &PA1 (rp) & =p13exp( i co170)$6(70) . (3.1 1)

(3.10a) Finally the required correlation function takes the form

8

1 Al(71 70) =p13exp(1'@17 ) M21(7 )itr7(rp)+M22(r)gs(70)+ g f d7'M„(r, r)I q, (7—0)
0

(3.12)

where

7=rl —70, M; (7)=(e '), (3.13)

We note that 1 ~, in Eq. (3.12) depends upon 7., and 7.0
only through their difference ~. At this point we take the
limit ~1,~o~ ~ with ~ arbitrary, and obtain the required
asymptotic form.

For the purpose of a numerical calculation of the
Fourier transform of Eq. (3.12) the best procedure is to
take, first, the Laplace transform of the correlation func-
tion. This has a general structure of the form

Z1 —Z l C01

M;.(z) =(z L), —

NJ(z)=[L '(z L) '];—
Finally, the spectrum of the Auorescent light is given by

S(p7)=ReI'~ "(z)I (3.17)

The same procedure can be applied to the three
remaining polarization operators, with the results (for
3~2 emission)

,(z)= A (z i07, )+—
Z lC01

B (z —ical ), (3.14) f'A2'"(z) =Pz3 Ms3(z2)46( ~ )+Ms4(z2)$7( ~ )

where A and B are analytic functions of z for Rez ~0.
The singularity at z =0 is the symptom of a coherent
contribution to the spectrum, centered at co1, whose ori-
gin can be traced to the elastic scattering of the driving
field (Rayleigh peak). The incoherent part of the spec-
trum, which is the dynamically relevant contribution, can
be calculated by subtraction of the coherent peak
through the algorithm

where

Z~ Z l CO~

(for 2~1 emission)

+M~~(z2)fs( oo )

+ g N~&(z2)I&$7( oo ) (3.18)

f incoh(
) P ( ) lim (z —i p71)I zl(z) . (3.15)

Z 1 CO1 z~icol

(Z) =p12 Mll(Z1)$4( oo )+M12(Z1)$5( oo )

The result of this simple calculation is (for 3~1 emis-
sion)

Al 013 M21(zl w7( )+M22(zl ws(

+ g N, )(z, )I g3( oo )
j=l

and (for 3—+2 emission)

~=-2 "«)=s 23 Ms3«24'6( )™s4(z2)lt7(

(3.19)

8

+ g N2, (z, )IJ P6( oo ) (3.16) 8

+1&„(z )g( )+g N (z )I,g( )

where (3.20)
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Aside from the superficial similarity in the structure of
the four emission spectra, which extends also to the case
of the V model (Ref. 6), it is not possible to draw much
useful information by simple inspection of these results.
However, these equations are well suited for numerical
calculations which only require standard matrix manipu-
lation techniques. In Sec. IV we discuss characteristic
samples of the exact emission spectra and compare these
results with those derived in Ref. 6. In the limit of strong
driving fields, it is possible to extract approximate analyt-
ic line shapes, as we discuss in Sec. VI.

Now we turn our attention to the calculation of the ab-
sorption spectra. The physical setting is the same as in
the previous calculation, with the addition of a tunable
weak probe passing through the driven atoms. The
transmitted intensity of the probe is related to the in-
cident intensity by the usual Beer law

A (co)L
OUt in (3.21)

where V denotes the Fourier-transform operator, and the
square brackets indicate the unequal time commutator.
The expectation value must be computed under steady-
state conditions, as in the case of the emission spectra.

Of the two contributions originating from the commu-
tator, the first was already calculated in the first part of
this section. The second can be handled in a similar way
with the help of the regression theorem. Once again, de-
pending upon the selected range of the tunable frequency
m, one or the other of the polarization operators listed in
(3.3a) and (3.3b) come into play for each of the two mod-
els.

The required results, in Laplace transform space, are
(for 1 —+3 absorption)

Agl(Z)=P13IM21(Z1)$7( ~ )

+M 2(z, )[2$,( ~ )+1/4( ~ )
—1]

2s 1 1/'3( ~ ) ™2s(zi)$6( ~ )], (3.23)

(for 2 —+3 absorption)

A&2(z) =/223 tMs3(z2)1/'6( ~ ) Ms2(z2)gl( ~ )

+Mss(z2) [A( ~ )
—04( ~ )]

+ [Ms4(z2) ™58(z2)]1/'7(~ )

(for 1~2 absorption)

3 -1(Z) = pl2 I Mll(z 1 )[2/4( m ) + gs( ~ ) —1 ]

+M, 2(z, )1/5( ~ )
—M, „(z, )1/3( ~ )

—M, 7 (z, )1/'6( ~ )],
and (for 2~3 absorption)

(3.24)

(3.25)

where L is the length of the sample and A (co) is the at-
tenuation coefficient at the frequency co of the probe.
Usually 3 (co) is negative and, of course, frequency
dependent. If 2 (co) )0, the probe is amplified. Accord-
ing to linear-response theory, 3 (cg) is connected to the
atomic polarization operators according to the relation

2 (co)=const XVI ([P '(r, ),P'+'(ro)]) I, (3.22)

~:-2(z) 923 IM53(Z2 W6( ) M52(Z2)41(

+ [M54(z2) —Mss(z2)]$7( ~ )

+ Mss (z2 ) [$s( &x& ) —1/4( oo ) ] j . (3.26)

The actual absorption spectrum is related to A (z) by

A (co) =ReA (z)~ (3.27)

We present selected results of the numerical evaluation of
the absorption spectra in the next section.

