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The Schwinger variational principle is combined with the Lanczos algorithm. It is shown that
the straightforward approach where the Lanczos basis is generated by V —VG0 V is not very useful.
The difficulties arise because of the unboundedness of the Schwinger operator V —VG0 V for un-

bound potentials (such as, e.g., the Yukawa potential). A modification of the Schwinger operator is
presented that resolves the problem. This approach leads to a new Lanczos recursion for nonsym-
metric (and non-Hermitian) operators yielding nonorthogonal basis functions. The resulting ap-
proach is shown to be equivalent to the continued-fraction method of Horacek and Sasakawa. To
illuminate the particular properties of the Schwinger-Lanczos basis we have applied it as well to
other variational principles like the C functional, the Newton variational principle, and the Kohn
variational principle. To treat the multichannel problem we have adopted a modified band-Lanczos
algorithm. This allows for a more efficient computation of the off-diagonal T-matrix elements than
previous approaches.

I. INTRODUCTION

The Schwinger variational principle (SVP) for com-
puting T-matrix elements has found widespread applica-
tion in particular when nonlocal interactions are present,
as, e.g. , in the field of electron-molecule scattering.
The computations are usually performed with linear vari-
ational parameters only, i.e., by introducing some basis
set. Obviously the choice of this basis set is crucial and it
seems very natural to combine the SVP with the Lanczos
algorithm because one expects the Lanczos vectors to
yield an optimal basis set. It is the main purpose of this
paper to investigate if and in what sense the Lanczos vec-
tors provide an optimal basis set for the SVP. The com-
bination of the SVP with the Lanczos algorithm is not
npw; it has been studied recently by Duneczky and
Wyatt. However, their approach is different from ours
because they have adopted the more complicated
biorthogonal Lanczos algorithm.

The present paper is organized as follows. In Sec. II
we shall give a brief review on the Lanczos algorithm. In
particular we investigate the convergence properties of
the Lanczos algorithm when it is applied to compute the
expectation value of an operator inverse. In Sec. III we
combine the SVP and the Lanczos algorithm, and in Sec.
IV we compare the Schwinger-Lanczos approach with
the method of continued fractions, recently put forward
by Hora, cek and Sasakawa. ' In Sec. V we adopt the

Schwinger-Lanczos basis set to evaluate the T matrix (or
the K matrix) of other variational principles like the C
functional, the Newton variational principle, and the
Kohn variational principle. In Sec. VI we introduce a
band-Lanczos algorithm to treat the multichannel case,
and in Sec. VII we finally conclude our investigation.

(fig)= Jf(r)g(r)« (2.1)

(i.e., without complex conjugation) rather than the Her-
mitian one. This choice ensures that the matrix represen-
tation of a symmetric operator is complex symmetric.
When 3 is Hermitian we use, of course, the usual Hermi-
tian scalar product; i.e., the symmetry properties of 2
determine the choice of the scalar product.

If the operator inverse A ' cannot be obtained analyt-
ically, one is forced to approximate 2 ' by the inverse of
some matrix representation of the operator A. We thus
approximate the expectation value (tel A 'lP) by

II. A BRIEF REVIEW ON THE LANCZOS METHOD

We want to apply the Lanczos algorithm in order
to compute the expectation value of an operator inverse,
i.e., (Pl A ' P). Here A shall be a Hermitian or a sym-
metric operator. We call an operator symmetric if its
coordinate representation is symmetric. When 3 is sym-
metric (but non-Hermitian) we have to use the symmetric
scalar product
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lx, &=le&&@le&-'"

The Lanczos recursion then reads

P;IX;+1&=~IX;&—a;IX;& —P; 1IX; 1&,

(2.3)

(2.4)

where, by definition, po=o. More explicitly, the recur-
sion is performed as

I, &
= ~lx, &

—p, , lx, , &,

a, =&x, lr, &,

Is, &
= Ir; &

—a; lx; &,

p, =(., l.,
&'~'

fx;, &=p, 'Is; & .

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

(Note that, if the Lanczos vectors are not needed for fur-
ther computations, the recursion can be coded such that
one needs to keep only two vectors in the fast memory. )

The Lanczos vectors are orthogonal and they tridiagonal-
ize the operator A, i.e.,

N
'l0&= g &Wlx;&(&x;l&lx, &) '&x, lp&,

i j =1

where ((X;IAIXJ )) ' is a shorthand notation for the
(i,j)th matrix element of the inverse of the matrix repre-
sentation of A. The choice of the basis set I IX; ) I is obvi-
ously crucial for the accuracy of this approximation.

