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Fluorescent emission by an atom near a phase conjugator (PC) based on four-wave mixing is stud-
ied from first principles. The Maxwell-Heisenberg equations are solved for the radiation field, and
with an asymptotic expansion an expression is derived for the field in the far zone. The total emit-
ted power that can be measured by a detector in this region is evaluated, and it is found that this
power acquires three distinct contributions. First, there are photons that are emitted by the atom
directly towards the detector, and without any interaction with the medium. Second, there are pho-
tons that first travel towards the surface of the PC, and they have a certain probability of being
reflected in the specular direction and towards the detector. The third kind of radiation consists of
phase-conjugated photons, which are emitted independently of the previous ones. It is shown that
the first two processes are a result of simple atomic spontaneous decay, but that the emission of a
phase-conjugated fluorescent photon involves a three-photon process. The latter process has a
probability proportional to the population of the atomic ground state. It is pointed out that an
atom in its ground state polarizes the nonlinear medium of the PC, which subsequently can emit
spontaneously two photons. An absorption-emission-absorption process by the atom then produces
a fluorescent photon, together with a spontaneous excitation of the atom.

I. INTRODUCTION

Wave-front inversion of optical radiation was observed
for the first time by Zel'dovich et al. ' in stimulated Bril-
louin scattering. Mainly due to the fact that wave-front
inversion, or phase conjugation, can be utilized to correct
wave-front distortions in optical amplifiers, ' this tech-
nique has since attracted a considerable amount of atten-
tion. In 1977 it was proposed by Hellwarth and Yariv
and Pepper to construct a phase conjugator (PC) that
operates through four-wave mixing (FWM) in a nonlinear
medium, and almost simultaneously this was realized ex-
perimentally in a liquid CSz cell ' and in a lithium for-
mate crystal. Alternative methods of phase conjugation
include FWM in gases "and thin films, ' ' or more ex-
otic media such as microparticles suspended in a liquid'
or organic dye molecules in a solid matrix. ' Also, the
change in reAectivity of a thin metal layer under high ir-
radiance has been considered as a candidate for the gen-
eration of phase-conjugated light. ' ' More recently,
phase conjugation in photorefractive crystals, such as Ba-
TiO3, has gained popularity, ' which can be attributed to
the possibility of self-pumping of the crystal by the in-
cident beam whose phase-conjugated image is sought. ' '

On the theoretical side, much effort has been devoted to
the description of (idealized) phase-conjugated radiation,
and to the study of the applicability of a PC for wave-
front correction. '

The possibility of wave-front distortion correction after
phase conjugation relies on the equivalence between
phase conjugation and time reversal, as explained in vari-
ous reviews. Taking the complex conjugate of the
spatial part (the phase) of a field is mathematically
equivalent to replacing t by —t. Many of the properties
of phase-conjugated radiation can be understood most
easily with time-reversal arguments. For instance, when
a plane wave is incident on a phase-conjugating crystal
(under a certain angle), then the time-reversed replica of
this beam must again be a plane wave, and it propagates
in the direction opposite to the incident wave. This is in
contrast to specular reflection at a linear medium (dielec-
tric or metal). Also, when a point source of radiation,
like a fluorescing atom, is close to the surface of a PC,
then the incident field is a diverging spherical wave. Ac-
cording to the time-reversal argument, the rejected
(phase-conjugated) wave must be a converging spherical
wave that is focused exactly on the point source. This
reAected field at the position of the source can affect the
dynamical evolution of the radiator considerably, and
thereby its mechanism of emission, as was realized for the
first time by Agarwal.

Recently, Bochove ' has redone the calculations of
Ref. 30, with an approach where the radiation field is
quantized explicitly. In both references the Einstein
coefficient for spontaneous decay of an oscillating dipole
was obtained, and it appeared indeed that there are some
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remarkable differences as compared to fluorescent emis-
sion in empty space or near a metal surface. Most not-
ably, it was found that the decay rate is independent of
the distance between the dipole and the PC, as could be
expected from the equivalence of phase conjugation and
time reversal. A reAected photon returns to the atoms,
no matter how far away this atom is. Of course, there are
some limitations on this result due to causality require-
ments and retardation effects, as recognized by the au-
thors. Recently, Cook and Milonni have shown that a
sample of many two-level atoms in their ground states
and near a PC is unstable. We shall show that this result
also holds for a single atom, and explain the underlying
physical mechanism. Hendricks and Nienhuis have
also studied the spontaneous decay of a two-level atom
near a PC. Their results for the decay rate are consistent
with our findings for the emission rate.

We consider an atomic dipole p(t) with arbitrary time
dependence and evaluate the radiation field in the far
zone, as it can be observed experimentally by a photo-
detector. The time dependence of the Heisenberg opera-
tor p(t ) is brought about by its interaction with all com-
ponents of the electric field. We were able to avoid an ex-
plicit quantization in terms of plane-wave modes of the
radiation field, and the general results do not depend in
form on the specific properties of the dipole moment p(t)
We work out the case of a two-level atom, and it appears
that some quite remarkable features in the behavior of an
atom near a PC can be predicted without knowledge of
the details of the temporal evolution of the atomic densi-
ty operator.

II. VARIOUS FIELD COMPONENTS

denotes homogeneous solution).
The key to the evaluation of E(r, t ) is the notion that

the Heisenberg equations for the time evolution of the
electromagnetic-field operators are identical in form to
the classical Maxwell's equations. Just as in classical
electrodynamics, we cannot consider the field in the re-
gion z )0 only, but we have to take into account the solu-
tion in z (0 as well. At the boundary the two solutions
must match in the usual way. The free field E& is as-
sumed to obey Maxwell's equations separately. For para-
metric FWM, these equations are linear in the fields (in
the undepleted-pump approximation), and therefore E-
E& must also be a solution of Maxwell's equations. We
call this the source field and write it as

E,(r, t)=E (r, t)+Eh(r, t) (2.2)

for z )0. This component of the radiation field is due to
the presence of the dipole and its interaction with the
medium. We shall focus our attention on E, only, since
this is the radiative part which can be measured by a
detector in the far zone. The homogeneous component
has two distinct contributions,

Eh(r, t)=E„(r,t)+E„,(r, t), (2.3)

in terms of a specular (r) and a phase-conjugated (Pc)
part.

