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Nonlinear intensity effects in a laser generating the three main standing waves
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The resonance condition is used to describe theoretically the three main kinds of standing waves
with ELB (linear) and E~~B (helicoidal and circular polarizations) that can be produced by the same
laser and their nonlinear interaction with an atomic medium. It is shown that the saturation behav-
ior of a single-mode gas laser is drastically modified by the nature of the operating standing wave.
The predictions are checked experimentally with a laser from which each kind of standing wave can
be generated with the same losses. The anisotropic structure of the saturation and in particular of
the Lamb dip is isolated in each case. Very good agreement is observed between experiments and
theory.

I. INTRODUCTION

Renewed interest in the study of electromagnetic
standing waves arose after Chu and Okhawa noticed that
standing waves with parallel electric and magnetic fields
can exist in free space. ' This discovery led to many com-
ments and much controversy. Finally, the general
conditions for the existence of transverse electromagnetic
waves with E~~B have been derived . ' This discussion
has led to a better knowledge of the different standing
waves that can be produced by the superposition of
different circularly polarized beams propagating in two
opposite directions. The question one may ask now is
how atoms behave in such standing waves. To answer
this question, one may simply observe the behavior of a
gas laser when the nature of the standing wave that is
amplified by the atoms is changed. For simplicity, we
shall reduce our study to the case of standing waves that
are generated by different combinations of circularly po-
larized beams of equal amplitudes. This leads to only
three types of standing waves, namely, the usual linearly,
helicoidally, and circularly polarized standing waves.
The case of elliptically polarized standing waves could
also be considered, but this is a derivative and would not
involve physics other than exhibited by these three stand-
ing waves. What is the nature of the observable effects
one can expect from such an experiment'? As these stand-
ing waves are all linear combinations of circularly polar-
ized. 'waves, the linear effects, i.e., gain and losses, will not
be affected by the nature of the standing wave, as long as
no'external magnetic field is applied on the atoms, i.e., as
long as the symmetry between the o. + and o. beams is
not broken. We shall consequently focus our attention on
nonlinear effects that occur in usual lasers, i.e., saturation
effects. Some effects related to the cancellation of
spatial-hole-burning-induced population modulation in
Fabry-Perot cavities with helicoidally polarized standing
waves have already been discussed for giving single-mode
characteristics to a solid-state laser. ' ' Our discussion
is restricted to single-mode lasers and the related spectral
hole-burning effects. The organization of this paper is as

II. CONVENTIONS AND DESCRIPTION
OF STANDING %AVES

Let us consider a set of unit vectors x, y, and z. For
the description of circularly polarized waves in free
space, we use the following convention: a traveling wave
is said to be right-handed circularly polarized if an ob-
server sees the electric field associated with the wave ro-
tating in the clockwise direction when looking in the
direction of propagation. This means that the electric
fields E„and EI+ associated with the right- and left-
handed circularly polarized traveling waves propagating
in the +z direction are given by

E„=@(x—iy)exp[i (cot —kz) ]+c.c. ,

Ei+ =A(x+ iy)exp[i (rot —kz) ]+c.c. ,

where 8 is the (real) field amplitude, co the pulsation, and
k the wave number. The corresponding right-handed and
left-handed circularly polarized waves traveling in the
—z direction are given by

E„=D(x+ iy )exp[i (rot +kz) ]+c.c. ,

Ei =6'(x —iy)exp[i(cot+kz)]+c. c. , (4)