IV. A SURVEY QF THE NUMERICAL RESULTS

This section contains a collection of selected numerical
evaluations of the emission and absorption spectra de-
rived in Sec. III and, when appropriate, a comparison
with the results of our earlier studies of the V model (Ref.
6). Because, in the calculations listed in Sec. III, the time
variable is scaled according to ~= 8't, with 8'= 8'» for
the A model, and 8'= 8'2, for the = model, the irreversi-
ble decay rates and frequencies are all given in units of 8'
as well. Thus the Rabi frequencies are /3;=g;/W with
i =1,2 and in particular, the frequency that appears
along the horizontal axis of the figures is defined by

cL) / W3 &
for the A model

co/8'2& for the = model .

+ ( p2 +p2 )
1/2 (4.1)

For simplicity we have carried out the following calcula-
tions under resonant conditions, i.e., for example with
co i c03 i and co2 =co3z for the A model. Out of resonance,
the spectra lose their symmetry and acquire additional
peaks.

We begin with a typical emission spectrum for the
3~1 transition of the A model and a comparison with
the spectrum that would result in the presence of only
one driving field. In the latter case, of course, the spec-
tral profile is not exactly the same as with an ideal two-
level atom because of the extra decay pathway from the
excited state of our system, but the differences are mainly
quantitative in character. Thus, in Fig. 2(a) we show the
spectrum of the driven three-level system with /3, =4 and
p2=1; this is to be compared with Fig. 2(b), a situation
where p2=0. The only obvious difference between these
two curves is the appearance of an extra pair of sidebands
in the first case, but we see no significant change in the
linewidths. This is very different from the case of the V
model (see, for example, Fig. 3 of Ref. 6) where the cen-
tral peak of the three-level spectrum can be much nar-
rower than that of the corresponding two-level system.

In Fig. 2(c) we reverse the relative strengths of the
driving field and enhance the inner pair of sidebands,
which now become the dominant features. The spacing
of the sidebands from the central peak is related to the
Rabi frequencies of the driving fields. As shown analyti-
cally in Sec. VI under high field conditions, the inner
sidebands are removed from the center of the line by
amounts
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0 . 1

0 .0
- 15 15

FIG. 4. The gain profile of the absorption spectrum for the
2~3 transition of the A model with 8'» =0.5, W» =0. 1 and
Pi=4 P2= l.

A (to)

-0.3

of steady-state conditions in which both the 3~ 1 and
3~2 transitions have population inversion (the 3~ 1

population difference is much smaller than the one for
the 3—+2 pair of levels). In Sec. V we review the origin of
this effect which is absent in a driven two-level system.

The absorption spectrum of the = model offers a
surprise because simultaneous inversion of both allowed
transitions is not possible. Thus, Figs. 5(a) and 5(b) show
a gain profile for the 2 —+ 3 weak-probe spectrum and the
absorption profile for the companion 1~2 transition, re-
spectively. Again, in Sec. V we explain the origin of this
phenomenon and the reasons for the differences between

the behavior of the V and A models relative to that of the
system .
So far our calculations have focused on a case in which

the atoms can be simulated as homogeneously broadened
radiators; this is typical of situations where well-
col limated atomic beams are driven by equally well-
col limated laser beams, directed orthogonal ly to the ve-
locity vector of the atoms, and the direction of observa-
tion is also perpendicular to both atoms and fields. In the
presence of misalignments from the ideal geometry, or in
a cell environment, Doppler broadening becomes a dom-
inant spectral feature for gaseous systems. It is not
surprising that the presence of Doppler broadening erases
al 1 the interesting structures from the emission spectrum;
it is rather surprising, instead, that significant aspects of
the absorption (or gain) features are preserved. For this
reason we close this section with a brief survey of the
effect of Doppler broadening on the absorption spectra of
a weak probe .

In this calculation we consider a col lection of indepen-
dent homogeneous systems and simulate their motion
with appropriate detunings from line center; because
each atom undergoes two different absorption or emission
processes, we select the ratio of the two detuning
coefficients to match the chosen ratio of the transition
frequencies (in line with the first-order Doppler formula).
Each homogeneous "packet" yields a different spectral
profile which we weigh with the Maxwell-Boltzmann fac-
tor to amount for the velocity distribution . The required
total spectrum is the incoherent superposition of al 1 the
individual line shapes.

For definiteness, we also assume that the driving fields
are exactly resonant with the atoms that are stationary
(or that move exactly perpendicular) with respect to the
driving fields. We take a Doppler velocity distribution
with ten homogeneous packets for each standard devia-
tion, and extend the distribution of the velocities to three
standard deviations on each side of the maximum . Thus,
the spectral averaging process includes 6 1 different pack-
ets of homogeneously broadened atoms.

