PHYSICAL REVIEW A

VOLUME 43, NUMBER 7

1 APRIL 1991

Quantum-noise properties of a constant-voltage-operated semiconductor laser

Anders Karlsson
Department of Microwave Engineering and Fibre Optics, Royal Institute of Technology, Box 70033,
S-100 44 Stockholm, Sweden
(Received 19 November 1990)

Quantum-noise properties of a semiconductor laser under constant-voltage operation, where the
laser-field amplitude is regulated through nonlinear gain, have been studied using quantum-
mechanical Langevin equations. In the ideal constant-voltage-drift case, the linewidth enhancement
from the gain-—refractive-index coupling, as well as the relaxation oscillations, disappear, but for
realistic nonlinear gains the amplitude noise will increase. The requirement on the laser’s series
resistance for constant-voltage operation is, however, very strict, and seems difficult to meet in prac-

tice.

I. INTRODUCTION

The suppression of quantum noise in lasers has been
the subject of intense research in recent years. Yamamoto
et al. showed theoretically"-? that the external amplitude
noise of a laser could be squeezed below the standard
quantum limit provided that the noise of the laser’s
pumping mechanism is suppressed. As was shown in
Ref. 2, and later experimentally,® this can be achieved by
simply feeding a semiconductor laser from a high-
impedance current source.

The phase noise, and specifically the linewidth, of a
laser oscillator, on the other hand, is dominated by
phase-diffusion noise. For semiconductor lasers, the
linewidths were found to be further enhanced,* which
was explained by Henry’ as being due to changes in laser
frequency with gain fluctuations. The gain-refractive-
index coupling causing this change in frequency is usually
described by the a parameter, being the ratio of changes
of the real and imaginary parts of the susceptibility. Ever
since, substantial efforts have been made to reduce the
laser linewidth, either by improving the Q value using
long lasers, or lasers with external resonators, or by re-
ducing a using gain detuning, or by using quantum-well
lasers with an intrinsically lower a, see for example, Refs.
5 and 6.

The purpose of this paper is to investigate the conse-
quences of using a low source impedance instead of a
high impedance when feeding a laser. Whereas a high
source impedance regulates the injected current into the
laser, a low source impedance will regulate the junction
voltage of the laser. This, in turn, is related to the carrier
density, so suppressing junction voltage fluctuations
equals suppressing the carrier-density fluctuations re-
sponsible for the Ilinewidth enhancement from
gain—refractive-index coupling. However, “pinning” the
carrier density decouples amplitude fluctuations from be-
ing regulated by the gain clamping. To circumvent this,
a laser with high nonlinear gain, that is the saturation of
laser gain with photon number, can be used to limit am-
plitude fluctuations. This mode of operation has, to the
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author’s best knowledge, not been studied in the litera-
ture so far, and although it may be difficult to realize in
practice, it is still of interest since it represents one funda-
mental limit of noise performance.

The paper is organized as follows. In Sec. II we
present the formalism based on quantum-mechanical
Langevin equations. In Sec. III we discuss some exam-
ples with a complete “pinning” of carrier density, and
show that the gain-refractive-index enhancement of the
laser linewidth disappears, but that the amplitude noise
in general will be above the standard quantum limit, how
much is depending on the strength of the nonlinear gain.
We also investigate the elimination of the series resis-
tance by the use of a negative resistance coupling, but as
will be shown, this will not lead to any improvement with
respect to noise performance. In Sec. IV we present some
numerical examples, and also state the requirement on
the source resistance for constant-voltage operation. Fi-
nally, in Sec. V, the results are discussed and summa-
rized.

II. THEORY

The laser can be described by the quantum-mechanical
Langevin equations for the internal field and total excited
carrier number, which has been derived in Refs. 1, 2, and
7 and can be written as

dAw __1le o o .- |,
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+H(), (1)
dN_ (1) N.(oy _  _ -~ -
=p— —(E,—E )a(t)+ T (6)+T(¢) .
dt T P

sp
(2)

Here we denote operators for the optical field by a
circumflex, and operators for the electron system by a
tilde. The total Q value Q of the assumed one-sided laser
cavity depends on the output coupling losses Q, and the
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internal losses Q according to g= % X, (13)
1_ 1 + 1 (3) :
0 0 0 and
The angular resonance frequency of the unpumped sp= Mo og , (14)
cavity is denoted w,, u is the refractive index, and the ¥ is g 9dng

the electronic susceptibility operator, whose imaginary
part equals the gain:

@ ~
TXizEcv_Evc ’ (4)
u

where E,, and E,. are the operators of the stimulated
emission and absorption rates, respectively. The noise
operator H(1) stems from the dipole fluctuation mecha-
nism, the internal losses, and the incoming vacuum fluc-
tuation. In the equation describing the electronic system,
p is the pumping rate, also including the pump noise, 7,
is the spontaneous lifetime of the electrons, and
A=A A1) is the photon number operator. The
two last terms in Eq. (2) are fluctuating terms: f‘sp(t) is
the spontaneous emission noise, and T'(¢) is from the di-
pole moment fluctuation noise.

