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Shift and width of the Lyman-a line of neutral hydrogen due to electron collisions
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The convergence of the quantum-mechanical (impact-theory) partial-wave series for the shift d
and width w of the Lyman-a line due to electron collisions in a plasma is studied. Asymptotically

exact expressions for the relevant S-matrix elements are derived, and it is shown that the series for d
converges, whereas w diverges logarithmically as in semiclassical theories. The conclusions are
verified by numerical calculations. Some numerical results are reported for plasmas with tempera-

tures in the range 1 —5 eV and densities 2 X 10' and 4X 10' cm

I. INTRODUCTION

This paper is concerned with the shift and width of the
I.y line (2p —+ is) of neutral hydrogen in a plasma pro-
duced by electron collisions with radiating atoms. It
must be said at the outset that electron collisions are only
one of many possible contributions to the shift and width:
in the case of the shift, their contribution is probably the
dominant one; but not so for the width, for which the
electron collision contribution is not the largest (local
electron fields are more important). However, we will not
consider other contributions here. Our discussion of
electron collisions is based on the so-called impact
theory' which leads to a specific formula for the shift
and width (below, Sec. II) which is quite difficult to evalu-
ate correctly. We will not be concerned here with ques-
tions as to whether there are, in nature, important contri-
butions to the shift that are not described by the impact
theory. Our interest is directed toward the question of
the convergence of the required sums over angular
momentum variables.

We became aware of this problem in the course of a
calculation of the shifts and widths of the Ly, Ly&, and
H lines of He+, in which it became apparent that the S-
matrix elements describing scattering on the excited
(upper) states were required for large angular momenta,
beyond the range for which results are normally available
from existing programs for close-coupling scattering cal-
culations. We developed an extrapolation procedure to
determine these contributions. Persistent questions
prompted us to look closely at the question of conver-
gence of these sums. In the course of this, we observed
that the expression for the shift and width of p ~s transi-
tions could be simplified into a form that was fairly easy
to understand. In addition, we were able to obtain the
relevant S-matrix elements analytically for large angular
momenta including all coupling effects for the case of Ly
in neutral hydrogen. This analysis is of some interest as
one of the few analytically solvable problems in mul-
tichannel scattering theory, and is reported below. We

show in this case that the electron-scattering contribution
to the width is logarithmically "divergent, " while the
shift converges. We think it is plausible, primarily on the
basis of numerical evidence, that this is also the result for
the transitions other than Ly in He+ (and for their
counterparts in neutral hydrogen) that prompted this
study, but we do not have formal proof.

The use of the words "divergent" and "convergent" in
the present context requires some elaboration. We mean,
explicitly, that the expression for the width involves a
sum over angular momenta of the form gr 1/L that
would be infinite if extended to infinite L and, if cut off at
some finite upper limit, would depend logarithmically on
the cutoff. No such term is present in the expression for
the shift. The leading large-L contributions fall off at
least as rapidly as L . In nature, an infinite width does
not occur. Contributions from very large angular mo-
menta are cut off by properties of the plasma environ-
ment; one particular source of such a cutoff is the Debye
screening of long-range potentials in the plasma. We re-
port below numerical values for the shift and width when
this effect is used to define a maximum angular momen-
tum. Related problems occur in the more commonly em-
ployed semiclassical theory.

This paper is organized as follows. In Sec. II we spe-
cialize the general formula for the shift and width to the
case of p-to-s transitions and then describe the calculation
of the S matrices for large angular momenta. Section III
contains numerical results for a few temperatures and
densities, plus some discussion of the results and compar-
ison with other theoretical approaches.

II. THEORY

Consider a transition connecting an initial state a of a
radiating atom with a final state b. Spin-orbit coupling is
neglected. The half-width m of the line, and shift d, rela-
tive to the energy of the same transition in the absence of
all perturbers, is given in Rydberg units by
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In this equation N, is the electron density, a0 the Bohr
radius, and T is the plasma temperature (with ks T in
Rydbergs). The quantities L, and Lb are the orbital an-
gular momenta of the atomic states, s, is the spin of the
initial state, L and L' are the total angular momenta of
the system of atom plus scattering electron in the intial
and final states with l and l' the corresponding angular
momenta of the free electron, while S is the total spin.

The S matrices S, and Sb are to be calculated for fixed
kinetic energy c of the free electron. If E, and Eb are the

energies of the atomic states, then the total energies of
the system of atom plus free electron, E and E', are given
by

E =c.+E„E'=c.+Eb .