The Lanczos algorithm provides us with a basis set
which depends on the operator 2 as well as on the func-
tion P. As shown below the Lanczos basis is an optimal
basis set for solving our problem (compare also to Ref.
10). The first Lanczos vector, which is called the starting
vector, is chosen to be just the normalized vector IP),
1.e.,

Next we define the finite rank operator AN by

~ = y lx, &&x, l~lx, &&x, l

ij =1
N= X lx, »„&x,l. (2.10)

This Lanczos approximation to the full operator A has
the following remarkable properties

~"IX,)=~"IX,) forO&k&N —1,
&xil &@xi&

= &x1l & "Ixi &

(2.11)

for 0 & k & 2N —1 (N odd),

for 0&k &2N —2 (N even) . (2.12)

'lp& = &pl&&(L3 (2.13)

Note that the Lanczos vectors are not needed. The (1,1)
element of the inverse of a tridiagonal matrix can be ex-
pressed as a continued fraction. In our case we have

(2.14)

Hence the 2N —2 first moments of the operator 3 with
respect to the starting vector IX1) are exact within the
Lanczos approximation. A (Hermitian or symmetric) ap-
proximation of rank % does not exist that provides more
exact powers or exact moments than does the Lanczos
approximation AN. In this sense the Lanczos basis is an
optimal basis set.

We return to our problems and find that the Lanczos
approximation to the desired expectation value can now
be written as

&x, lx, &=~„,

&x; ~lx; 1&=P; i

&x;I&lx;&=a;

&x; &Ix;+1&=p;,

(x, lwlx, )=0 if Ii —jl~2,
or in a more compact form

&x, l~lx, &=~„,

(2.6)

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.8)

~ ~ ~

3
PN —1

2

Hence the convergence properties of the Lanczos method
can be related to the convergence properties of a contin-
ued fraction. The convergence properties of the Lanczos
method are investigated in the Appendix. There we dis-
cuss which properties of the tridiagonal matirx B or the
operator 2 guarantee a convergence. The speed of con-
vergence is also discussed.

where B denotes the tridiagonal matrix where the a;
form the diagonal and the p; the subdiagonal. The ma-
trix B is real symmetric (complex symmetric) if A is Her-
mitian (complex symmetric). After N Lanczos recursions
we will arrive at the N XXmatrix

III. THE SCHWINGER-LANCZOS APPROACH

T =&yI vI [I (v vG, V)I ] 'I'vip—&,
-

(3.1)

The T matrix determined by applying the SVP (Refs.
1 —3) may be written as

a, pi

a2

(2.9)

where P denotes the free wave, V the interaction poten-
tial, Go the free Green's function, and I' is a projector on
some finite-dimensional subspace spanned by the basis set
I IX; ) I. The inversion of the operator P( V —VGOV)P is
accomplished by the inversion of the matrix
(X;IV—VGO VIX~. ). The SVP provides the exact T ma-
trix if the exact scattered wave 4=P+ Go V% is in the
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space spanned by the basis set, i.e., if P+=V.
We now turn to the question of how to choose the basis

set I ly; & I. This choice is obviously crucial for the accu-
racy of T in Eq. (3.1). As outlined above, a convenient
choice is provided by the Lanczos basis. Hence we define
the starting vector as

(3.10)

We now can choose D freely in order to make the opera-
tor DAD most suitable for the Lanczos method. The
operator D AD must be bounded so that all its moments
exist and its eigenvalues should be clustered in the way
outlined in the Appendix. We will choose

2 =V —VG0V. (3.3)

(3.2)

and generate the other vectors lyz&, ly3&, . . . by the
Lanczos recursion (2.4) and (2.5) setting

V
—1/2

in the following and arrive at

DAD =1—V' G V'

(3.11)

(3.12)

P(r) =k 'sinkr,

Go(r, r')= —2k 'sinkr(exp(ikr) ),

(3.5)

(3.6)

where r & and r & denote the lesser and the greater of r
and r', respectively. If one now assumes that the poten-
tial V has a Coulomb singularity at r =0, one finds that
even the first moment

(3.7)

does not exist. More generally, the Lanczos method for
V —VG0V works only if the potential is finite every-
where. But even when V is finite we do not expect this
Lanczos method to be particularly useful. A physical in-
terpretation of the method may help to understand this.
The Lanczos vectors y &, j= 1, . . . , N, obviously span
the same space as the vectors ( V —VGo V)~ '

Vlf &.

Hence in this Schwinger-Lanczos method one implicitly
approximates the exact wave function by

l%& = g c (V VGoV) Vly&, (3.8)

with variational constants c . This obviously is an ill-
behaved expansion.