In order to analyze the noise behavior of Egs. (1) and
(2), we expand them in mean and small fluctuating parts
according to

N, ()=N,+AN, (1), (5

A)=[Ay+AA(1)]e ~ilor+ado] 6)

A=A 0A=[A4,+A4A1)]
~ALH2A,AA(1)=ny+24,A A (1),

(7)
~ ~ d<fl) = d<fz> A
x.~—<x,~>+-d—N;ANc+ an. 24,A A1), (8)
d{x,> . d<{x,) .
2= )+ XA X g A ©)

dN, ¢ dn

Here N, A4, and n are the average excited electron
number, field amplitude, and photon number (¢ numbers).
AN,, AA4, and A are the Hermitian excited electron
number, field amplitude, and phase operators, the phase
operator being a valid approximation for large photon
numbers. In (8) and (9), we also have included nonlinear
gain. The dispersive part of the nonlinearity [the third
term in Eq. (9)] can in many cases be neglected,® and has
therefore not been used in the following.

We also introduce the notations

d<{x;)

1 155}
—=—A4} 10
Tst .U‘2 0 chO ’ ( )
d{y d{¥;
g B0 ydx) (11)
dN,, dN,,
(E,)

n (12)

P, ) —(Ey)

where 7 is the electron lifetime due to stimulated emis-
sion, a is the linewidth enhancement factor,’ R is the
population inversion factor, g is the average of the stimu-
lated emission gain, and sp the “logarithmic” nonlinear
gain. We have assumed that the nonlinear gain mecha-
nism does not introduce any additional primary noise.
We also need an equation describing the laser coupled to
the electrical bias circuitry, which we model as an ideal
voltage source, E, in series with the laser’s series resis-
tance R:

E—R,I+v,=U/N) . (15)

Here v, is the thermal noise voltage of the laser’s series
resistance R, I the laser current, and Uf(N ) is the junc-
tion voltage, which can be uniquely related to the injected
carrier number.> A small signal expansion of (1), (2), and
(15), using (4)—(14) gives

d , 1,1 |, <
a =Ap(t)— |—+— |A
thNc(t) p (1) P N (1)

—2g(1+sp) A AA()+T () +T(2),  (16)
d ~ ~ ~ PN
£ = A + + , 17
thA(t) 3 Agr. N (t)+gspAA(t)+H,(1) (17)
4 Apity=—2— AN.()———A,(1) (18)
dt 2437 Ao T

v(t) dUp 1 _

Ap(t)= AN, (1) . (19)

gR,  dN gqR,

The operators H, and A ; are the Hermitian quadrature
noise operators:

ﬁrz%(ﬁei+A$(t)+ﬁTe—i+A$(t)) , (20)

I’i:%(ﬁei—o—mﬁ(n_ﬁTe~i+A$(t)) ‘ 1)
i

These equations are identical to those of Ref. 2, apart
from the inclusion of nonlinear gain, which was made in
Ref. 7. dU,/dN is calculated using the approximation of
Joyce and Dixon;’ an often used form is dU,/dN
=mVy/N,, where V is the thermal voltage ~0.026 V,
N, the carrier number, and m a dimensionless number.
Equations (16)-(19) can be Fourier transformed, and
with the help of the Wiener-Khinchine theorem the re-
sulting noise spectra can be calculated.