In Fig . 6 we show a typical absorption spectrum of the
2~3 transition of the A model with and without

- 10 10

0.7

A (9)

0.08

A(Q)

0.04

(a)

0
- 10

0 .0

-30

FIG. 5 . The absorption spectrum of the {a) 1~2 transition of
the = model, showing absorption at al 1 probe frequencies, and
(b) 2~3 transition displaying gain. The parameters are
&3f 0. l, 8'32 0.5, zero detunings, P&

= l, and /32
=4.

FIG . 6. The Doppler effect on the 2~3 transition of the A
model for 8'2, =2.0 8'3z =0.5, P, = 6, and P2 =2. Curve (a)
represents the spectrum without Doppler broadening and curve
(b ) with the Doppler effect .



43 SPONTANEOUS EMISSION AND. . . . II. 3755

0.2

0. 1

0.0
-30 30

'V is

2

pis= —
E Ds, 1—

Vis V is

2

+i Ds2,
'V is72sD

(5.1b)

VI). Here we offer a concise survey of the lengthy but
elementary calculations for the cases of the A and:- sys-
tems. For simplicity, we restrict our attention to reso-
nant interaction between the fields and the atoms.

With reference to the density-matrix equations for the
A model [Eq. (Al)] listed in the Appendix, we consider
the stationary solutions of the polarization equations for
the variables pi2, pis and p2s. they have the form

1 gi2 ig2
(5.la)P i2 D sz si

'Vzs

FIG. 7. Population trapping in level 3 of the A model as a
function of the scaled frequency detuning between the driving
field 1 and the atomic transition frequency (Wz& =0, W32 1.0,
P, =3, P2=1, and zero detunings) with (a) and without (b)
Doppler broadening. The trapping is almost complete with the
Doppler effect, but the excited population is significantly lower.

. gz
Ps2 ' Ds2 1

3'2s 'V2sD

where D;.=p,'; —p'z, and

2 2

'V is

2
g i82

(5.1c)

(5.2)

Doppler-broadening effects. Clearly the main feature of
the ideal homogeneous case (i.e., the presence of a com-
pletely positive absorption line) is preserved fairly accu-
rately and gain should be observable even in a cell envi-
ronment. The same is not true for the 1~3 transition,
perhaps because of the much smaller population inver-
sion between these levels under high-field conditions. We
have also verified that the population-trapping effect is
preserved, although it is reduced somewhat in the pres-
ence of inhomogeneous broadening (Fig. 7).

dp'

dt
~13 31 +D32+ II 21P22+ ~31P33

d p22

dt +23 32 31 32P33 21P22

where

(5.3a)

(5.3b)

Next, we substitute Eqs. (5.1) into the population equa-
tions for p'» and p22 (there is no need to consider p33 be-
cause of the trace condition p'»+p22+p33 1) and obtain

V. STATIONARY POPULATION DISTRIBUTIONS
OF THE DRIVEN ATOMS

Ri2
ls D 712

V is 72s
(5.4a)

It is well known that two-level atoms cannot be driven
in a state of inversion under stationary conditions, re-
gardless of the strength of the driving field. A transient
inversion can be produced with a resonant ~ pulse if its
duration is sufFiciently shorter than the atomic relaxation
times of the polarization and population. Of course the
notion of stationary population inversion in a multilevel
atom is as old as the laser, but apparently not until re-
cently have we begun to appreciate that both allowed
transitions of a three-level system can be driven into a
state of inversion. The origin of the fully positive gain
profiles for both 1~2 and 1 —+3 transitions of the V mod-
el and the 2 —+3 and 1~3 transitions of the A model is
rooted in this effect. This phenomenon is rather counter-
intuitive if one tries to understand it only on the basis of
standard arguments based upon Einstein transition rates
and competition with the spontaneous-decay processes.
Evidence of its nontrivial character is offered, for exam-
ple, by the fact that the V and A models share the com-
mon ability to support pairs of inverted levels, but not the
:- model.

Actually, the origin of this effect can be understood us-
ing the standard density-matrix equations listed in the
Appendix, although the most direct way to demonstrate
it is with the help of the dressed atomic states (see Sec.

Nz g22
Xi2+

V2s V is

28 iRz

'V i s'V2sD

(5.4b)

(5.4c)

1 +( ~21 II 32 +23( ~31+~21
31 2%

(5.5a)

At this point it is easy to see [Eq. (5.3)] that the popula-
tion dynamics is controlled by absorption and stimulated
emission coe%cients, B» and B2s, for the two driving
fields, by the spontaneous-decay rates, and by terms that
depend on the product of the two field intensities [Eq.
(5.4c)]. These terms play the role of Raman transition
rates and reAect the coupling induced between levels 1

and 2 by their common coherent interaction with level 3.
Now we express the population variables p,', in Eqs.