It is convenient to adopt a Fourier transform of E(r, t )

according to

E(r, co)= J dt e'"'E(r, t) . (2.4)

The electric-field operator is Hermitian, which translates
into the Fourier domain as

(Er, t ) = E&( r, t ) +E( r, t ) +E (r,ht ) (2.1)

for the field in the Heisenberg picture. Here, E& is the
free field that includes the vacuum Geld and possible
external fields. The term E is the particular solution
and is equal to the radiation field of an atomic dipole in
empty space. A part of this field is incident upon the PC,
which generates a phase-conjugated signal and a reAected
specular wave, both of which are included in Ez (h

A nonlinear medium occupies a part of the region
z &0, and its surface is the plane z =0. Two counterpro-
pagating laser beams with frequency co) 0 pump the
medium, and the third-order nonlinear susceptibility is
responsible for a four-wave-mixing process between the
two pump fields, an incident field, and a generated
phase-conjugated wave. We shall allow the medium to
have a nonunity dielectric constant, which implies that
we have to take into account the specular reAection of an
incident wave. In this fashion we ean keep track of the
differences between linear and nonlinear effects, since
they are both unified in a single formalism. A dipole p(t )

is located at r =h e „h )0, on the positive z axis.
We are interested in the electric-field operator E(r, t) in

the region z )0 only, since that is the place where we can
put a detector and measure the radiation. In general,
E(r, t) acquires three distinct contributions, and we can
write

[E(r,t)] =E(r, t)++[E(r,co)] =E(r, —co) . (2.5)

(2.6)

in terms of E(r, co). The negative-frequency part follows
from

[E(r, t)]' '= [[E(r,t)]'+'}t,
and the total field assumes the form

E(r, t ) = [E(r, t )]'+'+ [E(r, t )]'

(2.7)

(2.8)

Similar notations will be used for other time-dependent
quantities, and most notably for the dipole operator p(t ),
which is also Hermitian. From Eq. (2.5) it follows that
we know the field E(r, co) as soon as its value for co&0
only is given. Equivalently, Eqs. (2.7) and (2.8) show that
the entire field is determined by just E'+ ' or E'

III. ANGULAR SPECTRUM OF PLANE WAVES

In this section we derive an explicit form of the partic-
ular solution E for a dipole in empty space, which is
most suitable for the evaluation of the homogeneous con-
tribution (Sec. V). For ~)0, the Fourier transform of

A useful concept is the positive-frequency part of the
field, which is defined as
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f d f dp iax+ipy+iy~z h~—
—oo —oo

k &0 . (3.2)

the electric field of a dipole at r=h assumes the form
ik ~r —h~

E„(r,~)=
I k p(co)+ [p(co) V]V], (3.1)

4776O r —h
with k =co/c, and where only P(co) is a quantum opera-
tor. After carrying out the differentiations, this expres-
sion reduces to the more familiar form. We shall use
Weyl's representation of the Green's function,

e ik)r —h[

Ir —hl

The parameter y is defined by

(k2 &2 P2)1/2
y= '.

1( 2+P2 k 2)1/2 (3.3)

and we take the form for which the argument of the
square root is positive.

Substituting expression (3.2) into Eq. (3.1) and carrying
out the differentiations yields

Ey(r, co) = ——[p(co)]15(r—h)

+ f da f dP e' +—''~y+''~' "~ [k p(co) —[aP (co)+f3P (co)+y sgn(z —h)P, (co)]
eo y

X[ae +Pe +ysgn(z —h)e, ]] . (3.4)

K ~~=ae, +13e (3.5)

where the subscript
~~

indicates that this vector is parallel
to the z =0 plane. In terms of y, we then introduce the
two complementary vectors

Here, [1M(co)]1 is the perpendicular component of p(co)
with respect to the plane z=0. The 5 function at r=h
appears due to the second derivative of ~z

—h
~

with
respect to z. For two given values of the integration vari-
ables a and 13, we define the vector

K Ik p(co) —[p(co) K]K]=0, (3.11)

ez
](

every wave is transverse. The z component of the wave
vector K equals y from Eq. (3.3), which is either positive
or positive imaginary, corresponding, respectively, to a
wave that travels in the positive z direction or to a wave
that decays exponentially in amplitude in the same direc-

K=K )~+ye, ,

K'=K
il

—ye

(3 6)

(3.7)

which are each other's mirror image. Notice that K
~~

is
real, but that K and K' can each have an imaginary z
component. For the square of the magnitude of the vari-
ous wave vectors, we find

e—
K K'

K =(K') =k =a +P +y =(co/c) (3.&)

Furthermore, we write symbolically

fd'K„()=f" «f" dl3() (3.9)

With the notations from above, Ey(r, co) can be cast in
the form

E (r iri) — d2K eiK (r —h)l 1

8~ e

X Ik p(co) —[P(co) K]K]
for z) h, (3.10)

and the expression for 0&z &h follows from Eq. (3.10)
after the substitution K~K' in the integrand.

For every value of K~~, the integrand of Eq. (3.10)
represents a plane wave with wave vector K, and because
of the identity

g&Q

Imp�&0

FIG. 1. The z=0 plane separates the vacuum z )0 from the
nonlinear medium in z & 0, and the radiating atom is located in
x =y =0 and z =h. In an angular-spectrum representation, the
dipole radiation equals an integral over the parallel components
K

~~

of wave vectors. For z ) h and 0 &z & h these wave vectors
are K and K', respectively, and their directions are indicated on
the left-hand side of the figure for the case of traveling waves.
The K waves, which are referred to as p waves in the text, travel
directly from the site of the atom in z =h towards the detector
in z ))h, whereas the waves with wave vector K' serve as the
incident field on the medium. In the case of evanescent waves,
the field amplitudes decay in the z direction as shown pictorially
on the right-hand side, and these waves travel in the K

~~

direc-
tion. Also shown is the phase convention for the unit polariza-
tion vectors, both for K and K' waves.
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tion (evanescent wave). For the field in the region
0 &z (h, the wave vector is K' for a given K ll, and the
wave is again either traveling or evanescent. The various
occurring waves are illustrated pictorially in Fig. 1.

IV. POLARIZED WAVES

For reAection of a plane wave at a dielectric, the ratio
of the amplitudes of the reAected field and the incident
field, including the phase, is given by the appropriate
Fresnel coefficient. This coefficient depends on the angle
of incidence and the polarization of the incident wave. It
can be shown that the same holds for reAection of a
phase-conjugated wave by a nonlinear medium. There-
fore, it is advantageous to decompose the various plane
waves in E (r, co) into surface- (s-) and plane-(p-)
polarized waves. For a given K or K' we define

1
CK =CK = Kll C

ll

(4.1)

(4.2)

1
e~ = — (IC~~e, +@K~~) .

Il

(4.3)

E (r ~) y d2K eiK (r —h)
ll y7T EpC

These unit vectors are normalized according to e; e; = 1

for any subscript i, and they are perpendicular to their
corresponding wave vector. Notice that the p-
polarization vectors can have an imaginary z component.
The directions of the various unit vectors are depicted in
Fig. 1. The field E (r, co) in z) ii can then be decom-
posed as

form E& ez. exp(iK'. r), and these waves are the in-
cident waves on the medium (Fig. 1), which have to be
matched across the boundary z =0 to a solution in z & 0.

