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In this paper we study the dynamics of a nonlinear quantum-optical system subjected to a period-
ic modulation in the form of kicks. The system consists of a nonabsorbing anharmonic medium re-
lated to optical bistability, a degenerate parametric amplifier with a classical pump field that is
modulated by a periodic sequence of kicks, and the initial state is taken to be a squeezed vacuum
state. Using the related SU(1,1) coherent states (which are squeezed vacuum states), we study and
compare the quantum and classical dynamics of the system. The “classical” motion in this case
means the motion projected onto the phase space defined by the parameter labeling the generalized
coherent states. For certain values of the coupling constants, we obtain both regular and chaotic
motion in the classical phase space. In the quantum dynamics of the system, the manifestation of
the classical chaos turns out to be rather weak, at least in the regime numerically accessible to us.
We study the time evolution of the initial-state population probability, the average photon number
in the field, and the squeezing of the field. We also briefly discuss the level statistics of the evolution
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operator.

I. INTRODUCTION

The study of quantum systems whose classical counter-
part exhibits chaotic behavior has been of great interest
in recent years.! A particularly interesting class of prob-
lems is concerned with systems driven with a periodic se-
quence of nonlinear kicks. Zaslavsky,? for example, has
studied a nonlinear, anharmonic oscillator undergoing a
series of periodic kicks and has projected the resulting
solutions of the Heisenberg equations onto the quantum
phase space associated with the usual harmonic oscillator
coherent states. Such states have also been used as an al-
ternative to the pure momentum eigenstates in the study
of the quantum dynamics of the kicked rotator.>* On the
other hand, quantum and classical chaos for a top kicked
by a nonlinear interaction has been studied with the aid
of coherent states associated with the group SU(2).° In
this case the natural phase space is just the Bloch sphere
(or a projection of the Bloch sphere onto a plane). The
quantum dynamics takes place in a finite dimensional
Hilbert space due to the fact that the squared angular
momentum is a constant of the motion. A distinction be-
tween regular and irregular behavior could be made for
times exceeding the quantum-mechanical quasiperiod at
which the classical description becomes inappropriate.

Other kinds of quantum states have also been studied
in quantum chaotic systems. Of particular interest in the
area of quantum optics is the so-called squeezed state,
well known to have no classical analog in the sense that it
cannot be represented by a true probability distribution
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in phase space (i.e., the P function being nonpositive
definite).® Recently, Zyczkowski’ has studied the time
evolution of squeezed states in the kicked rotator model.
He has found that squeezing influences the shape of
quantum revivals obtained in the regime of classically
regular motion but does not facilitate the diffusion in the
angular momentum in the regime of classical chaos.
Furthermore it was noted that the speed of unlimited en-
ergy growth, which occurs in the case of quantum reso-
nance, depends significantly on the squeezing parameter.
It must be mentioned, however, that squeezed states have
so far been produced only in quantum-optical experi-
ments.® It is difficult to see how squeezed states in a
quantum kicked rotator could be experimentally realized.

In this paper the time evolution of squeezed states is
studied for a case which we believe to be more realistic
than the one described in Ref. 7. We consider a single-
mode squeezed state, specifically a squeezed vacuum
state, in a nonlinear medium which consists of a nonab-
sorbing anharmonic oscillator and a degenerate paramet-
ric amplifier with a classical pump field. Such a system
has been shown to be related to optical bistability’ and
has previously been shown to produce states of enhanced
squeezing from ordinary coherent light.!®!' The evolu-
tion of squeezed vacuum states has also been studied for
such a system.!? In the present study, however, the pump
field is taken to be modulated by an infinite sequence of
8-function kicks.