(5.3) in terms of the population ditferences D3, and D32
and solve in steady state after making the simplifying as-
sumption that the Rabi frequencies of the fields are much
larger than the decay rates (this is also the condition of
greatest interest where our numerical solutions of the ab-
sorption spectra exhibit gain for all frequencies). The re-
sult is
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B]3(8 2] W32) %( W3] + W2] )

2&1']2
(5.5b)

~2i —~32 B23
(D» &0)

8'3] + W'2]
(5.6a)

(D» &0)8 3] + W2] B]3
(5.6b)

Simultaneous inversion can be obtained if the following
inequalities are satisfied:

~Z3

V
I

I

I

L

A

V

FIG. 8. Schematic representation of the interplay among the
various transition rates in a A system.

and because B23B» &W [as we can easily verify from
Eqs. (5.4)], it follows that

B23

B,3

Furthermore, because
II'3] + ~32
8'2I + 8'3, B )2

(D» &0)

2 2
g2

723 y12

In this case simultaneous inversion requires

(5.12)

(5.13a)

8'2) —8'32 (1
8'3( + 8'2)

B»&W&B» . (5.7)

a necessary (but not sufficient) condition for the simul-
taneous inversion of levels (3,2) and (3,1) is the validity of
the following inequality between the stimulated
coeKcients and the Raman rate

and

or

8 3$ + S 32 B23
(D» &0)

8'2] + 8'3]

B2)
B,2

(5.13b)

(5.13c)

We note also that, in the large driving fields condition, we
have

2

B]3 g2
(5.8)

so that the simultaneous inversion requirement takes the
form

The inequality (5.13c) is not satisfied, as we can easily
verify from the definitions (5.11) of the stimulated and
Raman rates. Thus, for the = model either one or the
other, but not both, of the allowed transitions can be
simultaneously inverted.

It is possible to provide a simple interpretation of the

2~2i —~32 g 2)
8'3)+ 8'2) g )

(5.9) 0.3

0. 1

We shall obtain this result again in Sec. VI through the
more elegant procedure of the dressed-state formalism.

In the case of the " system [see Eqs. (A2) in the Ap-
pendix] the results analogous to Eqs. (5.5) are

1 +( II 31+~32 23(~21+ ~31)
D2i =— (5.10a)

3

1 +( II 21 + lI 31 ) B12( II 31 + II 32
D32 =— (5.10b)

3 1 13

where
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Bi2= 2g )
P )2/23D
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2g2
y, 2y23D
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(5.11a)

(5.11b) -0.01 I

g
p

12

2g &Re

'V i 23'23D
(5.11c) FIG. 9. The dependence of the population diA'erences on the

driving field p] in the A model. The scaled decay rates are

8 p&
=0.5 and 8 3& =0.2. (a) shows the behavior of (i) D» and

(ii) D3} (b) is an enlargement of (a) showing D3].



43 SPONTANEOUS EMISSION AND. . . . II. 3757

(a)

-0.4

io 20

FIG. 10. The dependence of the population diff'erences on the
driving field P, in the = model. The scaled transition rates are

3p 0 5 and W3 l
=0. 1 . Curve (a) shows the behavior of D»

and curve (b) shows D32.

process described by Eqs. (5.3) with the help of Fig. 8.
The two boxes illustrate the dynamics of two fictitious
two-level systems driven by the respective fields at the
rates B23 and B». If the boxes were isolated, no inver-
sion would be possible. However, they are coupled to
each other by the Raman process (connecting solid line)
which represents losses for both levels 1 and 2 under con-
ditions where both pairs of levels are inverted. Further
coupling between the boxes is provided by the incoherent
decay rates which cause population Aow between them
(thus, for example, W2, transfers atoms from the lower
level of the left box to the lower level of the box on the
right). Under appropriate conditions and because of the
Raman coupling, it becomes possible for states of simul-
taneous inversion to be established.

Figures 9 and 10 summarize the situation graphically.
In Fig. 9(a) we display the steady-state population
differences D3z and D» for the A model for fixed values
of the spontaneous relaxation rates and the Rabi frequen-
cy P2 as functions of the Rabi frequency Pi [Fig. 9(b)
shows an expanded view of D» to show that it also be-
comes positive]. For the selected parameters there exists
a threshold value of P, where both populations become
inverted [around P, =5 in Fig. 9(a)]. Figure 10 shows the
corresponding situation for the " model. Here we see
that for any value of P2 only one pair of levels can be in-

verted; when, for example Dz, becomes positive, D32 be-
comes negative and vice versa, in line with the analytic
results discussed in this section.

and

~r )~= —(sinO)~1)+(cos8)~2),

s )A= —[(cosH)~1)+(sin9)~2)+ ~3) ],1

2

~t )~= —[(cosO)~1)+(sinO)~2) —~3) ],1

2

(6.1a)

(6.1b)

(6.1c)

~r )-= —(sin8)~1)+(cosO)~3),

~s ) == —[(cose) ~1) + ~2) +(sine) ~3) ),1

2

~t )-= —[(cos0)~1) —~2)+(sin0)~1) ],1

v'2

(6.2a)

(6.2b)

(6.2c)

where the angle 0 is connected to the ratio of the two
Rabi frequencies according to the equation

tanO= (6.3)

The eigenvalues of the interaction Hamiltonian in both
cases are

A much more powerful approach' is to expand the
atomic operators in the basis of the eigenstates of the in-
teraction Hamiltonian (dressed atomic states). In this
way the equations for the coherent part of the dynamics
becomes trivial, and one only needs to cope with the
cumbersome irreversible decay terms. In the high-
intensity limit, when the Rabi frequencies of the fields be-
come much larger than the incoherent decay rates (a
more precise characterization of this limit will be provid-
ed below), the damping part of the master equation can
be handled by approximate techniques, and the problem
becomes soluble in closed analytic form.

