
PHYSICAL REVIEW A VOLUME 43, NUMBER 7 1 APRIL 1991

Quantum collapses and revivals in a nonlinear Jaynes-Cummings model
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We investigate the atomic inversion dynamics when a multilevel atom interacts with a two-mode
quantized radiation field in a Raman-type process. By utilizing the rotating-wave approximation
and adiabatically eliminating all but two of the atomic levels, we derive a nonlinear-interaction
Hamiltonian for this system. Working in the Schrodinger picture, we obtain numerical results that
depend on the width and average photon number of the field statistics. Varying these photon statis-
tics allows us to uncover secondary revivals that arise due to the complicated double sum over the
two field modes that appear in the solutions. The origin of this phenomenon is described analytical-
ly.

I. INTRODUCTION

The system consisting of a two-level atom coupled, un-
der the rotating-wave approximation, to a single quan-
tized mode of the radiation field has come to be known in
the quantum-optics literature as the Jaynes-Cummings
model' (JCM) and is recognized as one of the few ex-
actly solvable, fully quantum-mechanical models describ-
ing the interaction of matter with an electromagnetic
field. Of particular interest is the case in which the field
mode is initially prepared in the "most classical" quan-
tum state, the coherent state (written as an infinite sum
over a Poisson distribution of photon numbers). Exact
solutions describing the dynamical behavior of expecta-
tion values of variables such as the population inversion,
the atomic dipole-correlation function, and the mean
photon number can be obtained in this case in the form
of an infinite series. In spite of the nearly classical nature
of the initial state, the fact that the atom can act back on
the single-mode quantum field, as predicted by - the
infinite-series solution, leads to dramatically different dy-
namics from that of its semiclassical analog. The most
important example of this is the behavior of the popula-
tion inversion. Instead of the steady Rabi oscillations of
the inversion found in the case of a truly classical field
coupled to the atom, there is an initial collapse of these
oscillations followed by regular revivals that slowly be-
come broader and eventually overlap. The net effect is
eventually that of erratic, though not chaotic, oscillations
of the inversion [see Fig. 8(c)]. The collapses occur be-
cause the many different components in the summation
get out of phase. The revivals are a manifestation of the
quantum nature of the electromagnetic field, which is
mathematically rejected in the discrete summation.

Since the JCM is simple enough to yield many analytic
results while still retaining enough complexity to be of
very general interest, it has been an extremely popular
theoretical model over the past three decades. It has been
extended to include multimode fields, ' multilevel
atoms, ' ' ' multiatom interactions, ' ' and damp-
ing. ' ' ' What makes all of these theoretical investiga-
tions of much more than academic interest are the excit-
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ing experimental results that have begun to appear. Sin-
gle atoms have been isolated, a single-mode two-photon
Rydberg atom "micr omaser" ' has been made to
operate in a high-Q cavity, and the quantum collapse
and revival for a single atom interacting with a single ra-
diation mode may actually have been observed.

Much attention has been focused on the collapse and
revival phenomena in the Rabi oscillations of the popula-
tion inversion because they provide evidence of the
granularity of the radiation field. ' ' The collapses
and revivals have been described as arising from a kind of
interference between the atom with classical field cou-
pling and the atom with quantized cavity-mode cou-
pling. The overlapping and washing out of consecutive
revivals is due to the incommensurate nature of the
single-photon coupling energies ( —n ' ). If the JCM is
extended to include two-photon coupling, then the possi-
bility for commensurate energies arises [ —(n '/

) ].
Buck and Sukumar indeed found exactly periodic col-
lapses and revivals when they used the following
intensity-dependent coupling Hamiltonian:

H 1co g + a $a+g[(a tg)1/2a t —+ (a 'ta )1/2 +]

Phoenix and Knight' obtained the same results with
their Raman-coupled Hamiltonian

H= —,'cooo', +coa a+A, a a(o +o +) .

For both of these Hamiltonians the infinite series for the
population inversion is exactly summable, due to the
commensurate energies, and the exactly periodic solution
is

W(t)= —e (") g cos(2nkt)
o nI

—2(n )sin2xt= —e ""'"" 'c s((o)sni rent) .