follows. In Sec. II we present our notations and conven-
tions for circularly polarized light and we derive the
three considered standing waves. In Sec. III we describe
the theoretical laser cavity used to produce successively
these three standing waves without altering the cavity
losses so as to be able to compare the different laser
responses. We then derive the output power of the laser
in each case using the resonance condition' and calculate
the polarization of the medium up to third order in
field. ' Section IV is devoted to experiments. The pre-
dictions of Sec. III are checked with a He-Ne laser oscil-
lating at 3.39 pm and the observation of the evolution of
the output power when an axial magnetic field is applied
to the atomic medium allows us to discuss physically the
role of populations, Zeeman coherences, and orientation
terms.
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To define what we call o. + and 0. waves, we must
choose a reference oriented axis. This axis is usually
chosen to be that of an external static magnetic field. Let
us choose the +z axis. Then the waves associated with
E„+ and EI are said to be o. + waves and the waves asso-
ciated with E„and E& and o. waves. One must notice
that the concepts of right- and left-handed circular polar-
izations depend on the direction of propagation though
the o+ and o. concepts depend only on the absolute
direction of rotation of the electric field associated with
the wave.

Let us now describe the three possible standing waves
one can obtain with a superposition of such circularly po-
larized traveling waves of equal amplitude D. The most
common case is that of the x-linearly-polarized standing
wave that is the sum of the four fields of Eq. (1)—(4):

E =8@xcos(cot)cos(kz) .

FIG. 2. Electric field distribution of a helicoidally polarized
standing wave. The magnetic field B (not shown) is parallel to E
and oscillates in time in quadrature with E.

The associated magnetic field B is given by the Maxwell-
Faraday law [in Systeme International (SI) units]
V XE= —BB/Bt:

B =8—y sin(cot)sin(kz) .
C

The usual electric and magnetic field distributions of this
standing wave are shown in Fig. 1. This wave has the
usual property ELB and exhibits nodes and antinodes.
The electric and magnetic fields are in quadrature, spa-
tially as well as temporally.

The second standing wave considered here is the hel-
icoidally polarized standing wave, first discussed indepen-
dently by Evtuhov and Siegman, ' and by Kastler. ' The
right-handed helicoidally polarized standing wave is the
superposition of two counterpropagating right-handed
circularly polarized traveling waves, i.e., a o.+ wave
propagating in the +z direction and a o. wave propaga-
ting in the —z direction. Its electric field Eh and magnet-
ic field B& are given by

Eh =46 cos(cot)[x cos(kz) —
y sin(kz)],

Bh = —4—sin(cot) [x cos(kz) —y sin(kz) ] .
C

The electric field distribution of such a wave is shown in
Fig. 2. The electric field is distributed along a spatially

constant amplitude helix. The whole helix oscillates in
time at pulsation co. Notice that this wave exhibits no
nodes, as pointed out in Ref. 13 and 17, and has the prop-
erty E~~B. This kind of standing wave is the one dis-
cussed by Chu and Okhawa in their paper dealing with
E~~B standing waves. '

The third standing wave we discuss here is the circu-
larly polarized standing wave, which is the superposition
of, for example, two counterpropagating o.+ waves, i.e., a
right-handed circularly polarized traveling wave propa-
gating in the +z direction and a left-handed circularly
polarized traveling wave propagating in the —z direction.
The associated electric and magnetic fields are given by

E, =46 cos(kz) [x cos(cot)+ y sin(cot) ],

B,=4—sin(kz)[xcos(cot)+y sin(cot)] .
C

The field distributions of such a wave are shown in Fig. 3.
One must notice that E, and B, are in the same plane in
the whole space and that this plane oscillates in time at
pulsation m. This standing wave exhibits nodes and an-
tinodes. This kind of E~~B standing wave is the one dis-
cussed by Zaghloul, Yolk, and Buckmaster.

FIG. 1. Electric (solid line) and magnetic (dashed line) field
distributions of a linearly polarized standing wave.