It is not our intention to duplicate the discussion of
Ref. 6 because the treatment of the A and:- models using
the dressed-state formalism runs along very similar lines.
Here we emphasize only the most relevant facts under
resonance conditions. The eigenstates of the interaction
Hamiltonians (2.2a) and (2.2b) for the A and:- models,
respectively, are sets of three linear combinations of the
energy eigenstates ~i ) (i =1,2, 3), and they are given by
the formulas

VI. DRESSED-STATE DESCRIPTION
OF THE SPECTRA —THE HIGH-INTENSITY LIMIT

~r) O, s) XG, ~t) —gG,
where

G (g2+g2 )1/2

(6.4)

(6.5)

One of the most inconvenient features of the formula-
tion discussed in Sec. III is its failure to provide analyti-
cal information about the physics of the problem. The
spectral formulas are very convenient for numerical in-
vestigations, but they are of no use to assess qualitative
trends and behaviors by inspection. The problem, as al-
ready discussed in Ref. 6, is that the atomic basis adopted
for the representation of the density operator is not very
convenient to describe the coherent coupling induced
among the levels by the driving fields.

We see that the two driving-field amplitudes affect the
dynamics of the dressed states only through the combina-
tion (6.5); for obvious reasons, we call G the effective
Rabi frequency of the problem. Thus, when we talk
about the high-intensity limit, we refer to a situation
where G is suKciently large in comparison with the in-
coherent decay rates of the atom, regardless of the rela-
tive magnitudes of g i and g2, and therefore of the values
of the angle 0 that appears in Eqs. (6.1) and (6.2).

Just as in the case of the V model, the master equation
in the interaction picture for both A and:- models is
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a ' = ——[H', ,p']+ Ap', (6.6)

when projected on the basis of the dressed states, it be-
comes the sum of a very simple reversible part (because
H

&
is diagonal) and a very cumbersome irreversible con-

tribution whose explicit expression is best obtained by
symbolic logic techniques (see discussion in Sec. V of Ref.
6). In the limit in which G is much larger than the atom-
ic damping rates, the eight linearly independent matrix
elements of p' in the dressed-state representation obey the
approximation equation

tor g(t) and the matrix elements of p', and the explicit
forms of Lo and I are listed in the Appendix for com-
pleteness. Equation (6.7) is accurate up to terms of order
1/G, and therefore it represents an asymptotic approxi-
mation of the exact equations of motion.

The emission and absorption spectra can be handled in
exactly the same way as in Sec. V of Ref. 6 and reduced
to simple analytic expressions because of the block-
diagonal nature of the matrix Lo. The correlation func-
tions in Laplace space are elementary rational functions
from which the spectrum can be obtained according to
the recipe

a =Lop(t)+ I„,at
(6.7)

g(&)=Ref incoh(z)~
0

(6.8)

where Lo is a block-diagonal matrix and I is a constant
vector. The relation between the components of the vec-

We consider first the A model. The emission spectrum of
the 3~1 transition is assigned by the correlation func-
tion

I '"", "(z)= —,'(cos 0)g„+ +} 1 1 2

z&
—y &+2iG z&

—
y&

—2iG z&
—y4+y5

z1 y2+ lG Z) y2 lG

(z, y2. +i G—) y~ (—z, y2 i G—) —y~—
and the one for the 3—+2 transition by

I 'A"z' (z) =
—,'(sin 0)g„+ +1 1 2

z2 —y I+2lG z2 yi 2lG z2 y4+y5

z2 —y2+ lG z2 —
y2

—lG

(z2 y2+i—G) y~
—(z2 —

y2
—iG) —

y~
(6.9b)

where

8'2, cos 04

Wz, (sin 0+2cos 0)+ W~2cos 0+ W»sin20

(6.10)

and

y~
= —

—,
' [ Wz, sin 0(1+sin 0)+ W~2(2+sin 0)

+ W&&(2+cos 0)], (6.11a)

y2= —
—,'I W2&[1+cos 0(1+Zsin 0)]+W~2+ W~, ],

I

and p«which are equal in the high-field limit. We note
that, when W2& —+0 (a situation that was well verified in
the experiments of Ref. 12), the stationary atomic popula-
tion is fully trapped in the r state (p,', =p'„=0) and, of
course, the total Auorescence vanishes.

Both 3~1 and 3—+2 emission spectra consist of five
well-resolved components. The central peak and the
+2G sidebands have Lorentzian shapes, while the +G
sidebands have a slightly more complicated structure, as
we can easily see from Eqs. (6.9a), (6.9b), and (6.8). The
full widths at half maximum of the central peak and the
sidebands of the 3~1 spectrum are identical to the cor-
responding widths of the 3~2 profiles and are given by

(6.11b)
Ace( central peak) =2

~ y ~
—y ~ ~6.11cy3= —

—,
' 8'2, cos Osin t9,

y4= —
—,
'

I W2, [sin 0(1+sin 0)+2cos40]
= 8'2, sin t9+ W32+ ~3] (6.12a)

(6.12b)

(6.12c)

bee(+G) =2I —2y, + [4y~~+ (y~~ —y~~)~]'~'] '~~,

~~(+2G) =21y& I
.