When a plane wave with wave vector K', frequency
co) 0, and polarization o. is incident upon the medium,
then the reAected radiation consists again of o -polarized
plane waves, but with different wave vectors, in general.
Due to the four-wave mixing, the frequency of the
reAected wave can also be different. When the two
pumps have frequency B)0, and the incident wave has
frequency m) 0, then it can be shown that the FWM
process couples the field with frequency co to the field
with frequency

co —co 260 (5.4)

which is negative. Therefore, reAected radiation can be
generated in the medium, both at frequency co and at fre-
quency co', but not at other frequencies.

At the interface z=0, the spatial part of the incident
wave reduces to exp(iK ~~.r). It is only possible to match
this wave to other waves for all r simultaneously when
the other waves have the same spatial dependence.
Therefore, all waves inside and outside the medium Inust
have a wave vector with the same parallel component
K . For the wave vector of the reAected wave at frequen-ll'

cy co, we can write K ', =K ll+ K„',e„for which it must
hold that (IC„', ) =co /c E~~ =y . —The solution
E„',= —y corresponds to the incident wave, and the only
other possibility is E„',=+y. But this is the z com-
ponent of the complementary wave K, so that we find
K'„=K. Figure l shows that this wave is just the ordi-
nary specular wave, although its generation is affected by
the nonlinear interaction. For the wave at frequency co'

we write

X [P(co ) -ez ]e z (4.4)
K- pc=K ll+Epc, e, ,

where

(5.5)

with o. =s,p, and with K~K' we obtain the field for
0&z &h. +Pc, z

—[(ci)'/c ) —K „]'

i[E~) —(co'/c ) ]' (5.6)

V. REFLECTED FIELDS

2 —ihy

EK.=, , IP(~) e~.]
877 Epc

(5.1)

LCD e
EK =

z 2 [p(~)'e~ ] .
8% CpC

(5-2)

In order to simplify the notation, we introduce the two
quantum operators

In general, we shall have
~

co'
l
=

~
co l, which gives

Epc, ———y for the case of a traveling wave, and thereby
K pc —K ~ This shows that the incident wave and the PC
wave are approximately counterpropagating, as is re-
quired for a time-reversed wave.

Next we have to choose a phase convention for the unit
polarization vectors of the r wave and the PC wave.
Since K,' =K, we can simply take

Then the particular solution can be written as

E (r, co) =g f d K ~~EK ez e' ' for z )h, (5.3)

C CK, 0=SPK o. (5.7)

for the r wave, where the right-hand side is given by Eqs.
(4.1) and (4.2). A convenient choice for the PC wave is

and with K~K' we find the field in the region 0 (z (h.
Expression (5.3) with K~K' is a superposition of polar-
ized plane waves, where EK. serves as the amplitude, in-
cluding the proper phase. Since Maxwell's equations are
linear, we can calculate the reAected field on a per wave
basis. In the region 0 & z & h, each plane wave has the

pc'
ll

e K pep

C
, KpcXc„

CO PC'

(5.8)

(5.9)

which are both normalized according to e, .e, =1, and
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are both perpendicular to K pc.
For a given incident field of the form (5.3) with

K—+K', the reflected field (homogeneous solution) has
two components. The r wave at frequency ~ attains the
form

[E„(r,t)]'+'= f deme(+)—
2' 0

Xg fd KII+& R~ eK e'

(6.2)

E„( r, oc) —g f d K~~EK RK e~ e

and for the PC wave we can write

I

2 iK PC-r
EPC'(1 CO )=g d K ll+~' &' K'KPC~7-

o'

(5.10)

(5.11)

For the phase-conjugated wave we have expression (5.11)
in which the frequency co' is negative. Consequently, a
Fourier synthesis yields the negative-frequency part of
the field. We obtain

[Epc(r, t ) ]' '= f de' e( —)—

Here, RK. and PK are the Fresnel coe%cients for
reAection of the r wave and the PC wave, respectively.
They depend in a complicated way on the properties of
the medium and the details of the FWM, like the dielec-
tric constant, the third-order susceptibility, the pump po-
larization, etc.

Xg f d K~~E~. P~ e~,

PCiK r

VII. ASYMPTOTIC EXPANSION

(6.3)

VI. TIME DOMAIN

Of practical interest is the electric field as a function of
time. It is sufhcient to evaluate the positive- or negative-
frequency part only since these components determine
the field completely. For the particular solution Ep(r, co)

we have Eq. (5.3) for z )h, which holds for co) 0 only.
Therefore, the positive-frequency part of E (r, t) follows
from Eq. (2.6), and is explicitly

[E (r, t)]'+'= f dcoe '"'g f d K~~Ez ez e'(+)—
o

(6.1)

for z )h, and with K~K' we obtain the field in 0 (z (h.
In a similar way, the superposition of all specular waves
has the representation

Although expressions (6.1)—(6.3) give the total source
field in z )0 as a function of time, the appearance of the
integrals over the frequency and the parallel components
of the wave vectors is cumbersome. Fortunately, for the
study of fluorescent emission we do not need the exact
solution for the radiation field at every point r in the
half-space z )0. Only the value of E, (r, t ) for
r=~r ~~ is of relevance. In this section we evaluate
the asymptotic behavior for r ~ ~, and in the next two
sections we work out the formal results in order to obtain
more managable and transparent expressions.

Suppose a detector is located at position r. This point
will be represented by its spherical coordinates (r, 8,$)
with respect to the z axis, and we are interested in the
value of the radiation field for r ~~ with (0,$) fixed,
and for z )0 only. The integrals in Eqs. (6.1)—(6.3) have
the f«m jd'K ~~exp(i~ r)g(K
With the method of stationary phase, we can derive an
asymptotic expansion for integrals of this kind. For the p
wave and r wave we obtain

[Ez(r, t)]'+'= — defoe '"" " 'cog [EK eK ]z («]rC 0
(7.1)

[E (r t )lf d~ e ~y [ K' K' K ]K ~~=(ke„]~~I'C 0
(7.2)

With

I

p= — =1+2
CO 6)

(7.3)

the asymptotic expansion of the PC wave becomes

0
[Epc(r t)] = dt's e ct) g [P~ EK' e& ]~ — &(pe ]7"C K PCO-

(7.4)



3680 HENK F. ARNOLDUS AND THOMAS F. GEORGE 43

The parameter p accounts for the mismatch between co

(or —co') and the pump frequency co.