Introducing
1 ,dU, 1
=|—+—— — 22)
€e T dN ¢R; Tst (

we can Fourier transform (16) and (17), finding for the
amplitude fluctuation
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Calculating the junction voltage fluctuation Avy (), we can use (23) and (17) finding
dU du (jQ—gs, )T v, (Q) -
f p /st s
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With All other correlations are zero. The spectral density can
g(1+sp) then be found by using Wiener-Khinchine’s theorem as
a ﬂ‘=a . . . ’ :
T (e +j0r,)jQ+g [1— (e, +jQry)sp] =@ =2f" (f(nf)e " ¥dr.  35)
. ) (25) Equations (23)-(35) form the basis for the calculation
one obtains for the phase fluctuation of amplitude and frequency noise, but before we show
QAR ¢ AT Qe some numerical examples, we look at some ideal cases.
2A (1+e.+jQr)
v, (Q) - III. SOME IDEAL CONSTANT-VOLTAGE CASES
X R + I, (Q)+T(Q) ‘
98 We first treat the ideal case R;—O0, then €,— o,
1 a.s—0. Using Egs. (23), (26), and (27), and that gain
- A—O[ﬁr(ﬂ )aeff+ﬁi(ﬂ)] : (26) equals losses, we find for low frequencies that

As we see in Eq. (26), a4 can for low frequencies be in-
terpreted as an effective a parameter, also the difference
a—aq will for low frequencies be zero if there is no non-
linear gain. Equation (23) gives A A (Q), the Fourier
component for the internal field fluctuation. The external
field #(¢), normalized so that # '# is the photon flux in
photons/s, can be found by using!

?()=—F()+V w/Q, A1) . 27)

A
Here f(t) represents a reflected vacuum fluctuation. The
correlation functions of the noise sources are!*?
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implying that the external amplitude noise will be deter-
mined by the strength of the nonlinear gain together with
the interference from the reflected vacuum fluctuation.
The laser linewidth® Av is found from Eq. (37) as
Av=(1/4m)S ,4; apparently the ordinary linewidth
enhancement factor 1+a? is absent for a constant-
voltage-driven semiconductor laser. Also the relaxation
resonance will be absent, since it is damped out by the
fast decay time due to R;.

This ideal case assumes that both the laser internal
resistance and the voltage fluctuation approach zero. In
a more realistic case, one could speculate over what the
effect would be to compensate for a finite laser series
resistance through the use of a negative resistance cou-
pling. That case is also easily investigated by letting the
voltage fluctuation v (¢) be given by the sum of the fluc-
tuation from the laser’s series resistance and the noise
from the negative resistance, which we for simplicity can
assume to follow Nyquist’s formula with the same noise
temperature as the laser’s series resistance. Letting the
total series resistance approach zero, but retaining the
voltage fluctuation we find from Eq. (19) that the fluctua-
tion in carrier density is directly given from the fluctua-
tions in voltage of the negative resistance and the laser’s
series resistance. Using this in the Fourier-transformed
Egs. (17) and (18), we find the low-frequency amplitude
and phase noise as

S (37)
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where R is the differential resistance from stimulated
emission [defined by R =(7,/q)(dU,/dN), compare
also with Eq. (47) later], R; is the series resistance of the
laser, and R, is the negative resistance. Equations (38)
and (39) show that it is the laser’s intrinsic series resis-
tance that has to be decreased. From (39) we also see
that requirements on the series resistance are stricter for
the phase noise due to the appearance of the a parameter.

IV. NUMERICAL EXAMPLES

For numerical results, we must first consider the
steady-state solution. It can be obtained after some pre-
liminary assumptions of the nature of the nonlinear gain.
Here we assume that the carrier number required for
transparency remains constant when the photon number
increases. A prime question then is the functional form
of the gain nonlinearity. For this application where we
must use hard pumping in order to have a large value of
the gain nonlinearity sp, the functional form is crucial.
Using a form derived by Agrawal® we have

g(N.gn0)= A (N,o—Ng)/(1+exn)'? . (40)

Here A is the differential gain parameter, and N is the
carrier number required for transparency. This model
yields

sp=—t Mo @1)
2 14enpng

The amount of noise increase, or decrease, depends, as
seen in (36), on the strength of the nonlinear gain. With
the chosen form of nonlinear gain we see from Eq. (41)
that the minimum value of sp=—21. This will not give
any squeezing of the outgoing amplitude. One could
perhaps also argue that in this case, where the nonlineari-
ty is part of the gain itself, sp < — 1 seems unlikely since it
corresponds to a situation where the dissipated power
through stimulated emission decreases when the photon
number increases.