+ Wq2 ( I +cos'0) + W„(1+sin'0) ], (6. l 1d)

yz= —,'[Wz, (cos 0sin 0—2cos 0)+ W~zsin 0

(6.11e)+ W»cos 0] .
The peak heights of the 3~1 emission spectrum are
given by

The symbols z& and z2 have the same meaning as in Sec.
III, while P denotes the stationary matrix elements p,',

2Pz(central peak) =—'cos 0
5 y4

(6.13a)
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PA(+G) =
—,'sin 8

3'2 'V
Z

(6.13b)
whose sign is controlled by the quantity (1—3l(t„). It is

easy to verify that

PA(+2G)= —,'cos 8
i

1

71
(6.13c)

P,b, (+G)=
—,'sin 8(1—3g„) 2

'Vz
(6.14)

Those of the 3—+2 spectrum are identical except for the
replacements of sinO with cosO, and vice versa.

The absorption spectra in the high-field limit, just as
those of the V model, are composed of only two peaks,
centered at a distance of +G from the atomic resonance,
whose profile (and thus linewidth) is identical to that of
the +G sidebands of the fluorescence spectrum. The ab-
sorption spectrum can be negative (real absorption) or
positive (gain) with a peak value given by

I
Prr Pss Prr Ptt (6.15)

so that a growth of the weak probe requires inversion be-
tween the dressed states r and s (or t). Furthermore, with
the help of Eq. (6.10), the gain condition (1 —3l( ))0
can also be cast into the form

g2 F21 8 32
2

g1 8»+ 8'21
(6.16)

which is identical to Eq. (5.9) obtained through an entire-
ly different procedure.

The formulas for the " model are quite similar to those
of the A model, with enough differences, however, that it
is necessary to summarize them separately. The emission
spectrum of the 2~1 transition is given by the correla-
tion function

Pincoh( } & y 28 1 1

z1 —y1+ 2&6 z1 —y1
—2&G

2

1 74 V5

z1 'V2 l G z1 f2+kG

(z, —
y2

—iG) —y3 (z, y2+—iG) y3—
(6.17a}

For the 3~2 decay we have instead

(z) =—lit S1I1 8 +
2 V1+2iG

1 2
—y 2G —y+y

z2 —y2+iG+ —,'(1 2$„)cos 8—
2 2

+
(z2 y2+

—I G)' y3—
z2 y2 gG

(6.17b)

where

( W3I cos 8+ W32cos 8)

31( I '8+C 8 +
2 W21S111 8+ W32COS

(6.18}

and

y1= —
4 [ W31sin 8( 1+sin 8)+ 3 W32sin 8

+ W2, (2+cos 8)],
y2 = —

—,
'

I W3, [1+cos 8( 1+sin 8) ]

+ W32(1+cos 8)+ W2, j,
yz= —

—,
' »cos Osin O,

y4= —
—,'[ W»(sin 8+sin 8+2 cos 8)

(6.19a)

(6.19b)

(6.19c)

+ W32(1+cos 8)+ W21(1+sin 8)], (6.19d)

y5= —,'[ W»cos 8(sin 8—2 cos 8)

bc@(central peak) = W3Isin 8+ W32sin 8+ W21, (6.20a)

g~(+G) 2I 2y2+ [sly4+ (y2 y2)2]1/2 j
I/2

bc@(+2G)=—[W3Isin 8(1+sin 8)+3W32sin 8

+ W2I (2+ cos 8) ] .

Their peak heights are given by

(6.20b)

(6.20c)

I

stationary matrix elements p,', and p«which are also
equal to each other in the high-intensity limit. Contrary
to the A model, however, lit„does not vanish if W» —&0

so that complete trapping is impossible in this case.
Both 2~1 and 3~2 emission spectra consist of five

symmetric components. The central peak and the outer
sidebands have a Lorentzian shape; the inner sidebands
have a more complex structure. The full width at half
maximum of these spectral components are the same for
both the 2—+1 and 3—+2 Auorescence processes and they
are given by

+ W32(sin 8—2 cos 8}+W2I cos 8] (6.19e)
P2, (central peak) =

—,'cos 8 (6.21a)
As in the case of the A model, the symbol lit„denotes the
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Pzi(+G) =
—,'sin 0$ z

3'Z 3'3

P (+2G)=—'cos'0
21

P&z(central peak) =
—,'sin 0

~r5
—).I

'

(6.21b)

(6.21c)

(6.21d)

for the A system, the full width of the central peak is
determined in part by field-dependent contributions and
in part by field-independent components (8'&&+ W&i for
the A model and Wzi for the " model).

The absorption spectra of the = model in the high-
intensity limit also reduces to two spectral components
with a line shape which is the same as that of the +G
sidebands of the emission spectra, and the peak heights
are given by

P&z(+G) =
—,'cos 0(1—2''„)

P (+2G) =—'sin 0—
4

'VZ T3
(6.21e)

(6.21f)

Pz, (+G)= —
—,'sin 0(1 —3ij'j„)

'YZ 'V3

Pz&(+G) = —,'cos 0(1—3f )

(6.22a)

(6.22b)

A measure of the accuracy of these formulas, when com-
pared with the results of the exact calculations described
in Sec. III, is offered by the solid lines in Figs. 11(a) and
11(b) which show the variation of linewidths and peak
heights for the 3~2 spectrum as one varies the size of
the Rabi frequency P~. The structure of these equations
also shows that the = model allows linewidth variations
with the strengths of the driving fields, but the most
promising configuration for this type of investigation still
appears to be the V model. In fact, in this case, as it was

0.3

~32+ ~31 g 2 f
2) for the 1~2 transition,

31 21 g }

8 32+ 8'3i g2
2

for the 2 —+3 transition,
8'3) + 8'2i g,

in agreement with the results of Sec. V.