VIII. AMPLITUDES

Kl =a +f3 according to Eq. (3.3). We find

k sin 0 for the p and y wave
2 2 2

p k sin 0 for the PC wave
(8.1)

In the formal expansions (7.1), (7.2), and (7.4) we still
have to evaluate the factors in square brackets on the
right-hand sides for the indicated values of K ll. In this
section we consider the (quantum) amplitude factors EK
and E&,., as given by Eqs. (5.1) and (5.2), respectively.
These factors contain the parameter y, which depends on

which gives

k cosO for the p and y wave
C

k(1 —p sin 9)' for the PC wave .
(8.2)

Substitution of EK and EK. into the expansions (7.1),
(7.2), and (7.4) then gives for the three fields

[E (r, t)]'
2 f d~e ~ g Ie~~lp(~)'e~g]IK =(k,

8& 6oyc
(8.3)

[E„(r,t)]'+'= d~e '"" ' ' 'co Rz' K. p ~ ex' y. =[k ]877 Eoyc II ll

(8.4)

[Epc(r, t)]'-'= defoe P e p co 'e
8u2g yc pc ll

(8.5)

where we introduced the parameters

(1 —p sin 9)'
cosO

(8.6)

—cos6h (8.7)

At this stage it is convenient, a1though not necessary,
to make a slight approximation in the expression for the
phase-conjugated wave. For a given frequency ~', the in-

tegrand in Eq. (8.5) is proportional to the Fresnel

reAection coe%cient P&, which depends on co'. It is
well known that P& assumes only a finite value when
the frequency co of the incident wave is su%ciently close
to the pump frequency co. Since the integrand in Eq. (8.5)
is proportional to P&, we can effectively set p

—= 1 in any
factor that multiplies PK, . Similarly, we can set /=1
and cu'= —co in the integrand, and also e, =e &. asK pc

can be verified by inspection of the definition of these unit
vectors. Then Eq. (8.5) reduces to

[Epc(r, t)]' 0
d~ e ' " " '+'~ g IPK ez [P(co) ex, ]]K (u, ]8~2&ore 2 r ll

(8.8)

which is a great simplification. Notice that we have set

p = 1 only in the overall factors, but the full resonant fre-
quency dependence is retained, as it is incorporated in

IX. POLARIZATION VECTORS, FRESNEL
COEFFICIENTS, AND THE MIRROR DIPOLE

I: ~, ]K~|=(k
]~~

(9.1)

Next we have to evaluate the polarization vectors e &
and e K, as they are defined by Eqs. (4.1)—(4.3), and for
the indicated values of K

~~

in Eqs. (8.3), (8.4), and (8.8).
The parameter y in Eqs. (4.1)—(4.3) equals y=k cosO in
all cases, as follows from Eq. (8.2) with p —+1. We wish to
express the polarization vectors in the standard spherical
unit vectors e & and e

&
for a given observation angle

(0,$).
For the particular solution (p wave) from Eq. (8.3) we

need eK for Ki=[ke„]i, both for cr=s and cr=p. We
find

[eic, ]K ~=(k.„] =en
ll r II

(9.2)

as could be expected from a comparison between the
phase conventions for e&, and ez (Fig. 1), and the
definitions of e

&
and e &, respectively. The field then at-

tains the form

[E,(r, t)]'+'= 1 00 —i co(t —r/c+ w) 2

8~ eoyc

X I [p(co) e ~]e s

+ [iM, (co) e ~]e ~ I, (9.3)

and notice that the factor in brackets is just the trans-
verse component of P(co) with respect to the propagation
direction e „.

For the r wave from Eq. (8.4) we need again eK at

K ~~=[ke„]~~ for the unit polarization vectors that corre-
spond to a propagating wave with wave vector K in the
observation direction (0,$). In addition, we need e& at
the same value of K ll, and these unit vectors account for
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(9.4)

[e K, ]K k~, ]
= —e s

—2(sinO)e, , (9.&)

the polarization of an incident wave on the surface z =0,
which is subsequently emitted in the specular direction
(Fig. 1). We find

K Kll k( ")r

where the term —2(sinO)e, represents the change in
direction between K' and K at the moment of reAection
at the interface z=0. For s-polarized waves there is no
such correction, since both the incident wave and the
specular have the same polarization vector [Eq. (4.1)].
The specular field becomes

(9.6)[E„(r,t)]'+'=
z 2 f dcoe ' " "~' 'co (RK.„Ip(co) [ —es —2(sinO)e, ]Ies+RK, [p(co) e&]e&),

8m eprc

where the Fresnel coefficients R&. pertain to the reAection coefficients of incident waves with wave vectors K, which
are specularly refiected in the observation direction (O, $). The coeKcients RK, depend on the frequency co and angle
of incidence 0;. Since 0; equals the observation angle 0, we might as well label RK with 0, rather than 0;. Therefore,
we can write

RK =R (co, cosO), cr =s,p .

A convenient concept for specular refiection is the mirror dipole. If we decompose p (or p) as

&=~ i+&
~~

where the subscripts J. and
~~

refer to the surface z =0, then the mirror dipole is defined as

Combining everything then yields for the specular field

f "defoe '"" " ' 'co [R (co, cosO)[P'(co) es]es —R, (co, cosO)[P'(co) e&]e&[ .
8& Eprc

(9.7)

(9.8)

(9.9)

(9.10)

The minus sign in front of R, is a consequence of the phase convention of the polarization vectors for s waves.
For the phase-conjugated field we have to calculate e K at K ll= —[ke „]ll. Both unit vectors in Eq. (8.8) appear with

wave vector K', which reAects the fact that both the incident plane wave and the PC wave have the same wave vector
K . The additional minus sign in K

~~,
as compared to K

~~

for the p wave and the r wave, signifies that a phase-
conjugated plane wave travels in the direction opposite to its wave vector. The polarization vectors are

(9.11)

[ K'P ]K ll=
—(k „] 9

and the field is found to be

(9.12)

f dao'e '~" " '+'co [P (co, cosO)[p (co) e s]e s+P, (co, cosO}[p(~) e&]e&], (9.13)
877 &pre

where we introduced the notation

P (co, c sOo}=P K,
o. =s,p . (9.14)

A complication with expression (9.13) is that the integration runs over co, whereas the factor in curly brackets de-
pends on m. With the relation co'=co —2' we can write the field in the alternative form

[Epc(r, t ) ]' e ' " "~'+'f defoe ' " " '+'co [P„(co,cosO)[P(co) es]es+P, (co, cosO)[P(co) e&]e&],
877 /pre

(9.15)

where we have used that P (co, cosO) is only nonzero in a
small frequency band around B.