To analyze the model, we find it very convenient to
make use of the fact that the problem has a natural rela-
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tionship to the dynamical group SU(1,1). It has been
shown previously!'3~1° that the squeezed vacuum state is
nothing more than a generalized coherent state associat-
ed with SU(1,1) as given by the Perelomov definition.!®
Coherent states (CS) associated with SU(1,1) have been
studied in great detail'”!® and have previously been used
in the study in the interaction of the squeezed vacuum
with two-level atoms'® and nonlinear media.'>?° Like the
usual harmonic oscillator (ordinary) CS and the SU(2)
CS, the SU(1,1) CS’s have an associated phase space
which, in this case, takes the form of the Lobachevski
plane. It is therefore possible to project the “classical”
motion of the SU(1,1) CS into this phase space for any
Hamiltonian system that can be written in terms of the
generators of the group. Of course, only in the case when
the Hamiltonian is linear in the generators do the quan-
tum and classical motions agree in the sense that the
coherence of the initial state is preserved.'* In the model
to be discussed in this paper, the Hamiltonian may be ex-
pressed in terms of the boson realization of the SU(1,1)
Lie algebra which has been used in previous stud-
ies.137 151920 Qince our Hamiltonian will be quadratic in
the SU(1,1) generators, the problem we study may be con-
sidered as the “noncompact” analog of the kicked top
problem studied in Ref. 5. The principal difference in our
case, however, is that the Hilbert space is necessarily
infinite dimensional. Unlike for SU(2), this has the poten-
tial for introducing truncation errors in the quantum
analyses. We should also mention here that previously a
quasiperiodically kicked linear SU(1,1) system was stud-
ied:?! the quantum and classical maps were shown to be
essentially Mobius transformations in the representation
of the Lobachevski plane for which the motion is
confined to the interior of the unit circle in the complex
plane. Even though there is no classical chaos, some of
the supposed signals of quantum chaos, such as decay of
the autocorrelation function and broadband power spec-
trum, do appear. This was previously shown for the case
of the linear, quasiperiodically driven two-level system as
well 2223

This paper is organized as follows. In Sec. II we
present the model and analyze the “classical” dynamics
in terms of the evolution of an initial SU(1,1) CS which
we take to be a squeezed vacuum state. The classical
maps are also unimodular, time-dependent Mobius trans-
formations which map the phase space onto itself one to
one. When the anharmonic term is removed, they reduce
to a single map. We also obtain a Heisenberg-type repre-
sentation of the classical motion in terms of the elements
of the Lie algebra which are allowed to commute in the
“classical” limit in a manner defined below. In Sec. III
are presented the numerical results of the classical map.
As well, the quantum evolution is studied. In Sec. IV the
paper is concluded with a brief summary.

II. MODEL

In this section we discuss the Hamiltonian of the mod-
el, cast it in terms of the SU(1,1) generators, and derive
the quantum and classical maps for the associated
SU(1,1) CS which we take to be a squeezed vacuum state.

We shall not give any detailed review of the SU(1,1) CS
formalism but will introduce the necessary concepts as
needed in the discussion.

The Hamiltonian of our model system is

H=t%oyala+1)+1xMa")a?

2 2wyt

+1fiyla‘e

2wyt

+(at)e 18

(1) (2.1)

The first term represents the free field of frequency w,.
The second term is an anharmonic term which gives rise
to optical bistability, where A is related to the third-order
susceptibility of the medium. Finally, the last term essen-
tially represents a degenerate parametric amplifier where
the pump field has frequency 2w, and is treated classical-
ly. The parameter ¥ contains a second-order susceptibili-
ty and the amplitude of the pump field. The pump field,
however, is being modulated by a periodic string of &
functions §,(¢) where
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8,(6)= 3 8(t—nT), (2.2)
n=0

and T is sufficiently large so that wy>>27/T. We now

cast the above Hamiltonian into SU(1,1) form by using

the following oscillator realization of the su(1,1) Lie alge-

bra:

(a'a+aa"), K, =1a"? K_=1la4?, (2.3)
satisfying the commutation relations
[Ki,K_]=—2K, .

(Ko, K4 ]=*K, 2.4)

For later use, we introduce an alternate form of the Lie
algebra. Defining K, =K, +iK,, we have

[Ky,K,]=—iK,, [K;Ko]=iK,, [K¢,K]=iK; .
(2.5)
The Hamiltonian of Eq. (2.1) becomes
H (1)=2%w Ko+ 20K , K _
Hay(K e K e 8, (1) . (2.6)

In order to remove the rapid 2w, oscillations from the
Hamiltonian, we transform to the interaction picture.
With H,=2wyK, the Hamiltonian in the interaction pic-
ture is

H()=2)K K _+2yK5,(1) (2.7)

where we have used the fact that [K,,K . K_]=0 and the
relations

iHt /%
e 0

—iH,t/%
Kie "°"'=K

+2i

e (2.8)
Now the evolution operator over a pulse may be written
as

—2iyK,

U,=e , 2.9)

and the “free” (nonpulsed) evolution operator between
the pulses is given by
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—2ATK K
Up=e 77, (2.10)
where T is the time between pulses. Thus through one
pulse up to just before the next one, the evolution opera-
tor is given by

—2JATK  K_ —2iyK,
e .