Equation (1) is quite complicated. If, however, one of
the atomic states involved (we choose it to be the final
one) is an S state (Lb =0), and the initial state is P
(L, =1) a simple expression for the 6—j symbols enables
us to reduce Eq. (1) to

1
LO +ld ——

3 k~T

1/2

(~ g3)I e ~ gg (2L+1)g [1—S, (E S L)l, l)Sb (E',S L, l, l)] d(E/ksT) .
0 S l

(2)

Furthermore, for a given value of L, (L )0) l can only
take the values L —1, L, and L +1.

It is apparent from Eq. (2) that in order for the sum
over L to yield a finite result in the absence of a cutoff,
the quantity in large parentheses must decrease with I,
when L is large, faster than 1/L. We therefore begin by
investigating the large-L behavior of the S-matrix ele-
ments.

A. Asymptotic S™matrixelements

To study the convergence of the series in Eq. (2) it is
only necessary to evaluate the sum in square brackets
through order 1/L for large L. For elastic scattering
from 1s, the polarization potential dominates at large L,
so that

r +k F=( A+B/r)F,
dT

where k is the incident energy (Ry) with respect to
n =2, and the matrices A and 8 are given by

L(L+1) L' P (L+1)' P-
L'"P L. (I. —1) O

(L +1)' P — 0 (L +1)(L +2)
0

B= 0

0
12(L —1)

2L +1
—[L(L+1)]' P, (6)

pled differential equations for the radial functions may be
written as

Sb —1+0(L ), O [I.(L, +1)]'"P—' 12(L +2)
2L +1

and therefore we only need the aymptotic form of S, .
This is essentially governed by the strong coupling be-
tween the degenerate 2s and 2p states, which can be dealt
with by an extension of Seaton's method. This approach
has previously been applied to calculations of the profile
of Ly by van Regemorter and collaborators and by Bar-
yshnikov and Lisitsa. There are three channels of parity
(
—1), and one with parity ( —1) +', which is not cou-

pled to the others and may be considered independently.
Following Seaton, we label the three coupled channels
by v=1,2, 3 corresponding to the atomic state and pro-
jectile angular momentum combinations (2s,L ),
(2p, L —1), and (2p, L +1), respectively. Keeping all the
long-range potentials and neglecting exchange, the cou-

with p=6/(2L+ 1). As in Seaton, we first diagonalize
A. Let AX=X a, where X is unitary and a diagonal.
Equation (4) may then be written as

d k2 a G XBX~2

dp' f 7"

where G=X F. Neglecting the right-hand side, we get
the solutions of Seaton,

0 . —(i l2) vrP, .
G; =( 2i)e 'krj—„(kr),

1

with the constants p;, i =1,2, 3 as given in Seaton. The
functions G; have the asymptotic behavior
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~0 —ikrI ikr
l 7 (9) we may express the modified asymptotic form as

—&kr-(t i.kr

where a =e ' ". The modification induced by the term
on the right-hand side of Eq. (7) can be determined, to
leading order in L, by using the Born approximation.
0e6ning

where

1+iK
1 —iK (12)

EC, = —. k f j (kr)(X BX);j (kr) (10) The required calculations are greatly simplified since, to
leading order in L

91—
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The final form of v to the required order in L ' is the asymptotic form

0
12ik

L (2L +1)
6ik
L 2

0
6ik
L 2

12ik
(L + 1)(2L + 1)

(14)
18
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L
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2L

9
L 2
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9

L 2

9 i 9m.

L 2L

(16)

Now, the asymptotic form of F=X G is, from Eq. (11),

F e
—ikrI eikrSr

7 (1S) The S matrix in the present case can be calculated from
Eqs. (12), (13), and (1S), since

where S'=Xcr~X . The S-matrix elements, de6ned with
respect to exp[+i(kr —lm/2)], may be calculated by
multiplying S' with apWiropriate phase factors. The ele-
ments of T= l —Xo.X are given in Seaton, and have

S=(ji—T)XrX

From Eqs. (13), (14), (16), and (17), we obtain

(17)
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L 2
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L
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L
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9 6ik
L L
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L2 L2

12k 9~
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There remains the channel of parity ( —1) '. The
long-range potential here is' (

—12/r ) and this leads to

1 —S2 (I =L)-— 12ik
L(L+1) (19)

B. Contribution to w and d from high partial waves

For large L, the Lth term in Eq. (2) becomes, in view of
Eq. (3),

4
Wl + ldL

8
(N, a o )(2L + 1)

to'- O
10-e

X g f e [1 S2p(1—))d(k /k~T) .
j=L —1

(20)

(N, ao)—1wL 48
B

and

On using Eqs. (17)—(19) in Eq. (20), we find
1 1/2

(21)
10

10 20 30 40 50

L

100
) 0-9

200

d~-O(1/L ) . (22)

III. NUMERICAL RESULTS

The convergence of the series for d and the logarithmic
divergence of w therefore follow. A more careful calcula-
tion retaining higher orders of (1/L) shows that actually
dl -0 (1/L ). However, we have neglected the polariza-
tion potentials which fall off as r in the analytic calcu-
lation, and these can lead to an asymptotic form of the
same order as Eq. (22).