X. NARROW-BAND EXCITATION

The Fresnel coellicients R (co, cosO) depend in general
in a complicated way on the frequency co. For R this is
mainly brought about by the variation of the dielectric
constant with co, but I' has an additional geometric fre-
quency dependence. The value of I' has a sharp peak
around co=co, and the relative frequency width of the
response is on the order of ~p

—
1~ -y. The absolute fre-

I

quency width then becomes ~co
—

co~ —yen, and even for
very small interaction parameters y this can still be very
large due to the multiplication by co. We now assume
that the dipole radiation is nearly monochromatic, com-
pared to the frequency width @co of the PC. With cop as
the central frequency of the dipole field and with boo as
its typical width, we impose the restriction Ace «yea on
the exciting field. However, this does not imply that cop
has to be in close resonance with co, but only that the
spectral width of the dipole radiation is small compared
to yco. For an atomic transition between (nearly) degen-
erate states that are separated by cop, this condition is
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very easily met.
Under the above condition we can replace R (co, cos8)

and P (co, cos8) by their values at co=coo. Furthermore,
the factor cu in the integrands can be taken outside the

integrals as cop. The only remaining frequency depen-
dence of the integrands enters as p(co) or its mirror im-

age, and the co integrals can be performed easily. We find
for the three fields

2
C00

[E (r, t)]'+'= (I [p(t r/—c+r)]' 'ee]ca+ I [p(t r/c+—7)]' ' e Ie ),
4~@ rc0

0 0

2
COp

[E„(r,t )]'+'= (R~(coo, cos8) I [p'(t r/c——r)]'+'.e eIe e R,—(coo, cos8) [[IJ,'(t r/c —r—)]'+'e&je &),
~&ore

(10.1)

(10.2)

[Epc(r, t)]'
2

C00

+P, (coo, cos8)I [IJ,(t r/c+r)]'+' —e ~]e ~),

e ' " "~'+'(P (coo, cos8)[[p(t r/c+r—)]'+'ee]ee
4&E07"c

(10.3)

in terms of the positive-frequency part [p(t)]'+' of the di-
pole operator.

XI. RETARDATION

The three fields, evaluated at the position r of the
detector and at time t, are determined by the instantane-
ous value of the dipole moment at an earlier time
t r/c+r —Since ph. otons travel with the speed of light c,
the delay time r/c equals the propagation time of a pho-
ton when it would travel from the origin of the coordi-
nate system to the detector. For both the p wave and the
PC wave, this retardation time is reduced by an amount
r =(h /c )cos8 for a given observation angle 8, and Fig. 2
illustrates that this implies that the photons are emitted
from the site of the dipole, and directly into the direction
of the detector. The p wave corresponds to emitted radi-
ation by the dipole into the region z ) h without interfer-
ence from the medium (Sec. IV), which makes this pic-

ture consistent. The phase-conjugated wave, however, is
a reAected field by the surface, but nevertheless the pho-
tons seem to emanate from the site of the dipole and trav-
el directly into the direction of the detector, in view of
their retardation time. The specular r wave has a retar-
dation of 2~, as compared to the p wave and the PC wave,
and it is shown in Fig. 3 that this time delay accounts for
the difference in travel time between a directly emitted
photon and a photon which is first rejected by the sur-
face z =0. The figure also illustrates that upon reAection

p or PC

p or PC

0
2hcos8

I

I

I
hcos8

I I I I I I I I I I I I I I I I I I I I I I I I I 111111

FIG. 2. The atomic dipole is located at r=h, and the emitted
fluorescence is detected within an angle 0 with the z axis. Both
the directly emitted (p wave) and phase-conjugated (PC wave)
radiation appear to emanate from the location of the dipole, as
follows from the retardation time ~=(h /c )coso of the p and PC
waves, and the geometry shown in this figure.

FIG. 3. The retardation time in the observation of a specular
wave equals (2h /c)cosO, as compared to the observation of a p
or PC wave. The geometry in this figure shows that this retar-
dation can be interpreted as the delay time for a photon that
travels first from the atom to point A, where it is subsequently
refIected according to Snell's law in classical optics. Also, the
distance 2h cosO equals the separation between point B and a
mirror dipole p' at a distance h below the surface. For a detec-
tor within an angle I9, the r photons appear to come from this
mirror dipole, as can be seen from the geometry shown in the
figure.
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at point 3 the path of a photon obeys Snell's law, and
that a photon appears to be emitted by a mirror dipole p'
that is a distance h below the surface. We conclude that
the emission of both p and r photons is in strong analogy
with classical ray optics, and that the quantum nature of
the radiation affects neither the geometry nor the inter-
pretation of the light emission. This is in contrast to the
emission of the PC wave. If this wave would be a result
of the emission of a photon by the dipole into the direc-
tion of the surface, and a sUbsequent reAection as a
phase-conjugated image, then the delay time would be
2h/cosO, as compared to direct emission. Since there is
no such retardation, we conclude that the emission of
phase-conjugated fluorescence is more complicated. We
shall show in Sec. XVII how the mechanism of PC-wave
emission can be understood.

XII. TOTAL SOURCE FIELD

[p(t+r)]'+'=e ' [p(t)]'+', (12.1)

which is perfectly justified at optical frequencies. We
then obtain for the fields

In this section we construct the total source field E„as
it is measured by the detector. We shall suppress the
overall time delay with r/C. Then, for an tom which is
not more than a few wavelengths away from the surface
z =0, the time delay ~ is only a few optical cycles, and we
can safely replace the time evolution of p(t) by its free
evolution over this small time interval. This amounts to
the approximation

1 $07

[E~(r, t)]' '=
z

([[p(t)]'+' eeIes+I[p(t)]'+'e&je&},
47TEpI"c

l C007

[E,(r, t)]'+'= (R„(coo cosH)[[p'(t)]' 'e e]e e R, (coo—, cosH)I [p'(t)]'+' e &]e &),
47TE'p7 c

(12.2)

(12.3)

COpe

[Epc(r, t)]' '=—,e'"" '(P (coo, cosH)I [p(t)]'+'e e]e e+P, (coo, cosH)I [p(t)]' ' e ~Ie ~),
4&6pI"c

(12.4)

in which all dipole moments appear with the same time argument t.
Subsequently, we take the Hermitian conjugate of Eq. (12.4) which gives us [Epc(r, t )]'+ ' according to Eq. (2.7), and

we use [[p(t)]'+'I =[p(t)]' '. Then we add the three fields, which gives us for the positive-frequency part of the
source field,

I Cd()7

[E,(r, t)]'+'= [[M e(t, cosH) e e]ee+[M &(t, c os H) e&]e&I, .
47TEpI"c

where we introduced the two operators

M e(t, cosH)=[p(t)]' '+e '
IR~(coo, cosH)[p'(t)]'+' —e ' "+'[P (coo, cosH)]*[p(t)]'

M ~(t, cosH) =[p(t)]I+' —e ' IR, (coo, cosH)[p'(t)]'+'+e ' "+'[P,(coo, cosH)]*[p(t)]'

(12.5)

(12.6)

(12.7)

Without the presence of the medium both operators
reduce to M&=M&=[p(t)]'+', and conversely we can
interpret M & and M