U=U,U,=e (2.11)

Before we go on to study the classical and quantum
evolutions for this system, it is worthwhile to point out
that there is a constant of the motion, namely, the
Casimir operator of SU(1,1). We also take an opportuni-
ty to briefly review the relevant irreducible representa-
tions of the group and introduce the associated coherent
states.

C=K}—K}—-K}=K{—LK,K_+K _K,). (2.12)
Clearly
[H,C]=[U,C]=0. (2.13)

Now we introduce the unitary representations of SU(1,1)
known as the positive discrete series D' (k) where k is a
number determined from the eigenvalues of C which are
traditionally written as k (k —1). k is known as the Barg-
mann index and for D (k), k>0. In these representa-
tions the operator K, which generates a compact sub-
group, is diagonal. Denoting the basis states as {|m,k )}
we have

Kylm,k)=(m +K)|m,k), m=0,1,2,... (2.14)

and

Clm,k)=k(k —1)m,k) . (2.15)

For the realization of the algebra of Eq. (2.3), it follows
that C=— or that k=1,3. The relation between the
SU(1,1) basis |m,k) and the usual Fock space number
states |n ) is quite straightforward. From K, in Eq. (2.3)

and [a,a T] =1, the number operator is given by

N=ala=2K,—1. (2.16)

Thus n=2m +2k —1. For k=}, n=2m (n even), and
for k=2, n=2m +1 (n odd). Thus the Hilbert space of
the oscillator states is divided into two parts: k =—}, even
parity and k =3, odd parity. The fact that C and H com-
mute is merely a statement of the fact that H preserves
the parity (k) of the initial state.

The SU(1,1) coherent states are constructed in the usu-
al way by the Perelomov definition.!® They are given by

&,k )=S(2)|0,k)

172
i(1—|§12)km§;o Tim T2 ")
(2.17)
where
S(z)=exp(zK . —z*K _) (2.18)

is the squeezing operator, z=—60/2e¢ ¢, and

£=—tanh(6/2)e’®. The angles 6 and ¢ parametrize the
SU(1,1) group manifold and have ranges 0=6< oo,
0<¢ =27 The complex number &, for which 0= |&| <1,
parametrizes the phase space as do the angles 6 and ¢.
The latter parametrize a hyperboloid which is the analog
of the Bloch sphere of SU(2). The parameter £ is essen-
tially a projection of the hyperbolic surface onto the inte-
rior of the unit circle on the complex plane.?* We shall
use the parameter £ as our representation of the phase
space.

Finally let us review the squeezing properties of such
states. Defining the quadrature operators of the field in
the usual way

X,=1a+a"), X2=2ii(a —a') (2.19)
where [X,;,X,]=i/2, we obtain
((AX Y ((AX,)P) = L. (2.20)

Squeezing exists if either variance is less than 1. For the
SU(1,1) CS it is clear that (X, ) =0, i=1,2, so that

((AX,,)?)=(K,tK,) . 2.21)
If =1, we obtain, for k =1,
((Ax))?)y=1e? ((AX,?)=1le7?. (2.22)

Evidently, there is squeezing in X, along with enhanced
fluctuations in X, for 6>0. This case corresponds to
£>0, i.e., a positive real number. We assume in what fol-
lows that all initial states are squeezed in this manner.

We now derive the classical map for the Hamiltonian
of Eq. (2.7). It will be assumed that an initial SU(1,1) CS
|&o) (the k=1 is henceforth suppressed) is propagated
without dispersion which is, of course, not true for the
fully quantum-mechanical evolution. We first apply the
pulse evolution operator U, in Eq. (2.9) on [§,). U,
however, is a group transformation operator. Using the
2 X2 non-Hermitian realization of the algebra,?’ its repre-

sentation is found to be

_ —aiyk, coshy —isinhy
Upaxn=€@x2 = |isinhy  coshy
a B
= B o (2.23)

Now for any group transformation operator T (G) corre-
sponding to the 2 X2 group element

G=|,s x| lal>=lbP’=1, (2.24)
the action of T(G) on an SU(1,1) CS |£") is
T(G)|§)=e'"|E") (2.25)
where
E=R(E=-2Tb G rkarga*+b*E).  (2.26)

b*E+a*
(The unimodular Mobius transformation R maps the unit
circle |£|=1 and its interior |£| <1 one to one and onto
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themselves, respectively.) Thus, for our case,

U, =e'™|gy) .27
where
o SRR T | R [T 02w
Apparently

0p=2tanh " !(| &) (2.29)

which will be needed for the “free” evolution part. The
phase ®,=2k arg(a™*+b*£) is not used in what follows.