The phenomenological Hamiltonian for degenerate two-
photon absorption

H= —,'cooo, +coa ta+k[(a t) o- +(a) o +] (4)
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also gives commensurate energies when the field is tuned
from resonance by an amount equal to the coupling con-
stant A.. "" These nonlinear interaction Hamiltonians
have sparked a great deal of theoretical interest in the ex-
ended JCM

In this paper we study the interaction of essentially a
two-level atom interacting with a two-mode radiation
field through a Raman interaction. We use a phenome-
nological Hamiltonian' very closely related to the
Raman-coupled Hamiltonian of Phoenix and Knight'
shown in Eq. (2). The dynamics we obtain for the level
populations are nearly identical to those obtained by
Gou' for a two-photon absorption interaction. By inves-
tigating the effects of varying the mean photon number of
the photon distribution function used to describe the
photon statistics of the fields, we uncovered what we call
"secondary revivals" in the population dynamics that
were unseen by Abdalla et al. ' and unmentioned by
Gou. ' These secondary revivals arise due to the compli-
cated interferences that occur in the double sum that ap-
pears in the calculation of the dynamics (summing over
the photon distributions for each field mode). Our main
mathematical contribution is to recognize that this dou-
ble sum can be broken down into a series of Buck-
Sukumar-like single sums, each of which can be summed
to yield an overall envelope function as well as an oscilla-
tory part whose phase difference from one sum to the
next makes the origin of the secondary revivals obvious.
A further contribution of this paper is to actually derive
the phenomenological Hamiltonian used here using a
method easily applied to the plethora of other phenome-
nological Hamiltonians used throughout the literature
[e.g. , Eqs. (1), (2), and (4)].

In the next section we introduce the phenomenological
Hamiltonian for the Raman system under consideration
in this paper and derive the fundamental observable, the
population inversion, to be a double sum over the photon
distributions for the two field modes. We then show how
this double sum breaks up into a series of single Buck-
Sukumar-like sums, which greatly illuminates the dynam-
ics. In Sec. III we present numerical results for the popu-
lation inversion given various initial photon distributions.
Here we discover the secondary revivals. In Sec. IV we
sum the population inversion series for two types of ini-
tial photon distributions. This allows us to provide an
analytic explanation for the numerical observations of the
preceding section. Section V is a summary and discus-
sion of the results presented in this paper. We conclude
with two appendices. Appendix A is the systematic
derivation in the Schrodinger picture of the population
inversion allowing for the detuning of the fields from the
two-photon Raman resonance and for the dynamic Stark
shifts of the atomic levels due to the applied fields. ' '

Appendix B shows how the phenomenological Hamil-
tonian we use may be derived in the Heisenberg picture
from the full Hamiltonian of Appendix A.

FIG. 1. This is the two-photon Raman process studied in the
text. The pump field at co~ and the Stokes field at co~ allow reso-
nant transitions to be made from state I 1 ) to I2& through the
off-resonant states

Ij ).

this paper A'=1) is connected to level I2) (at energy coz)

via a Raman interaction through the rest of the levels
I j )

(at energies cu ). The pump radiation mode (co ) and the
Stokes radiation mode (cos) are in two-photon resonance
with the

I
1 ) to I2) transition (co~ —cos=co2 —co, —:too)

and are far off resonance with the
Ij ) states. We may

easily write down a phenomenological rotating-wave-
approximation Hamiltonian for this process as

2~oo +co&Q &0&+cosQsQs+X(a gso +g iso +)

HI+(t) & =i Iq'(t) &,
Bt

to derive the amplitude equations

i)C, (t)
Bt

t)C2(r)

at

i AV'n (m—+1.)C~(t),

iX&n (m +1)C,(t)—,

(8a)

(8b)

where o, is the inversion operator and a (a ) is the pho-
ton creation (annihilation) operator for mode a (a=p, S).
As discussed in Appendix B, this Hamiltonian ignores
Stark shifts due to coupling through the virtual I j ) lev-
els. In the Schrodinger picture, we may write the system
wave function to the same order of approximation as

I+(t)) =[P (n)Ps(m)]'~

X [Ci(t)In, m, 1 )+Cz(t)In —l, m +1,2) ], (6)

where P (n) is the statistical distribution of photons in
mode 0..