&
as two components of the positive-

frequency part of an effective dipole operator that takes
into account the interaction with the medium. Notice
that both operators contain only positive frequencies, due
to the appearance of the factors exp( 2i cot ). —

XIII. INTENSITY

provided that the efficiency is 100%%uo. Here the angular
brackets indicate a quantum expectation value. The em-
itted power into the half-space z )0 is defined by

8 8'
(13.2)

in z)p
With expression (12.5) for the source field, we obtain for
the intensity distribution

8 8'
BtBQ,

=2eocy ([E,(r, t)]' '[E,(r, t)]'+'}, (13.1)

When a detector at a distance r and under solid angle
0= (H, $) measures an electric field E„then the detected
energy at time t per unit of time and per unit solid angle
is in general given by

4

~ (I[Ms(t, cosH)] eeI
8& 6'pC

X [M e(t, cosH). e e]

+ I [M &(t, cosH)] e &]

X[M&(t, cosH) e&]}, (13.3)
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and substitution of the explicit forms of M 6) and M
&

then
gives the angular radiation pattern.

Both operators M & and M
&

depend only on the angle
0, and therefore the P dependence in c) 8'/Bt M is purely

geometrical, which refIects the invariance of the system
for rotations about the z axis. Integration over P and 0
then yields for the emitted power

'le(t)]I~+'&+bi& [p(r)]i '[p(t)]i+'&+c~~~ & Iv(r)]I~+'I)u(t)]~~~ '&+ci& [)u(t)]I.+'[v(r)]i '& !

(13.4)

where the overall parameter is given by

3
6' EOC

and the parameter functions are

b„=—,
' f du [11+e'~"R,(coo, u )I'

(13.5)

and b~ depend on the normal distance between the atom
and the surface (through P), but that ci and ci are in-
dependent of h. It can be shown that this is a conse-
quence of approximation (12.1), which limits the range of
h to a few optical wavelengths. In physical terms, the
atom does not decay on a time scale w.

XIV. PARAMETER FUNCTIONS

+ u
l
1 —e '~"R ( coo, u )

l ],
b —3 gu 1 u 1 +~ PQR ~ u 2

cll
=

—,
' du P, cu(„u +u P coo, u

ci= —,
' I du(1 —u )lP (coo, u )l

(13.6)

(13.7)

(13.8)

(13.9)

Here, u signifies the cosine of the angle of incidence of a
plane wave, and the integrals represent the superposition
of pla~e ~aves. The parameter functions bll, b„cll, and

c~ are real and positive, and they are determined by the
Fresnel reAection coeScients. These four parameters in-
corporate entirely all the properties of the medium, such
as its dielectric constant, nonlinear interaction parame-
ter, and geometry (for instance, the layer thickness), and
they are independent of the dipole moment p. Therefore,
the representation (13.4) for the emission rate makes a
clear separation between material properties and the dy-
namic evolution of the atom, which is incorporated in the
time dependence of the dipole moment p(t). This result
is reminiscent of the general form of the spontaneous-
decay operator for an atom near a linear medium, which
can also be expressed in terms of the parameter functions

bll and b~ and dipole moment expectation values. The
connection is, of course, that spontaneous emission and
spontaneous decay are intimately related.

The parameter P in Eqs. (13.6) and (13.7) is defined as

In order to shed some light on the significance of the
parameter functions, we consider some examples.

A. Transparent medium

When the dielectric constant e of the medium equals
unity and the nonlinear interaction parameter y equals
zero, then there is eftectively no medium at all, which
gives

R, =R =P, =P =0 (14.1)

for the Fresnel coefficients. Then the parameter func-
tions are found to be

bll =b, =1, cll =c,=0 . (14.2)

Consequently, a deviation of bll or b~ from unity rejects
the presence of specular waves, and a nonvanishing cll
and cz indicates a phase-conjugate signal. The emitted
power becomes

d8'
& [)M(r)]' '[p(r)]'+'& . (14.3)

P, =P =0, R, = —1, R =1, (14.4)

B. Perfect conductor

For the case of a perfect conducting medium (mirror)
the parameter functions can readily be evaluated. The
Fresnel coe%cients are

P = 2cooh /c, (13.10)
which gives of course

which equals 4~ times the distance h, measured in optical
wavelengths. This parameter enters through the cosO
dependence of the delay time r, and the factor exp(iPu )

accounts for the proper phase relation between the in-
terfering p waves and r waves. There is no such factor in
the expressions for c~~ and ci (which describe the PC-
wave emission), and this indicates again that the phase-
conjugated fluorescence is of' a difterent nature than ordi-
nary Iluorescence (p waves and r waves). Especially, the
PC waves do not interfere with the other components of
the emitted radiation. Also notice that the parameters bll

sinp cosp sinp

p p2 p3

cosp sinp
p3

which is a well-known result. '

cll c

For the coefFicients of linear reAection we find

(14.5)

(14.6)

(14.7)
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C. Ideal PC

R, =R =0, P, =P =P, (14.8)

and in analogy with the values for a perfect conductor,
Eq. (14.4), such a device is sometimes called a phase-
conjugating mirror. We find

b))
=b i = 1, c

~~)

=c i = (P
~

and the emission rate becomes

(14.9)

d8'
dt

(14.10)

D. Transparent PC on resonance

A transparent medium is defined as having a unit
dielectric constant, which gives for the parameters of the
directly emitted and specular waves

For a plane wave at normal incidence, the distinction
between s waves and p waves disappears, and we have
P, =P . When most of the incident radiation is normal
to the surface, we can make the approximation P, =P
and take the value u =1. For an ideal PC the reAection
coefficient is independent of the polarization and the an-
gle of incidence, and there is no specular reflection. Then
the Fresnel coefficients are

cosO=
(n+ —,

' )~
(14.16)

with n integer, the value of ~P, ~
is also infinite. In fact,

condition (14.16) predicts an infinite series of values of 6
in the range (0', 90') for which P, ~

diverges. In a simi-
lar way, the reffectivity (P„~ has a series of resonances
for certain angles of incidence.

When we substitute expressions (14.13) and (14.14) into
Eqs. (13.8) and (13.9), then it is easy to verify that the in-
tegrals over u for c

~~

and c~ diverge. This yields an
infinite emission rate for the phase-conjugated Auores-
cence, which is of course unphysical. It can be shown, '

however, that when we allow for a finite but very small
detuning coo —(d&0, the Fresnel coefficients remain finite,
with a magnitude on the order of unity. This renders
finite values for the parameters c~~ and c~, and thereby for
the emission rate. For an extremely close resonance be-
tween (do and (d we can no longer replace P ((d, cosH) in
Eq. (9.15) by P (coo, cosO), and we have to take into ac-
count the frequency dependence of P (td, cos0) over the
width of the atomic emission line.