Between the pulses we simply solve the classical equa-
tions of motion for &, given by?®

§={§7} , (2.30)
where the Poisson bracket is
_lel2y2
{A,Blz(l ‘ i ) [_Qi_ai_a_Agl_? (2_31)

2ik | 98 dg*  og* 3¢

and #=(&k|H|£ k). Between pulses H;=2AK . K _,
and

H=2A(K (K _)=2X(K ){K_) (2.32)

where the mean-field approximation?’ has been made.
Using the fact that

— * .
(K, )=(K_)*= 2KE" _ _k sinhe®

(2.33)
(1—1€®

the equations of motion may be integrated over the inter-
val from t=0 to ¢t =T to obtain

§(T)=¢pe =£,
where

Qo=4Ak coshfy=A coshé,

T (2.34)

and 6 is determined from Eq. (2.29). |&,) is then sub-
jected to the next pulse, and so on, to obtain the strobo-
scopic map relating &£, _; to &,:

coshy§, —isinhy | —q |7
n i sinhy§, _,+coshy e ’ 2.35)
where
Q, _=Acosh@;, _, (2.36)
and
0 _,=2 tanh™! f:ls:;fg”_‘ 1: CS:;E: 2.37)

An alternate way of producing a classical map involves
the use of the Heisenberg equations to obtain the evolu-
tion of the operators K, and K. Actually we use the
Heisenberg equation between pulses and the operator U
over the pulses. When ¢#nT [hence §,(¢)=0],
Heisenberg’s equation for K _ is

i#K _=[K_,H;1=(4AK)K _=Q(K,)K_  (2.38)
where (K ,)=4AK,. The equation for K, is
i#K =Ky, H;]=0, (2.39)

which implies that K, is constant between pulses. The
solution to Eq. (2.38) is therefore

K_(t))=exp[ —iQ(Ky)t,—t)]K _(¢]), (2.40)

Ko(t,)=Ky(ty) . (2.41)
Of course, from (2.40), it also follows that

K (t,)=K  (t])exp[iQKy)t,—1,)] . (2.42)

Over the pulses the evolution of the operators K;
(i=0, %) is given by

g=u'
K,=UJK,U, (2.43)

where K; denotes the operator just prior to pulsing, and
K; just after pulsing. With U, given by Eq. (2.9) and with
the use of Baker-Hausdorff formulas we obtain

I?OzeziyK‘Koe —2iyK,

:Kocosh(27/)+§117(K+ — K _)sinh(2y) , (2.44)
K, =K, cosh’(y)—K _sinh®*(y )+iK,sinh(2y) , (2.45)
K_ =K _cosh¥(y)—K _sinh*(y)—iKysinh(2y) . (2.46)

If we denote the operators just prior to the nth pulse as
K (n) and Ky(n), then just after the nth pulse, from Egs.
(2.44-2.46), they are given by

K., (n)=K _, (n)cosh®(y)—K _(n)sinh?(y)

+iKy(n)sinh(2y) , (2.47)
K _(n)=K _(n)cosh*(y)—K,(n)sinh?(y)

—iKy(n)sinh(2y) , (2.48)
Ko(n)=K(n)cosh(2y)

+%[K+(n)——K_(n)]sinh(2y) . 49)

Over the “free” evolution time up to just before the
(n +1) pulse, from Egs. (2.40)-(2.42),

K (n+1)=K_ (nexp[iQKyn)T], (2.50)
K_(n+1)=exp[—iUKyn))TIK_(n), (2.51)
Ko(n+1)=Ky(n), (2.52)

where QUK ,(n))=4AKy(n). Thus Ky(n) and K . (n) are
related to Ky(n +1) and K, (n +1) by
K, (n+1)=[K_,(n)cosh’(y)—K _(n)sinh*(y)
+iKo(n)sinh(2y )lexp[4iy TKo(n +1)],
(2.53)
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K_(n+1)=exp[ —4iATKy(n +1)]
X[K _(n)cosh?(y)—K | (n)sinh*(y)

—iKy(n)sinh(2y)], (2.54)
and
Ky(n +1)=Ky(n)cosh(2y)
+%[K+(n)-K~(n)]sinh(2y). (2.55)

These equations define the quantum maps for the opera-
tors Ky and K.