The dynamics for this problem are obtained by using
the time-dependent Schrodinger equation,

II. THE SYSTEM AND THE OBSERVABLE

The nonlinear process we consider in this paper is de-
picted in Fig. 1. Level

I
1) (at energy co, ) (throughout

which are easily solved (for a more detailed discussion of
this procedure, see Appendix A). The population inver-
sion

w(r) =(~(r) Ie, Iq (r) &
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is then given by ence it affords in the choice of width ( I ) and mean ( ( n ) ).
In Fig. 4 we use the normalized Poisson distribution

W(t)= g g P(n)P(m)cos[2&n(m+1)At] (9b)
n =0m =0 P(n)=e (n)"

n! (12)

where the two modes have the same photon distribution.
The appearance of the complicated double sum tends

to make one expect that the dynamics will be terribly in-
volved and hard to sort out. However, if we rewrite Eq.
(9b) as

W(t)= g P(n)P(n —1)cos(2nAt)
n=1

+ g P(n)P(n)cos[2&n (n +1)At]
n=0

+ g P(n)P(n —2)cos[2&n (n —1)A,t]+
n =2

(10)

we realize that the complicated double sum of Eq. (9b)
consists essentially of an infinite collection of sums that
each individually behaves almost like the exactly periodic
degenerate-mode case studied by Buck and Sukumar.
Because of the commensurate nature of the energies in-
volved in the Buck-Sukumar dynamics and the fact that
the nondegenerate-mode problem being studied here is
merely a series of Buck-Sukumar-like sums, some of the
periodicity inherent in that model should manifest itself
in this problem. As we will discover in the next section,
this is indeed the case

III. NUMERICAL RESULTS
WITH COMPUTER GRAPHICS

In Figs. 2 —4 we plot the inversion [Eq. (9b) or (10),
since they are equivalent] with the corresponding statisti-
cal distribution used. From these figures, the periodicity
inherent in the Buck-Sukumar-type problem (intensity-
dependent Hamiltonians) is obvious. In Figs. 2 and 3 we
use the normalized Gaussian

This distribution is more physical in that it is the distri-
bution followed by photons in a coherent state, however
its width is intimately related to its mean (I —(n )' ).
In each of these figures, (n ) takes on the values of 5, 10,
20, and 40.

In Fig. 2 notice that as ( n ) decreases, a "secondary re-
vival" begins to appear at later times, and moves to ear-
lier times as (n ) continues to decrease. In Fig. 3, where
the width is double that of Fig. 2, the dynamics are a bit
more complicated. On either side of where the secondary
revival would have appeared for a narrower distribution,
two revivals appear. Also, these new revivals appear at
much earlier times for a given (n ). In Fig. 4 the dynam-
ics are not nearly as clean as in the Gaussian cases due to
the changing width as ( n ) changes. However, the trends
as illuminated through the use of the Gaussian, where the
effects of changing (n ) are clearly separate from the
effects of changing width, are still valid.

If we allow detuning from the two-photon resonance in
our interaction, we may use the population inversion de-
rived in Appendix A. The effect of detuning is twofold.
First„being off resonant, the probability for transferring
population from state ~1) to state ~2) through the two-
photon transition becomes smaller. This causes the pop-
ulation inversion to have an average less than zero (in-
stead of zero as it is when detuning is zero as in the
figures). Second, the presence of detuning essentially
changes the time scale such that the duration of every
collapse and revival is lengthened.