It is interesting to compare these results with those ob-
tained on the basis of a Born approximation (for the di-
pole potentials also) calculation of the S matrix. Since
the Born E-matrix elements which are given in Ref. 11
are real, the Born approximation for 1 —S, —2i K, is
purely imaginary and therefore contributes nothing to
the width. The unitarized Born approximation, obtained
from S=(1+iK)/(1 i K—)su, pplies the missing real
parts correctly along the diagonal, but still does not pro-
vide the terms +9mi/2L present in Eq. (18). However,
since the latter cancel each other in Eq. (20), the unitar-
ized Born approximation does yield the right asymptotic
behavior.

FIG. 1. Partial shift dL and width mL of the 2p —1s transi-
tion in hydrogen due to electron collisions for density
N, =2 X 10' cm and temperature k& T = 1 eV.

in the literature' were used. In view of Eqs. (17)—(19),
the integration in Eq. (2) was carried out over k rather k
by fitting the S-matrix elements to polynomials in k. At
most energies, calculations were carried out up to L =48,
beyond which the S-matrix elements were extrapolated
using a polynomial in 1/L More det. ails will be given in
a later paper where we hope to present results for all
transitions between the n = 1, 2, and 3 states of hydrogen.

In Fig. 1 are presented the variations of dL and wI (eV)
with L at k~T=1 eV and X, =2XIO' cm . It is seen
that wI follows Eq. (21) for L ) 12 and therefore the con-
tribution due to all higher partial waves up to the cutoff
limit can be calculated simply by summing a harmonic
series. This is significant, since nearly half the contribu-
tion to the total width comes from L & 12. In fact, use of
Eq. (12) for all L (1 through L,„)actually gives a reason-
able estimate of w. For example, at k&T=1 eV and
X, =2X10' cm, w calculated in this manner is 0.075

Numerical calculations presented in this section closely
followed those reported earlier' for He . The S-matrix
elements for energies above the n =3 threshold were cal-
culated using a close-coupling plus optical potential ap-
proach. ' The lowest six states (ls, 2s, 2p, 3s, 3p, 3d) were
explicitly included in the close-coupling calculation. A
second-order optical potential was constructed on the
basis of 12 (4f plus 11 pseudostates) states representing
higher bound and continuum states. Between the n =2
and 4 thresholds accurate calculations could be carried
out for L ~ 3 using a variational method. ' Below
k =0.75 Ry, essentially exact phase-shift data available

N, =2x 10" 4x10" 2 x 10" 4x10"
0.0087
0.011
0.011
0.011
0.011

0.017
0.021
0.021
0.022
0.022

0.064
0.053
0.048
0.044
0.042

0.117
0.099
0.089
0.083
0.079

TABLE I. Shift d (A) and width m (A) of hydrogen Lyman a
spectral line at temperature k&T (eV) and electron density N,
(cm ).
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A, whereas the correct value (see Table I) is 0.064 A.
A few remarks are in order regarding the numerical

evaluation of dz for large L. First of all, owing to the
L behavior, this contribution is quite small. In the
present case, the contribution from L &48 is about 2%.
To determine this correctly, the numerical scheme should
account for the asymptotic polarization potentials in all
channels at all energies. ' In the optical potential model
we have employed, ' this would mean using a different
pseudostate basis at each energy. However, since the ma-
jor contribution to d comes from low partial waves, the
large-L (L )48) contributions actually can be neglected
without incurring any appreciable error and therefore no
effort has been made to determine dz for large L accu-
rately. The data presented in Fig. 1 are only intended to
serve the purpose of confirming the L dependence of

dl, for large L.
Finally, some representative values of w and d are

presented in Table I. No comparison with corresponding
experimental data has been made, since we are not aware
of any. In calculating these, the maximum value of the
angular momentum, L „,was estimated on the basis of
Debye screening as (using atomic units) L
=kz T/(2.AN, )' . As is clear from the table, the depar-
ture from a linear dependence of m and d on N, on this
account is quite small.
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