As independent parameters for the calculations we
have chosen relative pump level R,, defined as
R,=1/I4—1, the spontaneous lifetime 7, the carrier
number required for transparency N, the carrier number
required to reach threshold N, external Q value Q,,
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internal Q value Qy, and finally the nonlinear gain param-
eter €. With nonlinear gain included we can keep the
threshold current value, I, =qN, /7T, and then solve
the steady-state quantities from

I"'Ith Nth_NO
= = [(1+enng)!/?—1]
Iy, Ny, Lo
T,
+£"Q— Ns" no 42)
th
N.o=No+(Ny—No)1+eygng)’?, (43)
NcO
g, =, (44)
P NcO__NO
1 W 1 ng
— = , 45)
Tst 0 Nth_NO (1+6NLnO)1/2
a=ay(1+exng)’?. (46)

The gain, i.e., the difference between stimulated emis-
sion and stimulated absorption, is constant, fixed by cavi-
ty losses. If nonlinear gain is present, the carrier number
is required to increase with increasing photon number to
maintain the gain. We have assumed that the relative
amount of stimulated emission to stimulated absorption
increases, or equivalently that the population inversion
factor ng, decreases, as described by Eq. (44). Strictly
this should be justified by a rigorous calculation of the
gain coeflicient in the presence of nonlinear gain. This is,
however, beyond the scope of the present paper, also,
adapting another model, for instance with a constant n
will not modify the results of the paper considerably.

The numerical values are for the Q@ values
0/Q,=5X10" s71 ©/Q,=0, so that we study a case
with no internal losses, further, we take 7,,=3 ns, a;=S5,
Ny =2X10'" and Ny=1X10'° which is calculated as-
suming an active volume, =107 cm®. These parame-
ter values give that a fraction 1.5X 107> of the spontane-
ous emission is coupled into the lasing mode. The nu-
merical value chosen for the nonlinear gain is
€n.=5X 1077, which is in reasonable agreement with ex-
perimental results. For the effective density of states to
be used in the calculations of the junction voltage
derivate,” we have chosen N,=16.7X 10'® cm ™3 for the
valence band, and N,=0.53X 10'® ¢cm 3 for the conduc-
tion band.

In Figs. 1(a) and 1(b), the external amplitude and fre-
quency noise spectra are shown. The noise levels for the
lowest R, values are nearly the ideal constant-voltage
cases. The level of the amplitude noise spectra for the
constant-voltage case is given by Eq. (36). The decrease
of series resistance will “pin” the carrier-density fluctua-
tions, and reduce the low-frequency part of the frequency
noise spectrum, in accordance with Eq. (37).

In Figs. 2(a) and 2(b), the low-frequency amplitude and
frequency noise spectral density are shown as functions of
the series resistance for various pump levels. The fre-
quency noise is normalized so that ideally ng, =1, a=0
gives a unity noise level. For the amplitude noise we see
that, for vanishing R,, increasing pumping makes the
nonlinearity sp stronger and the amplitude noise de-

sp?
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FIG. 1. (a) External amplitude noise spectra S,,({) (standard quantum limit of %) vs series resistance R, as a function of angular
frequency. The relative pump level is R, =10. (b) Normalized frequency noise spectra A3[(w/Q, )/(a)/Q)]stAa(Q) Vs series resis-
tance R; as a function of angular frequency. The ideal case, a=0, n,, =1, yields a unity noise level for low frequencies. The relative

pump level is R, =10.

creases; however, the nonlinearity saturates with high
pumping. One notices that for high R, the frequency
noise increases with pumping due to nonlinear gain. This
yields a linewidth floor for very high power levels, but not
any rebroadening of linewidth. However, another non-
linear gain model could give a different result.” The level
of the normalized frequency noise spectral density for low
series resistances is equal to ng, and decreases with in-
creasing pumping, as described by Eq. (44). The dashed
lines in Figs. 2(a) and 2(b) are noise level lines, with rela-
tive pump level as a parameter, where the laser’s series
resistance equals the laser’s differential resistance, as
given by

_1dUs
_q dN

—1
el @7)

Tst

R

T

sp

which is the same as given by the equivalent electrical
circuit analysis in Ref. 2. Note that this resistance is not
a differential resistance as given from a simple voltage-

Amplitude Noise Spectrum, S, (Q)

10 107 100 1 10
Series Resistance Rs (Q)

current curve, since the lasing mechanism normally
clamps the junction voltage. As can be inferred from
Figs. 2(a) and 2(b), the series resistance of the laser must
be lower than the differential resistance of Eq. (47) for
constant-voltage operation. Note that for moderate and
high pumping, R is mainly determined from the stimulat-
ed recombination contribution.