IV. EXACTLY SOLVABLE MODEL
(DOUBLY SUMMING THE DOUBLE SUM)

For simplicity, let us consider the double sum

P(n)= exp[ (n —(n ) ) l2—1 ]
+exp[ (n —(n )—) l21 ]

g P(n)P(m)cos(2+nm At) .
n=Om=0

(13)

for the photon distribution function, with I =3 (Fig. 2)
or 6 (Fig. 3). This distribution is chosen for the conveni-

In all of its essentials this will be identical to the double
sum of Eq. (9b). If we break this sum up into a series of
single sums as in Eq. (10), we may write

P(n)P(m)cos(2+nm At)= g P(n)P(n)cos(2nAt)+ g P(n)P(n+k)cos[2&n(n+k)At]
n =0m =0 n=0 n=0

+ g P(n)P(n —k)c [2o+s(nn—k)At],
n=k

(14)

where k =1,2, 3, . . . . The first term we will call the
zeroth diagonal sum and the sums with +k we will call
the +kth diagonal sums.

The zeroth diagonal sum for the case of a common
Poisson can be summed exactly to give

W„(t)= g e (") cos(2n

At�

)
„=p (ni)'

= —,'e " [I (2Z)+I (2Z*)], (15)

where Z = (n )exp(iA, t) and Ip(x) is the zeroth-order
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modified Bessel function. This solution is very reminis-
cent of the Buck-Sukumar result [see Eq. (3)]

not lend itself to easy interpretation. A more transparent
solution may be obtained if we let

P'ss(t)= g e " cos(2nA, t)
n=0

—&n)( z+ z
)2

where z =(n )exp(j2&r).
This expression is interesting and has a nice analogy

with the corresponding Buck-Sukumar result, but it does

where X, the norm, is given by

[e
—&n)(( ) )ny (]1/2

n=0

(17a)

(17b)
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FIG. 2. This shows the emergence of the "secondary reuivals" described in the text. %'e plot the dynamics of the population inver-
sion 8'(t) vs the dimensionless time kt, with k the coupling constant shown in Eq. (5), along with the initial photon distributions that
led to those dynamics. The distributions are Craussian with width I'=3 (A. sec) ' and mean (n ) =5 (a), (b), 10 (c), (d), 20 (e), (f), and
4o (g), (h).
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Then we find the zeroth diagonal sum to be

g P (n)cos(2nk, t)=% e " g cos(2nA, t)((n))"
nI=0 n=0

(18a)

may approximate P(n)P(n+k) (k (((n )) as P (n) and
the cosines as

r

k kcos2&n (n+ k)At =cos2n 1+ —— kt
2n 8n2

~2 —2( n )sin (A.t)

X c osI ( n)sin(2A, t)) . (18b)
k

4(n)
=cos 2n+k —

A, t .

For (n ) ))1, contributions to the various sums will
occur only f'or large n, so in the +kth diagonal sums we We can now sum the +kth diagonal series to get the
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FICx. 3. This shows the eft'ects of increasing the width of the initial photon distribution. Everything is the same here as 1n Fig. 2,
except that the width I =6 (A, sec)
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+kth diagonal sum

~2 —2(n)sin Xt

Xcos (n )sin2A, t+kA. t +1- k
4&n )

(20)

Notice that each of these diagonal sums has the same
Buck-Sukumar envelope [exp( —2(n )sin A, t)], but that
the oscillating parts of the +kth diagonal sums are phase
shifted by kA, t(+I —k/4(n )) from the zeroth diagonal
sum. The envelope maximizes when A, t =Xm. At these

peaks, the kth diagonal sum is about kA. t =kNa out of
phase with the zeroth diagonal sum. That is, the first di-
agonal sum (k = I) is ¹rout of phase with the zeroth di-
agonal sum at each peak and so they constructively (de-
structively) interfere at the first, third, fifth, . . . (second,
fourth, sixth, . . . ) peaks. The second diagonal sum
(k =2) is 2Nvr out of phase with the zeroth diagonal sum
at each peak, i.e., they are in phase at every peak and so
constructively interfere. Likewise for the rest of the
+kth diagonal sums. So, we see that there will be a pair-
wise cancellation at every other peak. This cancellation
process will break down when the phase shift is not "near
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FIG. 4. This demonstrates the difterences between the artificial Gaussian initial photon distributions of Figs. 2 and 3 and the more
physical Poisson distribution. Again the parameters are the same as in Figs. 2 and 3, except here the width varies as ( n ) '~'.
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enough" to a multiple of m.. Roughly, we argue as fol-
lows. I.et A.t =Km. Then the phase shift is