FIG. 3. Electric (solid line) and magnetic (dashed line) field
distributions of a circularly polarized standing wave. Notice
that here E is also parallel to B.
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III. THEORETICAL PREDICTIONS

As already stated in the Introduction, a convenient
means of studying the behavior of atoms in these three
difFerent standing waves is to build a laser cavity where
these three field distributions can be attained successively
with the same losses. Such a cavity is shown schematical-
ly in Fig. 4. This cavity contains a Brewster plate P, a
Faraday rotator FR providing a nonreciprocal polariza-
tion rotation P depending on the applied magnetic field,
and two quarter-wave plates QWP1 and QWP2 whose
axes make angles p1 and p2 with respect to the x axis.
The second quarter-wave plate has two possible positions,
labeled 1 and 2. When QWP2 is in position 2 and
P=p, =p2=0, the polarization is linear in the whole cavi-
ty and the active medium is submitted to a linearly polar-
ized standing wave described by Eqs. (5) and (6). Let us
now turn the first quarter-wave plate so that p1 =45 .
The field distribution between the quarter-wave plates is
now helicoidally polarized and the eigenfrequency can be
changed by a rotation of QWP2. ' ' ' If QWP2 is now
placed in position 1 with P=p& =45 and pz=o', the field
distribution between QWP2 and mirror M2 is a circularly
polarized standing wave, as suggested in Ref. 18 and real-
ized by Kozin, Petrov, and Protsenko. ' In this case,
QWP1 is not necessary to create the circular standing
wave but we keep it inside the cavity to keep constant
losses. Notice that the scheme proposed by Bodlaj us-

ing only a quarter-wave plate does not lead to such a cir-
cularly polarized standing wave. Besides, any elliptically
polarized standing wave may be realized with other
values of p, and p2.

21

We hence have a cavity in which the active medium
can successively support propagation of the three con-
sidered standing waves. The expression of the output
power can be obtained from the resonance condition' in
the three difFerent cases, as already obtained for the
linearly and helicoidally polarized standing waves in Ref.
22. The resonance condition is written as

P2R 2P1R 1E=E

where

r 0 1
R1= 0, Rq=r

ry

are the Jones reAection matrices, where r„, r, and r are
the reAection coeScients. P, and P2 are the Jones propa-

gation matrices in the active medium that have been cal-
culated in Ref. 16. These matrices are obtained from a
third-order development of the atomic medium polariza-
tion and are functions of the field amplitude. They ex-
tend to the case of nonlinear media the definition of the
propagation matrix given by Jones for linear crystals.
The search of the eigenvalues in the resonance condition
(1 1) using the expressions of P& and Pz given in Ref. 16
then leads to the following expressions for the intensities
of the linearly (I„), helicoidally (Ib ), and circularly (I, )

polarized standing waves:

2coXoS
Z'(g)

FpC AkVm

1 1I = —ln
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Cpi5C
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2~+p S, S,
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(14)
where L is the cavity length, ep is the vacuum permittivi-
ty, Z(g) is the plasma dispersion function with
g=(~ —co,b)l(kv )+ir,'blku =x+iy, Xo is the exci-
tation parameter, kv is the Doppler width of the medi-
um, I~,b is the relaxation rate of optical coherences
(b, m =+1 processes), r,' b(0) and r,' b(2) are the relaxa-
tion rates of the level populations (hm =0 processes) and
Zeeman coherences (hm =+2 processes), respectively,
and I1 and I2 are the usual velocity integrals given by

I, = Z'(g) ——Z'(g)1 ~ 1

(haiku ) 3'

,
X gawp Q

I I I I

- ACTIVE-
~1 ~2 MEDIUM M

I,=, —Z "(g)——Z(j)1 1 „1
(A'kv )

S, S1, Sz, and S3 represent the following dipole matrix
element sums:

+Pat ~~ ~ i XPab

FIG. 4. Scheme of the laser cavity. The two mirror cavity
(M&, M& ) contains one Brewster plate P, a Faraday rotator FR,
and two quarter-wave plates QWP. The second QWP has two
possible positions, labeled 1 and 2.