To obtain classical maps, we define the scaled opera-
tors X, =K. /k, Xo=K,/k. With the assumption of
large k (the classical limit?’), the commutators of these
operators vanish, i.e.,

(X, X_ ]=%XO—>O , (2.56)
(X1, Xo]= i%xiao as k— oo . (2.57)
The Casimir operator becomes
C=K}—WK,K_+K K, )=k X}—X,X_).
(2.58)

Since the eigenvalue of C is k2 in the limit of large k, we
deduce that

X3—X,X_=1, (2.59)

which implies that the motion in X space is confined to a
unit hyperboloid. In the classical limit of large k, the
quantum map becomes

X, (n+1)=exp[4iATkXy(n +1)]

X[X 4 (n)cosh®(y)—X _(n)sinh?(y)
+iX,(n)sinh(27)] , (2.60)
X (n+1D)=X%(n+1), (2.61)
Xo(n +1)=Xy(n)cosh(2y)

+-217[X+(n>—x_<n)]sinh<zy). (2.62)

To get a picture of the map it is sufficient to project the
motion only onto the X,X, plane where X, =X, +iX,.
The connection to the previous formulation of the map is
easily made by setting X,=coshf, X, = —sinhfe*?,
Then

6=cosh 1(X,) ,
1 [ x4y —x_ ]

- (2.63)
i

=tan ! B E——
¢=tan X, +X_

Finally, we consider the full quantum-mechanical
motion. First note that in the basis |m,k ), the operators
K, and K _ have the actions

K. Imk)=[(m+1)m+2k)]"*m +1,k) , (2.64)
K_|mk)=[m(m+2k—1]1"2m—1,k) . (2.65)

Thus K . K _ is diagonal in this basis,
K. K_|mk)=m(m+2k—1)|mk) . (2.66)

Therefore the matrix elements of the evolution operator
are

Umn =<m,k‘ U[n,k > =e —2iAT[m(m +2k _l)kvl:,,),,(a,/g)
(2.67)
where

vk (a,B)=(m,kle " |nk) (2.68)

is a Bargmann function for the finite SU(1,1) transforma-
tion given by Eq. (2.23). These functions may be evalu-
ated in terms of hypergeometric functions as

VE (c,B)= A, (a*) " 12k —gryn—m
X, Fi(—m,1—m —2k,n —m +1;,—B*B) ,
m=n, (2.69)
VE (a,B)= A, ()" " =Ky "
X,Fi(—n,1—n =2k, 1+m —n;—B*B),
m2n, (2.70)

where

PR Cim +DC(m +2k) |
™~ T(1+m—n) | T(n+1T(n +2k)

(2.71)

and, from Eq. (2.23), a=coshy and 8= —i sinhy.

In closing this section we wish to mention that at first
glance, it might seem that the method we have used to
calculate the time evolution over the pulse is very
cumbersome and that one might just as well diagonalize
K, itself rather than the evolution operator. Such a pro-
cedure would be valid in the case of the kicked top where
the generators of SU(2) always have discrete spectra and
the Hilbert space is finite dimensional. However, for
SU(1,1), the operator K; cannot be diagonalized within a
Dt (k) representation. Rather, it has a continuous spec-
trum and in fact, physically corresponds to an inverted
oscillator. In terms of x and p,

K,=Lp*—x?. (2.72)

Because of this fact, there are significant differences be-
tween the present system under study and the problems
of the kicked top. Further consequences of this will be
discussed in the next section.

III. RESULTS

Before getting into the details of our results, we first
discuss some of the technicalities of our numerical com-
putations with particular regard to the truncation scheme
employed. As already pointed out, for SU(1,1) as op-
posed to SU(2), the relevant Hilbert spaces are infinite di-
mensional and therefore an appropriate truncation
scheme is required. In the |m,k ) basis, in which K is
diagonal, the matrix elements of the unitary time evolu-
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tion operator are known analytically and given by Eq.
(2.67).

An accurate computation of the hypergeometric func-
tions in Egs. (2.69) and (2.70) represents one of the first
difficult challenges encountered in the numerical work.
Even though these functions reduce to polynomials (with
terms alternating in sign), evaluation becomes difficult for
¥R 1 and m ~m’'Z70. The individual terms in the sum
become quite large for the diagonal elements and una-
voidable roundoff errors may dominate. In order to esti-
mate the error we have summed the terms in the polyno-
mial in both directions and compared the results. As a
further check, the polynomial was computed using the
symbolic manipulation program MAPLE (Ref. 28) which
supports floating point calculations to any specified num-
ber of digits. With these two checks we could control the
accuracy of the individual matrix elements for y <0.1
and with matrix dimension m ,, =200.