We expect minima near A, t =(2N+1)vr/2, so let us look
there now. Then we have

art +1- k =kXm +1- k
4(n ) 4(n )

=+kS~- O'X~
4&n &

Y=+2(n )

X =2(n )cosA, t =0,
(21) and therefore

(28a)

(28b)

This will be "different enough" from a multiple of ~
when

Wd [At =(2N+1)~/2]=e (")—f cos(2(n )cosO)dO
0

(29a)
k X

4&n &

(22a) =.-""'~ (2( &) (29b)

(where x is some "small" number),

", (n&,
k

N,„)4x(n ) .

(22b)

(22c)

From the graphs we see that for (n ) —10, N,„-3and
we estimate x to be on the order of 0.05. Therefore when
At) 0. 2v.r(n ) the cancellation process begins to fail and
we see the appearance of the "secondary revivals. "

We can now specify the revival times involved in the
double-sum solution for this two-photon process. As de-
scribed above, due to the pairwise cancellations that
occur the time for the primary revival to occur is when A, t
is an even multiple of ~, i.e., the primary revival times are

r, =2m'/A, , m =1,2, 3, . . . . (23)

When the cancellation process begins to fail, the secon-
dary revival begins to appear when A, t is near the odd
multiple of nclosest to 0. .2(n ) (see the discussion just
prior to this paragraph), i.e., the secondary revival times
are

r=2([0.2(n ) ],dd+2m )rr/A, m =0, 1,2, . . . (24)

Wd(t)=e (" R)e[I
o( X+tY)] (25a)

—2(n)R 1 +(X+iY) o Odg
VT 0

(25b)

where [x],dd is the odd integer closest to x.
Now that we have an intuitive feeling for what is hap-

pening in the dynamics, let us return to the expression
derived using the more physical Poisson distribution, Eq.
(15). If we let 2Z =X+iY and use the integral represen-
tation of Io, we may rewrite Eq. (15) as

For (n) ))1,
e-"")J,(2(n ) ) O (29c)

and we may write the approximate envelope E in the case
when P(n) is a Poisson distribution as the sum of Eqs.
(27b) and (29c)

E(Wd(At))=e (" )I o(2(n )cosAt) . (30)

Again looking near kt =)VS we find

W+z(At=¹r)=( —1) e (" I)(o(2n)cosAt), (32)

and for At = (2N + 1)rr/2 we find [for m =k (2N + 1 ) ]

W~q[At =(2N+1)vr/2]=e "
Jo( 2(n ) )cos(mn/2)

~0, &n &))1. (33b)

Therefore, as for Eq. (30), we add Eqs. (32) and (33b) to
obtain the approximate envelope function E for the +kth
diagonal sum in the case of a Poisson distribution func-
tion to be

For the +kth diagonal sums we may expand the
[n (n+k)]' as we did when the photon distribution was
a square root of a Poisson function [see Eq. (19)] and find
the contributions to the population inversion for a Pois-
son distribution to be

W „(A )=.-""'—1

X f e — "' [cos( Y cosO)cos(kAt )

+ sin( Y cosO)sin(kA, t ) ]d O .

(31)

=e (" — e — "' cos( Y cosO)d O .
1 ~+

0
(25c) E(W'+„(At))=( —1)" e " Io(2(n )cosAt), (34)

Y=2&n &sinAt=o, (26)

and

Wq(A, , =No. ) =e " — e — "' dO+
0

=e " I (2(n )cosA, t) .

(27a)

(27b)

Since we now expect maxima to occur around kt=X~,
let us look there. In that case we have

with Ã =0, 1,2, . . . . Just as for the case when we used a
square root of a Poisson function [see Eq. (20)], we again
find the same constructive (destructive) interference effect
between neighboring sums near A, t =X~ for
kN=0, 2, 4, . . . (1,3,5,. . . ).