&P= & IP. b, I'IPb

I'Ip3 + Pa b +& a b
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Let us consider a Jb=1~J, =2 transition like the
3.39-pm He-Ne transition that will be used in experi-
ments. In this case the preceding sums are proportional
to the reduced matrix element with the values S&-46,
S2-21, and S3 —1. In the low-pressure approximation,
the different relaxation rates I, b can be considered as
equal. Then Eqs. (12)—(14) can be written

I, = 3'[1—B'Z'(g)]/d„,

Iq = 3 '[1 B'Z'(—g)]/dh,

I, = 3 '[1 B'Z—'(j) ]/d, ,

(15)

(16)

(17)

where A ' and 8' describe the gain and losses of the laser.
At line center and for the same excitation, the ratios of
the denominators of (15)—(17) are

dh /d„=(2S, +S2+S3 )/2(S, +S2+S3 ) =0.84,

d, /d =4S i /2(S i +S2 +$3 ) = 1.35 . (19)

Moreover, the coefficients of the I2 integral that describes
the Lamb dip are in ratio

(S~+S3)/(S, +S2+S3)=0.32 (20)

for the helicoidally and linearly polarized eigenstates and

2S, /(S, +S~+S3)=1.35 (21)

for the circularly and linearly polarized eigenstates.
What is the physical meaning of these results? First, one
can see from Eqs. (15)—(17) that the nature of the stand-
ing wave does not modify the linear behavior of the laser,
i.e., the numerator of the output intensity expression.
However, the nonlinear terms, i.e., the denominators d„,
d&, and d„are greatly affected by the nature of the stand-
ing wave. On the one hand, the comparison between the
linear and helicoidal cases shows, as already explained in
Ref. 22, that the Lamb dip of the linearly polarized
standing wave contains contributions due to both popula-
tion effects and alignment effects. In the helicoidal Lamb
dip, the former effects are present but the latter are not to
be taken into account. Indeed, the helicoidally polarized
standing wave is constructed from two different, counter-
propagating o. waves that weakly interact and do not lead
to a Zeeman coherence effect. On the other hand, let us
compare the nonlinear behaviors of the linearly and cir-
cularly polarized eigenstates. As the circularly polarized
standing wave contains two identical counterpropagating
o. waves, it uses only half of the transitions between the
Zeeman sublevels and leads to greater saturation effects
than in the linear case, as seen from the ratio (19). More-
over, the two counterpropagating cr waves of the circu-
larly polarized standing wave induce the same kind of
orientation of the atoms. This explains why the Lamb
dip must be so important in the case of the circularly po-
larized standing wave. In summary, we have predicted
that, for a single-mode laser, three different Lamb dips
correspond to each main standing wave. The strongest
corresponds to the circularly polarized standing wave
and the weakest one to the helicoidally polarized stand-
ing wave. These results highhght the different structures

of the Lamb dip that will be explored experimentally.
These structures wiH be confirmed by the study of the
response of the laser to an axial magnetic field which will
be shown to destroy some of the nonlinear contributions
to the Lamb dip.

IV. EXPERIMENTAL RESULTS
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FIG. 5. Experimental (a) —(c) and theoretical (d) —(f) output
power (in arbitrary units) vs frequency profiles in the case of the
linearly [(a), (d)], helicoidally [(b), (e)], and circularly [(c), (f)] po-
larized standing waves (v axis: 50 MHz per division, increasing
from left to right) ~

The cavity is obtained as shown in Fig. 4 with mirror
M

&
being plane and totally reAecting and mirror M2 hav-

ing a 1.2-m radius of curvature and transmitting 5% of
the intensity. The cavity is 69 cm long and the discharge
tube is 31 cm long and has a 3.5 mm inner diameter. The
active medium that provides amplification at A. =3.39 pm
is a He- Ne 5:1 mixture at total pressure P=0.5 Torr.
The Faraday rotator is a 15-mm-long ga11ium-doped yt-
trium iron garnet (Ga:YIG) crystal providing the needed
45' of rotation. The plane mirror is translated by a
piezoelectric transducer in order to record the output
power of the laser versus frequency. The results are
shown for each kind of standing wave in Figs. 5(a) —5(c).
As expected, the Lamb dip in the helicoidal case is much
smaller than in the linear and circular cases and the out-
put power is less important in the case of the circularly
polarized standing wave. The comparison with theory
can be performed with the fo11owing expression for the
output power:
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FIG. 6. Experimental output power vs axial magnetic field
profiles in the case of the (a) linearly, (b) helicoidally, and (c) cir-
cularly polarized standing waves. The profiles are shown for
three detunings in each case ( —30, 0, +30 MHz).