(6.23a)

(6.23b)

'VZ 'V3

Depending upon the sign of the quantity (1 —3g ), one
profile is positive while the other is negative. Thus, gain
can be obtained in the vicinity of one transition frequen-
cy, but not both. The gain conditions for the two transi-
tions are

0.2 VII. CONCLUSIONS

0.0
0

2.0- (b)
D 0 OO ti(3) &anaaaoaaai

1.0
(2)

0.0
0.5 2.5 4.5 6.5

FIG. 11. Dependence of (a) the peak heights of the 3~2
transition for the = model and (b) the full width at half max-
imum on the driving field Pz. The scaled decay rates are
8 3 &

=0. 1, 8'» =0.5. The solid curves represent the results of
the approximate analytic calculations, while the isolated points
are derived from the theoretical formulas of Sec. III. The
curves are labeled (1) for the central peak, (2) for the 6 peaks,
and (3) for the 26 peaks.

In this paper we have completed a survey of the line
shapes of the emission and absorption spectra produced
by three-level atoms in which two pairs of dipole-allowed
transitions are coupled by resonant or nearly resonant
driving fields. This work began with a study of the V
model, and is now completed with a detailed analysis of
the A and:- configurations. The purpose of this con-
clusion section is to offer a comparison of our main re-
sults for each of the three models. Here we focus on
three main issues: (i) population trapping, (ii) the emis-
sion spectra of spontaneous Iluorescence, and (iii) the ab-
sorption spectra of a weak probe.

(i) Population trapping is a phenomenon that manifests
itself with the appearance of reduced Auorescence from
one of the excited states. This effect is especially obvious
in the A system where, under ideal conditions (resonant
interaction, homogeneous broadening, and &~i ~0) the
Auorescence intensity from the excited level 3 vanishes
identically; in this case the atoms are distributed only in
coherent superpositions of levels 1 and 2, while level 3 is
empty. In the presence of leakage from level 2 (W~&%0)
the effect is reduced, and it can be eliminated altogether if
8 z, is sufficiently large (destruction of atomic coher-
ence). Population trapping is also observable with V and
:- systems, as shown in Figs. 3 and 4(a) of Ref. 6 for the V
model, but not so clearly as with the A configuration.

(ii) The spontaneous distribution of the emitted Auores-
cence is very different from the expected results of the
Wigner-Weisskopf theory, or even from the spectra that
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emerge in the presence of a single driving field. In gen-
eral, one can expect five spectral components, in reso-
nance; they are distributed symmetrically around the
atomic transition frequency, and are spaced from the
center by approximately the effective Rabi frequency of
the fields or twice this amount. There exist
configurations in which the central peak and the +2G
sidebands are the dominant features [see, for example,
Fig. 2(a)], and conditions which favor the growth of the
+G peaks [see Fig. 2(c)].

The most interesting aspect of this phenomenon is the
dependence of the full width at half maximum of the
spectral components upon the relative strengths of the
driving fields. With appropriate choices of the parame-
ters this dependence can result in a strong linewidth
reduction or broadening, relative to the Wigner-
Weisskopf value. The best system for a demonstration of
this effect appears to be the V model. The central peak of
the 3~1 decay is governed by the approximate linewidth
formula

b.co(central peak) = W»cos 8+ W2, sin 8,
where 0 is defined as in Eq. (6.3). If W2, « W3, and

g2))gi the 3~1 linewidth is dominated by the rate
8'21. Conversely, if one is monitoring the 2 —+1 decay
with g, ))gz, the observed linewidth increases from 8'21
to nearly 8 31.

Linewidth variations with the driving fields can be ob-
served also with the other two models, but the expected
changes are less easily observable. A particularly useful
graphical demonstration of these behaviors are given by
Figs. 8(b) of Ref. 6 (V model) and Fig. 11(b) of this paper
(:- model).

(iii) The absorption spectra of a weak probe in the pres-
ence of the two driving fields reveal the presence of fre-
quency ranges where the probe is attenuated and others
where it is amplified. This is not very surprising because
it had been predicted already and demonstrated experi-
mentally with a driven two-level system. The main no-
velty exhibited by the three-level atoms is the appearance
of a fully positive gain profile for the probe (see, for ex-
ample, Fig. 4), and the simultaneous development of gain
in the neighborhood of both allowed transitions for the V
and A models. This phenomenon, which does not occur
with the cascade configuration, develops in conjunction
with the appearance of simultaneous stationary popula-
tion inversion between both excited states and the lowest
atomic level. The origin of the inversion can be traced to
the interplay of ordinary stimulated emission, absorption,
and spontaneous-decay processes with the Raman transi-
tions, induced among the three atomic levels by the driv-
ing fields.