In Fig. 5 we compare the Cxaussian, the Poisson, and
the square root of a Poisson distributions and their result-
ing dynamics for ( n ) = 15. The Gaussian has 1 =6 so
that it is nearly identical to the Poisson, but the square
root of a Poisson is obviously wider (its width goes like
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v'2 times the width of the normal Poisson). Other than
the width, there is no qualitative difference between any
of these distributions.

In Fig. 6(a) we compare the two envelope functions
found above [the Buck-Sukumar envelope of Eq. (18c) or
Eq. (20) and the Bessel function envelope of Eq. (30) or
Eq. (34)]. It is obvious that the two are nearly identical,
even though the initial photon probability distributions
were different. The Xm periodicity is inherent in the
two-photon process and does not depend strongly on ini-
tial conditions. In Fig. 6(b) the efFect of the Buck-

Sukumar envelope function is graphically made obvious,
while in Fig. 7 the cancellation effect between the first
two diagonal sums is represented (along with the full sum
of all of the diagonal sums).

V. SUMMARY AND DISCUSSION

In this paper we have studied the dynamics of the pop-
ulation inversion of a nonlinear Jaynes-Cummings Hamil-
tonian that describes Raman processes. We derived the
population inversion to be a complicated-looking double
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FICi. 5. Here we show that the artificial square root of a Poisson photon distribution, introduced in the text in order to obtain
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sum, but we were able to simplify the description of the
dynamics by rearranging the double sum into a series of
"simple" single sums that have a strong resemblance to
the Buck-Sukumar model.

With the help of an artificial Gaussian distribution for
the initial photon occupation, we were able to map out
the essential dynamics as a function of width separate
from the mean and vice versa. Note that the Gaussian is
an excellent limit of the Poisson for large average quan-
tum numbers. For relatively narrow widths we numeri-

cally observed the emergence of secondary revivals, while
or wider distributions we noticed the appearance of terti-

ary revivals. These new revivals showed up late in the
dynamics for large average n and moved to earlier times
as (n ) was decreased.

The main mathematical contribution of this paper is
the summing of the double sum when the initial photon
distribution is either a Poisson or the square root of a
Poisson, and the subsequent explanation of the origin of
the new secondary revivals. By utilizing the square root
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square root of the quantum number). For the same aver-
age photon number, the standard JCM becomes erratic
much sooner than the present model. The spectrum of
our model is eQectiuely linear in quantum number (for a
large average number of photons in the initial distribu-
tion) due to the two-photon nature of the problem, as we
noticed w en wed h broke the double sum into a series o
BSM-like single sums. This explains why the dynamics o
this model retain their collapse and revival structure for a
much longer time than the standard JCM. This kind o
commensurability is a lucky accident only when two-
quanta exchanges are involved (such as in two-photon ab-

sorption processes or Raman processes). In these cases,
the square root that comes from the quantization of the
radiation field is nullified, allowing the energy spectrum
to become linear.

Preliminary results of this research have been present-
ed. The effect of the dynamic Stark shift and other
types of initial photon distributions are under investiga-
tion now and will be presented elsewhere.

Note added in proof. C. C. Gerry and J. H. Eberly
IPhys. Rev. A 42, 6805 (1990)] have seen the secondary
revivals observed here, but did not explain their origin.
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APPENDIX A: ATOMIC DYNAMICS
IN THE SCHRODINGER PICTURE

E=iA (e a e~d )+i—As(cscots escts—), (A3)

where A =(2+co /V )' (V is the quantization volume
for mode a) and e is the unit polarization vector for
mode a. Working in the Schrodinger picture, we write
the system wave function for Raman scattering as

The system shown in Fig. 1 may be described by the
Hamiltoman (with fi= 1)

H coi& ii+ci)p&2p+ Qcoi&J~ +coi& p&p+co2& sas d'E,
J

(Al)

where &; =
~i ) ( j~ is the atomic transition operator,

a t(a ) is the creation (annihilation) operator for the ath
radiation mode (a=p, S), d is the dipole moment opera-
tor,

d=g(di)&, +d2 &2 +di, &i, +dj2&i2), (A2)
J

and E is the electric field operator. E may be written for
a two-mode field as

C (t)e. ' = —i C, (t)[1—Ci(0)e ' ]
J

C2(t)[1 —C2(0)e ' ] .
J

(A7)