This situation is analogous to the problem of resonance
Auorescence by a two-level atom in a monochromatic
laser field. There, the spectral distribution of the Auores-
cence consists of a 6 function at the laser frequency, su-
perposed on a smooth background, and in the limit where
cop equals the laser frequency the emission rate is infinite.
In any case, the example of this section shows that the
situation of perfect resonance has to be considered with
caution.

R, =R 0'
baal

b~ 1 (14.11)
XV. SCHRODINGER PICTURE

~
Cdo (d

~

((P ('d, (14.12)

then the Fresnel reAection coefficients take the form

If we assume that the atomic transition frequency cop is in
close resonance with the pump fields, e.g. , The time dependence of the emission rate d8'/dt in

Eq. (13.4) is governed by the time evolution of the
Heisenberg operator p(t). A more transparent represen-
tation of dW/dt can be obtained by a transformation to
the Schrodinger picture. When we take the Schrodinger
and Heisenberg picture to coincide at t =0, then we have

i P, ((do, u ) i

= tan

)P~(cdo, u)~ =tan +(3—2u )

in terms of the dimensionless parameter

(14.13)

(14.14)

p(0) —p —p(+)+ ( —
)

with

p'+'=P, pP, ,

(15.1)

(15.2)

(15.3)

ACOp
n=y

2
(14.15)

where 6 is the layer thickness of the medium. For almost
perpendicular incidence these expressions reduce to
(P,

~

= ~P
~

=tan g, and this behavior has been
confirmed qualitatively by experiment. ' It is also well
known that for certain values of g (or 6 and ado) the mag-
nitude of ~P, ~

or ~P
~

can become infinite, as follows
from Eqs. (14.13) and (14.14). This phenomenon is
termed self-oscillation and has been observed in experi-
ment also. For the present problem, however, the cosine
of the angle of incidence is a variable, rather than the pa-
rameter i), and it is seen from Eq. (14.13) that for

[p(t)]( ) —p( )(t) (15.4)

For any two operators 3 (t) and B(t) we have the

in terms of the projectors P, and P onto the (possibly de-
generate) excited and ground levels, respectively. In free
evolution (no coupling to the radiation field), the Heisen-
berg representation of the lowering operator p'+ ' is
p'+ '(t) =exp( —i cdot )p'+ ', which equals the positive-
frequency part of p(t), e.g. , [p(t)]'+'=p'+'(t). Due to
the interaction with the electromagnetic field, the spec-
tral distribution of p' '(t) will acquire a finite width
around the central frequency cup, but to an excellent ap-
proximation this operator will still contain positive fre-
quencies only. Hence we can set
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identity

& A(t)B(t)) =Trp(t) A(0)B(0), (15.5)

in terms of the density operator p(t) of the entire atom
plus field system. In Eq. (13.4), A (t) and B (t) are Carte-
sian components of the dipole operator, and in the
Schrodinger picture they act on wave functions in the
atomic Hilbert space only. Then we can take the trace
over the field states in Eq. (15.5) according to

P (t) Trfi idp(t) (15.6)

where p, (t) is the reduced density operator for the atom,
irrespective of the state of the field. In this way, we find
for the emission rate

(+). ( —l+ (+). (
—))

(15.7)

where the trace runs over the atomic states only. Equa-
tion (15.7) expresses that we can find the emission rate at
time t, once the atomic density operator p, (t) is known,
since the operator in parentheses is completely deter-
mined by Eqs. (15.2) and (15.3).

XVI. TWO-STATE ATOM AND IDEAL PC

In order to exhibit the principle features of the emis-
sion of phase-conjugated fluorescence, we work out the
example of a two-state atom, in combination with the
model (ideal) PC from Sec. XIV C. A model two-state
atom has an excited state

I
e ) and a ground state Ig ), and

the projectors on these states are P, =
I
e ) & e

I
and

Ps =Ig) &gI, respectively. Then it is easy to work out
the emission rate d W/dt from Eq. (15.7), and we obtain

state became populated.
The emission rate has two distinct contributions. The

first term is —,
'

A triton, (t), which equals half the emission
rate in empty space. These are the photons that are emit-
ted directly by the atom towards the detector (p wave),
and the factor —,

' accounts for the fact that we only mea-

sure the emission into the half-space z )0. This contribu-
tion is always present for any medium in z (0, simply be-
cause this part of the field does not interact with the
medium. During the emission the atom decays from its
excited state to the ground state as illustrated in Fig. 4(a).
The other half of the number of photons which are emit-
ted in the Ie )~ Ig ) transition travel in the negative z
direction, and they serve as the incident field on the medi-
um. For linear refIection this would give rise to a specu-
lar wave, with intensity proportional to n, (t). Interfer-
ence between the p wave and the r wave is incorporated
in the values of the parameter functions bII and bi.

More interesting is the second contribution
—,
' AAcooIPI n (t) to the emission rate. This term is pro-
portional to

I
P

I
and represents, therefore, the phase-

conjugated fluorescence, as can be measured by a detec-
tor. The question to ask is what physical mechanism is
responsible for the emission of this radiation. As pointed
out in Sec. XI, an interpretation in terms of an incident
wave that is refIected as a pc wave cannot be correct,
since this is in convict with the diferent retardation times
of the various photons. First, we notice that this term
corresponds to the actual observation of a photon, and as
we found from the retardation time, this photon is emit-
ted from the site of the atom. This emission can only
take place if accompanied by an Ie )~ Ig ) atomic transi-
tion. On the other hand, the emission rate is proportion-
al to ns(t) so that the atom must be originally in its

,' AA'coo—[n,(t)+ IPI n (t) j,
dt

where

3

, I&el) Ig &I'
3~eoAC

(16.1)

(16.2)

n, (t) =Tr,p, (t)P;, i = ge. (16.3)