In order to overcome all these problems we recall that
we want to compute the expectation value & y, l

A

Introducing some symmetric operator D we may formally
write

Since G0 and A are non-Hermitian but symmetric opera-
tors (in coordinate space), we adopt the symmetric scalar
product (2.1) throughout the rest of the paper. Finally,
after % Lanczos iterations we arrive at the following ap-
proximation for the T matrix:

(3.4)

where, as before, (Bjv ')» may be expressed as a contin-
ued fraction.

To continue our investigation we explicitly discuss
specific forms for P and Go. We turn to the simplest
case, s-wave scattering. Thus

For a wide class of potentials (the so-called Rollnik
class" ) the operator V'~ Go V'~ is known to be a
Hilbert-Schmidt operator, ' i.e.,

V1/2G V1/2 I I
r 2dr d

When we assume Eq. (3.6) for Go and further assume for
simplicity that the potential V is local and that it obeys
for some e) 0 the conditions

lV(r)l ~c onst Xr +' as r~O,
lV(r)l ~c osntXr ' as r~~,

(3.13a)

(3.13b)

we can easily show that V' G0 V' is a Hilbert-Schmidt
operator. More generally, the condition

(3.13c)

(3.14)

We prefer to use V' G0V' as the Lanczos operator
rather than 1 —V' G0V' . This choice for the Lanczos
operator obviously does not change the Lanczos vectors.
Hence we set

A=V' G V'
0 (3.15)

in the following and perform the Lanczos recursion as
outlined in Eqs. (2.4) —(2.9) where, of course, the ly; & are
to be replaced by the

l f; &. The resulting T matrix now
reads

1 —o. —
1

2
1 —a—

2 ~ ~ ~
CA 3

(3.16)

on the (radial) nonlocal potential V(r, r') ensures that
V' G0 V' is a Hilbert-Schmidt operator. Hence, with
the choice Eq. (3.11) for the operator D we have reached
our goal. For a wide class of potentials all moments of
D AD exist. Furthermore, the operator D AD has precise-
ly the form which was found in the Appendix to be op-
timal for the Lanczos method.

Returning to the Lanczos algorithm, we now define the
starting vector by

with

(3.9) The appearance of the operator V' within the Lanc-
zos recursion is obviously very inconvenient. However,
this operator can be eliminated by introducing a new
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nonorthogonal basis set the vectors of which are defined
as

(3.17)

and in particular

(3.18)

Since the I f; & are orthonormal and tridiagonalize
V' Go V'~, one finds that the lg, & diagonalize V and tri-
diagonalize VGO V, i.e.,

(g, I vlg, & =~„,
&g, I VG. Vlg, , & =r', ,

&g, lVG, Vlg &=-, ,

(g; VG Vlg, +i& =/3;,

&g;IVG, Vlg, &=0 for li —jl —2 .

(3.19)

(3.20a)

(3.20b)

(3.20c)

(3.20cl)

I;&=GoVg;&

n, =&,
I vl, &'",

lg;+i&=P, 'ls;& .

(3.22a)

(3.22b)

(3.22c)

(3.22cl)

(3.22e)

Note that the inconvenient operator V' has disap-
peared from all the working equations. Equations (3.21)
and (3.22) can be interpreted as a generalized Lanczos al-
gorithm for nonsymmetric operators. The vectors lg; &

generated by this generalized Lanczos algorithm are
nonorthonormal and Eqs. (3.22b) and (3.22d) differ from
Eqs. (2.5b) and (2.5d).

We want to emphasize that the generalized Lanczos al-
gorithm is introduced for numerical convenience only.
The generalized Lanczos algorithm subject to the opera-
tor Go V and the (normal) Lanczos algorithm subject to
the operator V' Go V' yield exactly the same tridiago-
nal matrix B. In particular, the expression for the T ma-
trix Eq. (3.16) remains valid as well as our considerations
on the convergence of the Lanczos method. It is, howev-
er, convenient to reconsider the physical argument given
above lcf. Eq. (3.8)] for the new basis set t lg; &]. The ex-
act wave function 4 & is now expanded in the functions
lg &, which in turn span the same space as (GO V)i

Hence the SVP approximates %' by
N

Ie& = g cj(G, V)J-'Iy&, (3.23)
j=1

where the cj. are variational parameters. The approxima-
tion (3.23) can be interpreted as a combination of pertur-
bative and variational methods, which is known to work

From Eqs. (2.4) and (3.17) it now immediately follows
that

P;+ilg;+i& =Govlg, &
—~;lg; &

—Il;-ilg;-i &

or explicitly

very well even in the case of strong potentials. '