We now discuss the structure of the spectrum of U. It
is worthwhile to mention the special case of the evolution
operator when A=0 and the total dynamics is governed
by the generator K. As stated earlier, K| corresponds to
an inverted harmonic oscillator with no discrete spec-
trum. In this case, however, the classical and quantum
evolutions agree and it can be shown?! that the average
photon number increases rapidly with increasing time.
Consequently, the eigenmodes cannot be localized in a
discrete Fock state basis. Therefore it is clear that any
finite dimensional discrete basis approximation will fail
for this special case. However, for A0, the spectrum of
U is discrete. This can easily be understood as follows:
the terms K [ K _ correspond to an attractive nonlocal
anharmonic oscillator containing terms like x*. Clearly
as x — oo, these anharmonic terms will dominate over the
—x? of the inverted oscillator part. From a classical
point of view, the motion in phase space is restricted and
therefore we expect the spectrum to be discrete.

It is clear that the restriction to a finite number of basis
vectors is only appropriate for approximating those
eigenmodes which are appreciably excited by the initial
state and essentially localized within the truncated basis.
These localized eigenmodes can be easily identified via
the modulus of their corresponding eigenvalues. The
larger the overlap with the truncated discrete basis the
closer the eigenvalue is to be found near the unit circle.
For example, for ¥y =0.05, AT=5, and 200 basis states,
75% of the eigenvalues have modulus in the range [0.99,
1.0]. As an additional check the number of basis states
was doubled. Those eigenvalues with unit modulus near
the unit circle remained unchanged whereas the others
changed significantly.

Excited nonlocalized modes would lead to an artificial
damping in our model, which was carefully monitored by
checking the normalization of the state vector after each
iteration. For an initial state |£,k) with k=] and
|£] 0.9, the norm remained constant at unity to within
one part in 10°.

As an independent check of our truncation, the expec-
tation value of the Casimir operator C [Eq. (2.12)] was
computed as a function of time. Recall that C is a con-
stant of motion for our system, with k=1, (C)=— 1.

This value was obtained by retaining only the first 200
basis vectors for |£] <0.9 in the initial state.

Having discussed the computational technicalities we
now present the results, first focusing on the classical
map given by Egs. (2.35)-(2.37). At first sight, this map
may be considered as a composition of a nonlinear rota-
tion about the origin in the £ plane and a unimodular
Mobius transformation with constant coefficients. The
rotation is nonlinear because the angle (, ;T depends
on |£, _;|. (This transformation produces a shear in an
ensemble of initial points with differing |£| values. Re-
peated application would distribute the iterates over con-
centric circles.) However, the £ map in Eq. (2.35) is itself
a Mobius transformation of the form in Eq. (2.26) with
time- (n) dependent coefficients, viz.,

an‘lé‘n*lh*’bn—l

=R, (§,_))= (3.1)
S (-1 by & 1ta;
where
a,_|=e i ’IT/zcoshy ,
bn_1=—ie‘m” "IT/zsinhy . (3.2)

Mobius transformations were encountered in Ref. 21.
Note that in this case, when no anharmonicity is present,
i.e., A=0, then the transformations become time-
independent, i.e., a,=a,b,=b, and the dynamics be-
comes quite simple (see Ref. 21, Sec. III). The unimodu-
lar Mobius transformations are one-to-one maps of the
phase space, the Lobachevski plane |£| <1, onto itself.
They are area preserving (our system is Hamiltonian) in
the proper metric: the invariant measure is'’
2k—1  d%

™ (1—gPPP
which accounts for the term appearing in the Poisson
brackets of Eq. (2.31). In order to understand the dynam-
ics in the Lobachevski plane from a geometrical
viewpoint, consider the mapping for the classical quanti-
ties X; in Egs. (2.60)-(2.62). From Eq. (2.59), the vari-
ables X, X, and X, are constrained to move on a hyper-
boloid. The relations in Eq. (2.63) effectively project this
motion onto the interior of the unit circle of the & plane.
In the case A=0, i.e., no anharmonicity, the Mdbius
transformation may have a fixed point on the unit circle
|£|=1. On the hyperboloid, however, this fixed point
corresponds to infinity, and the values of X, X, and
X_ increase toward infinity with the restriction of Eq.
(2.59). The approach to a fixed point observed in the &
plane is thus seen to be an artifact of the geometry in-
volved in the projection. [The unimodular M&bius trans-
formations form a group of hyperbolic rotations which
map both halves of the cones

) (3.3)

X2—X?—X2=const>0 (3.4)
onto themselves. These cones are subspaces of a pseudo-
Euclidean space of signature (1,2). In our case, the con-
stant is 1. These rotations leave invariant the Euclidean
measure d X=dX,dX,dX,.]
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FIG. 1. Classical map for y=0.05, AT=5. One hundred
different initial points along the real axis have been chosen and
each point has been iterated 1200 times.