These quantities cannot be determined with the present
theory, since the time evolution of p, (t) is governed by
the coupling of the atomic dipole to the vacuum field
(and possible external fields). Also, p, (t) depends on the
preparation of the system at t=0. Nevertheless, when
for a given time t the populations are n, (t) and ns(t),
then the emission rate follows from Eq. (16.1). This situ-
ation is analogous to the fact that for fluorescent emission
by a dipole in empty space, the emission rate always
equals dW/dt= AAnion, (t), no matter how the excited

equals the Einstein coefFicient for spontaneous emission

by an atom in empty space. The time dependence of
d W/dt enters through the populations of the atomic lev-

els, defined by FIG-. 4. This figure illustrates the two atomic processes that
contribute to the observable Auorescence. Diagram (a)
represents an atom that decays from its excited state Ie ) to its
ground state jg ) under emission of a photon into the direction
of the detector. This is the p wave, and the mechanism is not
affected by the presence of the medium. The mechanism for the
emission of phase-conjugated fluorescence is shown in diagram
(b). The atom is originally in its ground state. Spontaneous
emission of a photon (PC wave) by the PC, and subsequent ab-
sorption of this photon by the atom, brings the atom to its excit-
ed state. Spontaneous decay is then accompanied by the emis-
sion of the observable photon. A second absorption of a photon
with frequency co then completes the process, thereby leaving
the atom in its excited state.
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ground state. Consequently, before the emission process
the atom must be excited, and because of energy conser-
vation this can only happen in combination with photon
absorption. The only photon source in the problem, as-
suming no external fields, is the PC. Therefore, we must
conclude that this photon is spontaneously emitted by the
medium, due to the presence of the dipole. Such a pro-
cess would give rise to the emission of a photon with fre-
quency co, but we recall that this phase-conjugated wave
must have frequency 2B—coo, since the incident field has
frequency coo. An energy-conserving process then re-
quires that a second photon with frequency co is absorbed
by the atom, which gives rise to an excitation from Ig ) to

I
e ). Figure 4(b) illustrates this three-photon process.

~o I & j, II p IIj, & I'

3~+ogc 2je + 1

and with the change in notation

C~=
Cg

for &=+1
fof 1 =0,
for &=+1
for &=0,

the emission rate becomes

,'ficooA T—r,p, (t)g (b,d,d, +c,d,d, ) .
dt

(17.3)

(17.4)

(17.5)

(17.6)

XVII. DEGENERATE T%'O-LEVEL ATOM

A two-state atom description is an idealization that is
commonly employed to study the principles of matter-
radiation interactions. In this fashion we can discover
the fundamental mechanisms of a certain process, such as
illustrated in Fig. 4 for the present problem, although the
model is not necessarily very realistic. In this section we
consider a degenerate two-level atom, where the excited
and ground levels have angular momenta j, and j, re-
spectively. These levels are (2j, +1)- and (2j +1)-fold
degenerate, and the magnetic states are indicated by
Ij,m, ) and Ijsms) in obvious notation. Then it is im-
mediately clear that a two-state description cannot ac-
count for the behavior of the atom, even if one would
select a certain transition between two states by an exter-
nal field. For instance, in a j =0, j, =1 system we can
select the m, =m =0 states by driving the atom with a
linearly-polarized laser in the z direction. Stimulated
transitions occur only between the IOO) and I10) states,
and in addition we have the two spontaneous processes
from Fig. 4 between these states. But then also the

I
1 1)

and
I
1 —1) excited states have a nonzero dipole matrix

element with the ground state I00), and the three-
photon loops from Fig. 4(b) will generate fluorescence
whenever the atom is in its ground state.

In this section we evaluate the general expression for
the emission rate for a degenerate two-level atom. In
terms of the dipole-selective raising operator

d = g (jgm lrjlm, )lj m, )&j m I, r= —10 1
m, m

(17.1)

the lowering part of the dipole operator attains the form

Je I IP I I Jg d, e, ,+2j, +1
(17.2)

in terms of the spherical unit vectors e with respect to
the z axis. The summation over ~=+1 then gives p II+',
whereas the ~=0 term equals the perpendicular part of
p' '. With the Einstein coeKcient for spontaneous emis-
sion in free space and for a degenerate system,

In order to demonstrate the similarities and differences
with a two-state atom, we consider again the case of an
ideal PC, for which b, = 1 and c,= IP I

. With the identi-
ties

g d,dt =P, , (17.7)

2j, +1
gdtd, = . P

2jg
(17.8)

in terms of the projectors onto the two levels, we find

d8' 2j, + 1=
—,'iris')OA Tr, p, (t) P, + IPI P (17.9)

With the notation

1 2j, +1
22j +1

this can be written as

d8' =
—,'Rcoodn, (t)+ficooA n (t),

dt

(17.10)

(17.11)

XVIII. CONCLUSIONS

We have studied the emission of Auorescence radiation
by an atom in the vicinity of a phase-conjugating surface.
With a decomposition of the particular solution (dipole in
empty space) of the Maxwell-Heisenberg equations into
an angular spectrum of plane waves, we have been able to
construct the reAected field by the medium. Under the
assumption that the PC operates via four-wave mixing,
the rejected field could be expressed in terms of the clas-
sical Fresnel reAection coe%cients R and P . These pa-
rameters incorporate the material properties of the medi-
um and the details of the geometry for the four-wave

where the populations of the levels are again given by Eq.
(16.3). Comparison with Eq. (16.1) shows that the only
difference is that the ground-level emission term is now
multiplied by the geometrical factor (2j, +1)/(2j +1).
Notice that only the total populations of the levels deter-
mine the Auorescent emission rate; it does not matter
how the populations are distributed over the various
states. This holds only for an ideal PC, and not in the
more general situation, as given by Eq. (17.6).
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mixing process (like the polarization of the pump beams,
and the layer thickness). This procedure yields the exact
solution for the electromagnetic field in the entire region
z & 0 in terms of angular integrals, and with an asymptot-
ic expansion we have derived the value of the field in the
far zone, in terms of the observation angle (8,$). After
integration over a 2m solid angle we obtained the total
Auorescent power in the half-space z )0, and it turned
out that this power can be expressed in terms of four
geometrical parameter functions bI~, bz, c~~, and c~, and
quantum expectation values of the equal-time autocorre-
lation functions of the Cartesian components of the
lowering part of the dipole operator. By considering
various limiting cases in Sec. XIV, we have shown that
the terms proportional to b~~ and b~ account for the
fluorescent emission directly from the atom towards the
detector. Also included in these terms is the specular
reAection of photons, and it appeared that both waves in-
terfere. This interference is again a pure geometrical and
classical phenomenon, and is accounted for by the func-
tions btt and b~. The presence of the phase-conjugated
wave appears as a separate term in the expression for the
emitted power, which indicates that this wave does not
interfere with the p waves and the r waves.

In working out the model case of a two-state atom, we

have been able to show that the directly emitted photons
and the specular photons are both produced in a spon-
taneous decay of the atom. Since both emissions are a re-
sult of the same decay process ~e ) ~)g ), these photons
must necessarily interfere, as is expressed by their joint
appearance in the single parameter functions b~~ and b~.
On the other hand, the probability for the emission of a
phase-conjugated photon is proportional to the popula-
tion of the ground state, which renders this mechanism
independent of the previous one. By considering the re-
tardation times of the various photons, we can track
down the underlying physical mechanisms, and the two
responsible processes are illustrated by the diagrams of
Fig. 4. The most remarkable result is that an atom in its
ground state, and close to a PC, can effectively emit a
fIuorescent photon, in addition to which the atom excites
spontaneously. We have interpreted this phenomenon as
a result of a three-photon process, as depicted in Fig.
4(b).
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