The generalized Lanczos algorithm may have a much
broader range of applications then just the SVP. Assume
that one wants to diagonalize the non-Hermitian (non-
symmetric) operator A. We first seek for a Hermitian
(symmetric) operator S such that

(3.24)

holds, i.e., SA is Hermitian (symmetric). Recall that 3
is defined such that (Pl A%'&=( 2 "P 4& holds for all
I%' & and l(t & out of the domain of A. Hence the meaning
of A depends on the particular scalar product chosen
(Hermitian or symmetric). From Eq. (3.24) it follows im-
mediately that the operator C

C =S'"~S-'" (3.25)

is also Hermitian (symmetric). The above equation is a
similarity transformation and, as is well known, the
operators 3 and C thus have identical eigenvalues.
Furthermore, 5 ' times an eigenvector of C gives a
(right-hand side) eigenvector of A. To compute the spec-
trum of the operator 3 one may apply the Lanczos algo-
rithm to the Hermitian (symmetric) operator C. The key
point now is that the complicated operator C does not ap-
pear in the working equations when the generalized
Lanczos algorithm is adopted lsee Eqs. (3.21) and (3.22)
and replace GOV by 3 and V by S]. But there still
remains an unresolved problem: How can one find an
operator S which satisfies Eq. (3.24)'? For the special case
that A is given as a product of two Hermitian (sym-
metric) operators, 2 = 3, .A 2, one finds that S = A 2 is a
solution to Eq. (3.24). However, it is not clear to us how
to find a solution to Eq. (3.24) in general.

IV. COMPARISON TO THE METHOD
OF CONTINUED FRACTIONS

Vo =0,
V(=V,

V, lu, & &u, I V,.

(4.1a)

(4.1b)

(4.1c)

and

lu, &=Iy&,

fu, , &=G, V, lu, & .

(4.2a)

(4.2b)

The authors finally arrived at the following continued
fraction for the T matrix:

Horacek and Sasakawa have recently derived an ex-
pression for the T matrix ' which, similar to the
Schwinger-Lanczos approach, expresses the T matrix as a
continued fraction. The so-called method of continued
fractions ' (MCFV) starts with introducing a family of
potentials and wave functions which are recursively
defined as
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&uilvilu, &'
(4.3)

In the following we shall show that the MCFV ap-
proach is formally equivalent to the Schwinger-Lanczos
method developed in the Sec. III, Eqs. (3.16)—(3.22). We
first note that

of

lu;, & =a;(p; lg;, &+a; Ig; &+p; Ig; & ) (4 12)

With the aid of Eq. (4.8) we arrive at

V~lu, ) =0 for 1&i &j—1 (4.4) G vlg; & =p, lg, , & +a;lg; & +p, , lg, , & , (4.13)

holds because of the definition (4.1c). This in turn allows
us to write

(u, , lv, , lu, )
Vlu;) = V;lu; &+ V;, lu,

yu; &IV; 1~u,-

(u, , lv, , u, )
+V; 2u; (u; pl v; flu; 2)

(4.5)

To prove the equivalence we first note that the two basis
sets I u; ) [ and I lg, ) [ are related by

V;lu;) =a; Vlg;),

where the constants a, are recursively defined as

a, =&u, lvlu, &'",

a;+, =a,p,

(4.6)

(4.7a)

(4.7b)

I" +i&=a Gpvlg &

and hence

(4.8)

(u, lv, lu, )=a, (g, lvlu, )

=a, a, i(g, I VGp Vlg i)
(4.9a)

We will finally show that the generalized Lanczos recur-
sion follows from the recursion (4.2b). Multiplying Eq.
(4.6) with Gp yields

which is the desired generalized Lanczos recursion (3.21).
Although the Schwinger-Lanczos method and the

MCFV approach are equivalent, they may behave
differently in a numerical implementation. We believe
that the Schwinger-Lanczos method shows a better nu-
merical performance, in particular (selective) reorthonor-
malization ' can there be easily incorporated if neces-
sary. Moreover, the Schwinger-Lanczos recursion itself
seems to be simpler than the MCFV recursion. However,
we have not conducted a careful numerical comparison of
the two methods.

V. OTHER VARIATIONAL PRINCIPLES

T= V+ VGV (5.1)

and

In this section we want to apply our Schwinger-
Lanczos basis j lg; ) ] to other variational principles such
as the C functional, ' the Newton variationa1 principle'
(NVP), and the Kohn variational principle' ' (KVP).
The former two variational principles are —similar to the
SVP—based on the Lippmann-Schwinger equation. The
KVP, on the other hand, is based on the Schrodinger
equation. The application of the KVP requires that one
is able to evaluate the matrix elements of the Hamiltoni-
an.