In Fig. 1, we plot the first 1200 iterations of the classi-
cal map for 100 different initial conditions taken along
the real line in the £ plane, with ¥ =0.05 and AT=5. A
mixture of regular and irregular motion is observed in
phase space. For an initial £ value close to the origin
(|€] $0.2), all iterates stay on a circle whose center corre-
sponds to a fixed point of the map. For |£|Z0.6 the
iterates almost uniformly fill up a broad circular strip.
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0 ‘ r r v
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FIG. 2. Initial-state population probability P (n) vs time n for
(@) |£/=0.2 and (b) |£]=0.9.

With increasing AT and v, the size of the domains of reg-
ular motion decreases.

We now turn to the quantum-mechanical manifesta-
tions of the regular and chaotic classical motions. The
following discussion is restricted to the case where the
corresponding classical motion is given in Fig. 1. That is,
we shall compare the quantum dynamics of states initial-
ly centered in either the regular or chaotic regions of the
corresponding classical motion.

As a first comparison we consider the dephasing of an
initial SU(1,1) CS. If the initial state (n=0) is
|$(n=0))=|&,k ), then after n pulses the state is

[9(n))=U"[y(0)) . (3.5)
The initial-state population probability is defined as
P(n)=[{y(0)[¢h(n))|*. (3.6)

This notion has previously been used in the comparison
of the quantum dynamics for Gaussian wave packets ini-
tially centered in regions of regular or chaotic motion in
phase space for systems such as the Hénon-Heiles Hamil-
tonian.?® There it was found that for wave packets ini-
tially centered in regular regions the initial-state popula-
tion probability showed regular quasiperiodic revivals
whereas for a wave packet centered in a chaotic region, a
rapid dephasing was observed. This dephasing of the
initial-state population probability is only one of the pro-
posed signals of quantum chaos. In our case the initial
wave packets are “squeezed” Gaussians.’® In Fig. 2 is
plotted P(n) versus n for two initial SU(1,1) CS’s, one
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= 0.04 =
0.02 =

0.00

(b)

4.0

0 20 40 60 80 100
n

FIG. 3. Average photon number (N (n)) vs time n for (a)
|€/=0.2 and (b) |£]=0.9.
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FIG. 4. Expectation value of K, vs time n for (a) |£]=0.2 and
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chosen from the regular region (|£/=0.2) and the other
from the chaotic region (|&|=0.9). It is quite clear from
the figure that the quantum evolutions are qualitatively
different in each case. In the regular case, essentially
only two eigenmodes of the unitary propagator are excit-
ed and carry most of the weight of the initial state. The
overlap varies only slightly from its initial value and we
observe regular and complete revivals of P(n). In the
chaotic case, a few more modes are excited and P (n) rap-
idly dephases almost to zero within one time step. How-
ever, since only a small number of available eigenmodes
were significantly excited the overlap does not stay at the
minimum value but rather oscillates erratically. We
speculate that for higher values of y, more eigenmodes
would be excited and that P (n) would be essentially zero
for n >0. However, as explained, high values of y are
not accessible in our numerical calculations.

In Fig. 3 is plotted the mean photon number (N (n))
as a function of time (n). For very low initial photon
number (regular regime) the oscillations in (N (n)) are
small and essentially quasiperiodic. Actually the pres-
ence of two frequencies is evident in Fig. 3(a). However,
for larger initial photon number (chaotic regime) the fluc-
tuations in (N (n)) are considerably greater, as seen in
Fig. 3(b), and the motion is quite erratic. Nevertheless,
the number of frequencies is apparently still quite small
which corresponds, as stated earlier, to the fact that few
eigenmodes of the U operator are excited for the chosen
values of ¥ and AT. It appears that quantum mechanics
greatly suppresses the classical chaotic motion in this
model. In Fig. 4 we see that the expectation value of the

(c)
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FIG. 5. (a) Q, vs time 7 for |£]|=0.2. (b) Q, vs time n for |£]|=0.2. (c) Q, vs time n for |£]=0.9. (d) Q, vs time n for |&/=0.9.
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operator K, displays behavior in time similar to that of N
(or Ky).