I ( v ) = A 1 B(v)e—xp

2

r D 2

X 1+
y +(co—co,~)

(22)

dg/d =[(I+Dq)/Aq][(1+D„)/3 ] '=0.90,
d, /d. =[(i+D, )/A, ][(1+D )/A ] '=1.34

in agreement with (18) and (19). The experimental ratios
for the Lamb dip are

where y is the homogeneous linewidth, B is the loss pa-
rameter that takes frequency-dependent losses into ac-
count and describes the output power profile asym-
metries, 3 is a scale factor, and D is the Lamb dip
enhancement factor. The theoretical fits of Fig. 5(d) —5(f)
have been obtained with Eq. (22), ku =2m. X175 MHz
and y =2aX 30 MHz and 2 =50.8 and D =0.45 in the
case of the linearly polarized standing wave, A& =44 and
DI, =0.13 in the case of the helicoidally polarized stand-
ing wave, and A, =40.5 and D, =0.55 in the case of the
circularly polarized standing wave. These results lead to
the following ratios:

in agreement with (20) and (21). Discussion of the role of
populations, orientation, and Zeeman coherences in satu-
ration effects can be made from the experimental results
shown in Fig. 6. This figure displays the output power
profiles versus axial magnetic Geld applied on the active
medium, through use of a solenoid for three different de-
tumngs (0, +30 MHz) for each kind of standing wave.
The main effect of this magnetic field is to separate the
center frequencies of the 0. and o. gain curves. This
separation, which is about 1.58 MHz/G, leads indeed to
a destruction of Zeeman coherences. In the case of the
linearly polarized standing wave, the zero magnetic field
resonance due to Zeeman coherences can consequently be
observed at B=O [Fig. 6(a)]. This resonance disappears
in the case of the he1icoida11y polarized standing wave
[Fig. 6(b)], because in this case the two counterpropagat-
ing traveling waves are of opposite o. and hence deal with
different transitions. The case of the circularly polarized
standing wave is very different from the preceding ones
[Fig. 6(c)]. Indeed, in this case, the two counterpropagat-
ing traveling waves interact only with the o. transitions.
Consequently, the application of the axial magnetic field
leads simply to a frequency shift of the gain curve, as can
be seen from the photographs of Fig. 6(c). In this case,
varying the magnetic field is almost equivalent to scan-
ning the cavity frequency.

V. CONCLUSION

In conclusion, we have shown theoretically and experi-
menta11y that the three main standing waves either with
EJ.B (linear) or EIIB (helicoidal and circular) are achiev-
able in the same 1aser cavity and exhibit very different
nonlinear interactions with an atomic medium. It has
been proved that, as could be expected, the nontrivial re-
lation EIIB does not play any role in saturation effects.
However, we have shown that the saturation terms in a
single-mode gas laser are drastically modified by the na-
ture of the standing wave and have different origins: iso-
tropic population effects and anisotropic Zeeman coher-
ences and orientation effects. Such a structure completes
the usual Bennett hole picture of the Lamb dip intro-
duced in the early years of 1aser physics. It shows that
the Lamb dip is not only due to population saturation
effects, as usuaH. y stated. Qn the contrary, the three
different standing waves correspond to three different
Lamb dips with their own particular structures. This dis-
cussion might be extended to other transitions with
different values of the angular momenta of the levels
where the differences between the effects might be even
larger. The effects observed here in the case of gain satu-
ration must of course have their equivalent in saturated
absorption spectroscopy, inside or outside the laser cavity
(inverse Lamb dip). Moreover, we have restrained here
our discussion to the anisotropic contributions of the gain
of the medium. The dispersion of the medium must cer-
tainly also deserve a similar discussion, leading to conse-
quences in today's saturated absorption meterology.
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