In Figs. 3(a) and 3(b) we have calculated the noise spec-
tra of the junction voltage as a function of angular fre-
quency, in Fig. 3(a) without nonlinear gain, and in Fig.
3(b) with €5y =5X107". The spectra are normalized to
the low-frequency value, being determined by H(1), and
not by the voltage “pinning” through R, this being a
consequence of the gain clamping. With decreasing R,
the cutoff for amplitude fluctuations and gain clamping
given by Q,=w/Q[1+74(1/7,+1/7cx)] 7", decreases,
here 7cg =qu(de/dN)_1. The noise floor above this
frequency is given from spontaneous and stimulated
recombination noise, and the thermal noise from R;.
This level decreases with decreasing R;. The upper cutoff
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FIG. 2. (a) Low-frequency external amplitude-noise spectral density S,,(Q) as a function of series resistance. (b) Normalized
frequency-noise spectral density A3[(w/Q.)/(w/Q)]Q%S 25(Q) at low frequency as a function of series resistance.
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FIG. 3. (a) Junction voltage noise spectra as a furction of angular frequency, normalized to the low-frequency value. The non-
linear gain coefficient is zero and the relative pump level is R, =10. (b) Junction voltage noise spectra as a fanction of angular fre-
quency, normalized to the low-frequency value without nonlinear gain. The nonlinear gain coefficient is ey =5X107". The relative

pump level is R, =10.

frequency is given from the total carrier lifetime. The
constant noise level for low frequencies is interesting,
since carrier fluctuations only can be suppressed in the
sense that the cutoff for this noise level decreases mono-
tonically with decreasing R,. For the laser linewidth
this, heuristically, implies that it will only be affected
when the cutoff frequency is pushed below frequency
values of linewidth order. This is not the case when non-
linear gain is included; as can be seen in Fig. 3(b), the
low-frequency noise now decreases with decreasing R;.
What happens then if we have a finite laser series resis-
tance that is eliminated by using a negative resistance
coupling? As seen from Egs. (38) and (39), the noise level
should increase if the absolute sum of the series resistance
is higher than the laser’s differential resistance. This is
seen in Figs. 4(a) and 4(b), where the low-frequency am-
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2 1L 0Q
.g 10
Z 11
g
3 10T
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Series Resistance Rs (Q2)

plitude and frequency noise spectral densities are plotted
as a function of total series resistance, with the negative
resistance R, defined from |R ;| = R; jaser — Ry o 25 @
variable parameter. The figures show that the noise per-
formance for both amplitude and frequency noise is
worse compared to the high-impedance feeding case, un-
less the negative resistance and the laser series resistance
is smaller than the differential resistance (e.g., Ry), being
for R, =10, mainly given from the stimulated recombina-
tion. Comparing Figs. 4(a) and 4(b), we also see that the
demand for a low series resistance of the laser, as stated
earlier, is stricter for the frequency noise than for the am-
plitude noise, due to the a parameter. Notice also that
the a parameter in question, i.e., that of Eq. (39), is the
material o parameter, which according to Eq. (46) in-
creases with pumping due to nonlinear gain.
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FIG. 4. (a) Low-frequency external amplitude noise spectral density S,,(Q) as a function of series resistance with the negative
resistance as a parameter. (b) Normalized frequency-noise spectral density 43[(w/Q,)/(0/Q)]Q*S 25(Q) at low frequency as a func-

tion of series resistance, with the negative resistance as a parameter.
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V. DISCUSSION AND CONCLUSIONS

We have shown that constant-voltage operation of a
semiconductor laser by means of a low series resistance of
the laser leads to a reduction of frequency noise. Howev-
er, the amplitude noise, which was assumed to be regulat-
ed by nonlinear gain, will be increased compared to the
free-running case. Active elimination of the laser series
resistance by the use of a negative resistance coupling
deteriorates the performance, since the voltage fluctua-
tion in that case remains finite despite the fact that the
total resistance goes to zero. The requirement that the
laser series resistance be lower than the differential resis-
tance is very strict. One can therefore speculate about
what could be done to meet this requirement. One way
to increase the differential resistance is to decrease the ac-
tive volume, since dU r /dN, at least in the Boltzmann ap-
proximation, is inversely proportional to the carrier num-
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ber. One should, of course, be aware that the series resis-
tance also may increase with decreasing volume, and that
a lower optical confinement increases the threshold car-
rier density. An interesting alternative might be low-
dimensional structures, for example, quantum-well lasers,
which have lower threshold currents compared to ordi-
nary lasers, partly due to smaller active volumes. Also
the recently developed “microcavity” lasers are interest-
ing from this viewpoint, since they can have very small
active volumes.
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