If we substitute this back into Eqs. (A5a) and (A5b) and
drop terms oscillating rapidly at frequency 6~ (in the
spirit of the RWA), we will introduce the Stark shifts of
the levels29'33

S, —=y[Q,, f'/S, , (A8a)

S,—=y Q„~'/(S, —X),
J

as well as the two-photon Rabi frequency '

(A8b)

QJPQJs
(Agc)

S ', =S, +g ~ Q~~ ~
/( co~ +co/, )

J
(A9a)

Because the ac Stark shift is not a resonance effect, the
counter-rotating terms ignored by the RWA would add
to S] and S2 as

S;=S,+g ~Q,s ~'/(~s+~„) .
J

(A9b)

X C(t)~n, m, 1 ) +Cz(t)~ n—l, m+1, 2)e'

+g C.(t)~n —l, m, j)e
J

(A4)

c)C, (t) =g QJ~C, (t)e.
dt

)Cc(t2) =g QjsC~(t)eat

(A5a)

(A5b)

where P (n) is the statistical distribution of photons in
mode a, b, =co —cos (co, —co, ), a—nd b.j =co~ —(ai, —ai, ).

Schrodinger s time-dependent wave function [Eq. (7)]
yields the following set of differential equations for the
slowly varying amplitudes in the rotating-wave approxi-
mation (RWA)

Power broadening due to the Rabi oscillations is a reso-
nance effect, and hence the RWA result for R is
sufficient. By transforming the C, 2(t) amplitudes as

we finally obtain the effective two-level atom equations

ac, (t)

c)C2(t)

at

iRC2(t)e' —',

iR *C,(t)e—

(A10a)

(A10b)

with 6=5+S', —S2. This set of equations is straightfor-
wardly solved to give

—i(A/2 —S) )t
C, (t)e ' =C,ocos(Rt)

c)C, (t)
jest

where the Rabi frequencies are

Q,p=di) span A

Qis =d2/. as' m + 1 hs.

—iA. t —i(h. —b, )t= —Q*. C (t)e ' Q*sC2(t)e— (A5c)

(A6a)

(A6b)

i
Cio+RC2O sin(Rt )

R

—i(b, /2 —S2 )t
C2(t)e ' =C2ocos(Rt)

(Al la)

Since we are interested in Raman scattering in which the
intermediate states

~j ) are far off resonance (b,
~
))b, ), we

may adiabatically eliminate these virtual state ampli-
tudes. ' ' ' Following Ref. 32 we integrate Eq. (A5c)
formally and adiabatically approximate the resulting in-
tegrals by dropping terms of the order of [dC, (t)/dt ]/b,
or [dC2(t)/dt]//b~ to obtain

C~o+R *Cio sin(Rt )

(Al lb)

where C;O=C, (0) (i =1,2) and R =(~R
~

+b, /4)'~ .
The population inversion for n photons in mode p and

m photons in mode S is (letting C,o and R be real quanti-
ties)
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w„(t)=P (n)Ps(m)[
~ C, (t) ~' —

~ C, (t) I']

=P„(n)P&(m) (Czo —Cio)cos (Rt)+ (C2o —C&o) — C2oCio sin (Rt)
/4+R 6 /4+R

(A12a)

(A12b)

and for 6=0 simplifies even further to

w„(t)~P (n)P~(m ) [ —cos(2Rt) ] . (A12d)

To explicitly show the n, m dependence of w„(t), we will
introduce an interaction strength parameter A, through
the equation

2

g (d,i e~ )(dij.es)

n(m +, 1) .

n (m + 1) (A13a)

(A13b)

Now, defining 6 through the equation

6=2k,6,
we may write (for Cio= 1, C20=0)

(A14)

which for initial conditions C,0=1 and C2O=O (i.e., the
atom is initially in the ground state) reduces to

w„(t)~P~(n)Ps(m)

R —5 /4
X sin (Rt) —cos (Rt), (A12c)