Since our initial states are taken to be squeezed states
(actually squeezed vacuum states), it is worthwhile to
study the time evolution of the squeezing property. In
order to characterize the squeezing it is convenient to
define the parameters®!

_ {(AX,,)?)—0.25
127 0.25

(3.7)

where ((AX,,)*) are given by Egs. (2.21). For Q,, in
the range —1=0Q,; , <0 squeezing exists. When & is ini-
tially real, squeezing occurs in the X, quadrature. In Fig.
5 are plotted Q, and Q, for |£|=0.2. Note that the ini-
tial squeezing is revoked from X,, accompanied by simul-
taneous squeezing in X;. The oscillations in the Q; are
essentially quasiperiodic with two evident frequencies.
However, for |£|=0.9, X, is initially highly squeezed but
the squeezing is revoked immediately after the first kick
and does not recur. Also no squeezing develops in the X,
quadrature.

In the preceding quantum-mechanical calculations, the
time evolution has been characterized by the excitation of
only a very few eigenmodes of U by the initial SU(1,1)
CS. This feature was unchanged when the initial state
was taken to be a number state |m,k =§) with
2<m =50. As a further test for localized eigenmodes we
have analyzed the fluctuation properties of the quasiener-
gies ¢, of the propagator U defined as

Ule,)=e""|®,) (3.8)

where |®, ) denote the eigenvectors of U. The fluctua-
tions of the nearest-neighbor quasienergy spacings
s,=¢,+—¢, can be conveniently analyzed via the so-
called level statistics distribution function P(s). P(s)ds
denotes the probability of finding the nearest-neighbor ei-
genvalue in the interval [s,s +ds]. The quasienergy level
statistics has been established as a rather reliable tool to
evaluate the degree of localization of the eigenvectors
|®,) in their natural basis representation.’> The locali-
zation of eigenvectors is quite common in classically reg-
ular systems (for example, the kicked spinning top°) and
in some models also in the chaotic regime (e.g., the
kicked rotator®?). For our model, which is invariant un-
der time reversal,>? we would expect a spacing distribu-
tion approximately described by the Wigner function

P(s)z%se(*vms2 (3.9)

if the eigenmodes were delocalized and had an apprecia-
ble overlap with all the states in the |m,k ) basis. In Fig.
6 is plotted the calculated distribution of nearest-
neighbor quasienergies for our evolution operator U. For
comparison we have also plotted the Wigner and Poisson
[P(s)=e ~°] distributions. As expected we find numeri-
cally the Poisson distribution which corresponds to the

1.0

FIG. 6. The nearest-neighbor quasi-energy spacing histo-
gram for the evolution operator U with AT=5, y=0.05, and
200 basis states retained. The two curves correspond to Poisson
and Wigner distributions.

localization of the eigenmodes |<1>,, Y. In order to obtain
more reliable statistics we have discarded those few ei-
genvalues whose moduli are not close to unity and found
the distribution essentially unchanged. At this stage we
cannot exclude the possibility that the eigenmodes extend
further with increasing parameters y or A7T. By compar-
ison, the eigenmodes of the kicked rotator become more
extended with increasing perturbation.’3

IV. CONCLUSION

In summary we have presented a nonlinear quantum-
optical model whose classical counterpart can exhibit
chaotic as well as regular motion. The quantum signa-
tures of the classically regular and chaotic motion in the
initial-state population probability and in the time-
dependent expectation values are similar to those seen in
other quantum chaotic models although it must be said
that for the chaotic case, the signatures are not as distinct
here. On the other hand, it should be noted that it is
quite possible to produce some of these signatures of
quantum chaos even in models where there is not even
classically chaotic motion.22>3%35 We might expect the
quantum chaotic behavior of our SU(1,1) system to be-
come more apparent in the limit that the Bargmann in-
dex k becomes large. This limit has previously been
shown to be the classical limit of SU(1,1) Hamiltonian
systems.?”3® We stress, however, that only the values
k=1 (squeezed vacuum states) or k =3 (squeezed one-
photon states) are physically relevant to quantum optics.
Nevertheless, this point is worth investigating and we
hope to discuss it elsewhere.

A paper by Milburn®’ has recently appeared in which a
system similar to the one studied here was examined.
However, the initial states were taken to be ordinary
coherent states. Our paper may be considered as comple-
mentary to Ref. 37.
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