Apart from the intrinsic interest of the modified
spontaneous-emission spectra of driven atoms, the pres-
ence of gain in three-level systems is perhaps the most
promising feature for practical applications. It seems
plausible, for example, that a cavity, with resonances at
one of the peaks of the probe gain profile, should be able
to support amplification. Perhaps, under special cir-
cumstances, this process may provide a useful mechanism
for the enhancement of weak signals.
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APPENDIX

—
( W12+ W13)P'li

—i 62t, i 62t I IP'22= ig2—(P32e P23e —)+ W, 2P»+ W32P33

(Ala)

( W21 + W23 )P22 &

~ t ik)t, —i5)t
P33= l [Rl(P13e P31e )

i h&t, —ih2t
+g2(P23e '

P32e
—' )]+W»P

+ W23P22 ( W31 + W32 )P33

For the polarization equations we have

~ 1 ~

—ihat, ib2t I
P12 (g 1P32 8 2P13 ) )'12P12

(A lb)

(Alc)

(A 1d)
—idk

1
t f

—i 5
1
t —i 62t

P13 ~ [gl(P33e Pile g2P12~ ]
I

X 13P13 (Ale)
—i alt —ih2t, —ih2t

P23
—

1 [ —glP21e
' +g2(P33" P&2e

' ))

(A lf)

in addition to the Hermitian symmetry p';. =(P~, )*, where
the symbols

61—
C031 C01, 62 —

C032 602

denote the frequency detuning parameters. We imple-
ment the regression theorem by using a set of eight
linearly independent variables g, (t), which are connected
to the density-matrix elements p'; by the following rela-
tions:

—i (5) —b2)t, —iA)tP'1= 1 it'4 $8, PI2=—r4e — ' ', PI 3 =$2e
i (dll —62)t /

—i A~t
P21 P3 P22 P4 P23 45 (A2)

id, ltP31=6e i A&t
P'32=0~e ' P33=4s .

Equation (2.6) for the vector g follows at once by direct
substitution of Eqs. (A2) into Eqs. (Al). The result pro-
vides the explicit expressions for the matrix L and the in-
homogeneous vector I.

For the = model, with the help of Eqs. (2.2b) and (2.3),
the population equations are

+PZZ ~&1 +P33 ~31 (A3a)

We consider first the A model. The equations of
motion of the density-matrix elements in the interaction
picture follow from Eqs. (2.2a) and (2.3), in addition to
the definitions (2.4) and (2.5). The explicit form of the
population equations is

I lilt g
1 I I

Pl 1 Rl(P31 P13 ) 21P22 31P33



3762 MANKA, DOSS, NARDUCCI, RU, AND OPPO 43

~ I ~ id)t, —i 5
1
t

P22 1 I. g 1 (P12 P21e
—i 62t I i62t

+g2 P32 P23
'

) l

+Pl 1 ~12 P22( ~21 + ~23 +P33 ~32
I . ) lkgt ) l62t I

P33 g2(P23 P32e ) +Pl 1 ~13 +P22 ~23

formation equations
—iA)t

pl 1
1 114 48 p12 tt le p13

I 2
P21 4 P22 44 P23 05

i (51+6~)t ) ih2t
P31 ljj6 P32 ltt7e P33 P8 .

i (5]+Ap)t

(A4)

—
P33( ~31+~32»

and the polarization equations take the form

~ I ~
—iA)t ) i b2t

P12 lgl (P. 22 P 1 1 )e 82P13e 1 P123 12

—i Alt
—i 62t

P13
—

1 (g1p23 g2P12 ) P13y13
iA)t —i b, 2t

P23 ~glp13 +g2 P33 P22)
'

~
—

P23l 23

(A3c)

(A3d)

(A3e)

Again, Eq. (2.6) for the vector f follows at once by direct
substitution of Eqs. (A4) into Eqs. (A3). The result pro-
vides the explicit expressions for the matrix L and the in-
homogeneous vector I for the = model.

The dressed-state representation for both models is
governed by the equation of motion for the transformed
density-matrix elements (6.7). The connecting relations
between the components of P and the matrix elements of
p' are

with p,', =(p',. )* and

(A3fj
I I I

41 Pst& 42 Psr& P3 Prt& 1 4 Pss

)
45 Ptt & f6 Prs t 47 PIt& P8 Pts

(A5)

~1 ~21 ~1& ~2 ~32 ~2

The components of the vector @ are defined by the trans-

The approximate form of the L matrix in the high-
intensity limit for both models has the block-diagonal
form

(y, —2iG)

0 (y2 —iG) 'V3

0 0

0 0

0 0

0

0

0

0 (y2 iG) —0 0 0 0 0

0 0 0 X4 Xs 0 0
Lo= 0

0

0

0

0

0

0 0

TS X4

0 0 (y2+iG)

0

(y2+iG)

0

0

(A6)

0 0 0 0 0 0 0 (y, +2iG)

where the decay rates y; (i =1, , 5) for the two models are defined by Eqs. (6.11) and (6.19), respectively. The inhomo-
genous vector I has the same form also for both the A and the = models; this is given by

0
0
0

(y4+y S )4—4( ~ )

—(y4+yS)A( ~ )

0
0
0
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