R +6 /4

APPENDIX B:
DERIVATION OF THE PHENOMKNOLOGICAL

RAMAN HAMILTONIAN

The Hamiltonian in Eq. (Al) represents the total ener-

gy of the system shown in Fig. 1. However, phenomeno-
logically one is tempted to look at the figure and simply
write down in the rotating-wave approximation the Ham-
iltonian of Eq. (5) (with A'= 1)

~phenom p ~0z +p p~p +~S~ S~S

+A(a „as& +&„a s& +), (8 1)

where &, is the atomic inversion operator and & + (& )

is the atomic raising (lowering) operator. This Hamil-
tonian represents the Raman interaction with a & so +

(absorb a pump photon, emit a Stokes photon, and the
atom will rise from ~1) to ~2)) plus &~as& (emit a
pump photon, absorb a Stokes photon, and move from

~

2 ) down to
~

1 ) ). How is this Hamiltonian related to the
full Hamiltonian'?

The free-atom energy is the easiest to obtain. With
o.,=—0.

22
—&» and co0=co2 —

co&, we may write immediate-
ly

w„(t)=P~(n)Ps(m)
r ~1&11+~2&22 p~O~z+ 2~0(&ii+&22) (B2)

sin [ [n (m +1)+5 ]' lt jn(m +1)+5

—cos I[n( m+1) +5 ]' A, tj (A15)

(A16)

The total population inversion is then given by

8'(t) = g w„(t).
n, m

Since we assume population is conserved, o»+o.22 is a
constant (we are far enough o8' resonance with the

~j)
states that no population gets transferred to them so that
o =0) and that term may be dropped (because the zero
of energy is not a well-defined quantity). For the interac-
tion energy, we will step into the Heisenberg picture and
write the dynamical equation satisfied by the time-
dependent transition operators &;~(t) (Ref. 34):

o; (t)=ice, &; (t) —g —,
' "A gd „[ea (t) —@*a (t)]&;„(t)—gd, [e a (t) e*d (t)]cr —(t)

n

in the absence of damping. In terms of these operators, the interaction energy is

—d E= —g(di &, . +d2 &z +H. c. ) ig 3 [e a (t) @*a (t)], —
J a

which in the RWA reduces to

(B4)

( —d E)aw~=iA g[d~, .eq&J, (t)B~(t)—H. c. ]+iA, g[dj2 e~& 2(t)as(t) H .c.], —.
J J

where H.c. stands for Hermitian conjugate. Equation (B3) for i = 1 becomes

ci,,(t)= icot, &,)(t) , A—[dj, [e„&—(t—)—H. c. ]&„(t)+d,2.[e & (t) —H. c. ]&,2(t) j

—
—, As [d, [esca&(t) —H. c. ]&»(t)+d,.2 [@zan(t) —H. c. ]&,2(t) j, (B6)
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where we have dropped terms containing o (t) since we
are far off'resonance with the

~j ) states and do not expect
any real transitions to occur to or between them. Now, if
we make the following substitutions in Eq (.86):

the original variables, we get

'tt„(t) =a~e (87a)
1

t "4sdlp es&s( t)&12(t)2h. (89)
163

&,)(t)=cr, e

16&2I t
&,~(t) =o,~e

(87b)

(87c)

and drop all rapidly oscillating terms (as per the RWA),
we find

cr t ( t ) =i b,)o (
. ——,

' A d) t ep aq & t t

2 Asdj2 GsQsO (28 (88)

If we use the method of adiabatic elimination on this
equation' ' (as in Appendix A) and then go back to

Substituting this into the R%'A interaction energy of Eq.
(84) yields

( d'E)Rwp A, (& & +& & )&)t

+ —,'A, (t4a +d d )o

+~~ torso'&a+~ ~ ~ s~o'» (810)

The first two terms will give rise to the Stark shifts of lev-
els ~1) and 2). If we ignore the Stark shifts and let
d,"=d,. and e"=e, then we will obtain Eq. (Bl) [or
equivalently Eq. (5)] since o 2, =& + and &,z= &

'Also at: Department of Physics, University of New Mexico,
Albuquerque, NM 87131.
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