Let us first turn to the C functional. The T matrix and
the full Green's function may be written as

Similarly one obtains
G =Go+GoTGo (5.2)

&u, lv, lu, , ) =a, a,',
& u, I v, I u, +, &

=a,'+, ,

(u, I V, u, +k ) =0 if k )2 .

(4.9b)

(4.9c)

(4.9d)

Combining these two equations and replacing T on the
right-hand side by its SVP expression yields

T = V+ VG(i V+ VG(i V(V —VGpV) 'VG(i V . (5.3)
Using these equations as well as Eq. (4.7) one can easily
show that the two expressions for the T matrix [Eqs.
(3.16) and (4.3)] are identical. Moreover, it now follows
from Eqs. (4.5) and (4.9) that

vlu, , ) = v, , lu, , )+a, v, Iu, )+p,', v, , lu, , &

(4.10)

This becomes the C-functional expression, if the inversion
of the operator V —VGoV is performed within a basis
set. Using the Schwinger-Lanczos basis [cf. Eqs.
(3.14)—(3.22)], we obtain

T~ =
& &I VI& & [I+&x+&x(I &~) '&~ l i

i—
holds. Multiplying this equation with Go yields

Gp Vlu;+, &
= a;+,Gp Vlg;+i &+a;a;Gp Vlg; &

+a; ip,' iGpvlg; i& (4.11)

= TN (5.4)

Hence the C functional and the SVP yield exactly the
same result for the T matrix when the Schwinger-
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T= V+ VGOV(VGOV —VG0VGOV) 'VGOV (5.5)

by performing the inversion within a basis set. When ap-
plying our Lanczos-Schwinger basis we first note that

Lanczos basis is used. The superscripts C and S refer to
the C functional and the SVP, respectively.

The NVP is derived from the exact expression of the T
matrix

uj+, (r)= &r~G, Vj~uj &~ —2 exp(ikr)&u,
~
V ~u ) =0

[cf. Eq. (4.4)]. Remember that the functions ~u. ) and

~g ) are related to each other by a simple transformation
[see Eq. (4.12)]; they span exactly the same space. To
avoid the inconvenient normalization factors a, howev-
er, we prefer to introduce the functions ~uj ), which are
defined as

%+1
&g, I VG0 VGO Vlg, ) = g B,„B„,

k=1

/u, &=a, '[u, ),
uj. ) =aj ',

~

u. ) for j) 1 .

(5.10a)

(5.10b)

(BN + QNI N )ij (5.6)

holds for 1 ~i, j ~ jV. Here QN denotes a KXjV matrix,
the (jV, jV) element of which is unity and all other ele-
ments of which are zero. The NVP expression for the T
matrix now becomes

~uj+, ) =G, V~g, & (5.10c)

With these renormalized functions Eqs. (4.8) and (4.12)
simplify to

TN = &p Vlf) [1+BN(BN BN QN@—)
'—BN]„, (5.7a)

i.e., the T matrix of the NVP is given entirely in terms of
the elements of the Lanczos matrix 8. Developing the in-
verse with respect to 13N yields

lu, )=lg, ),
lu, +i & =Pjlgj+i &+~, lg, &+0, ilg, i &- —

=KB,klgk& .
k

(5.11a)

(5.11b)

TN = TN +a ( 1 BN) iN'pN—( 1 BN )N i'+ 0(p—N ) . (5.7b)

Hence the NVP result differs from the SVP result, but T&
is very close to TN+, . This follows from Eq. (A6a). Since
we now invert 1 —B rather than 8 itself, we have to re-
place in Eq. (A6a) ctN+, by 1 —aN+„which, in turn, is
close to 1. Hence TN TN+ i +0(—i3N )+0 (@ttN+ i )

This is a quite reasonable result because one implicitly
performs one extra iteration due to the operator
VGO VGO V when using the NVP.

Let us now turn to the KVP and begin with consider-
ing a particular variant of this variational principle,
namely the complex Kohn method. ' This method can
be derived from the exact equation

T= V+ VGV (5.8)

by approximating the full Green's function G by a finite
rank expression which is obtained by simply inverting
some matrix representation of E —H. Surprisingly, such
a brute-force approach to the full Green's function can be
shown' to be variational stable, provided the basis func-
tions satisfy certain (energy-dependent) boundary condi-
tions. The Schwinger-Lanczos functions ~g ) do not
satisfy the required boundary conditions. However, the
closely related functions ~u, ) defined in Sec. IV do so.
Assuming Eqs. (3.5) and (3.6), and using quantities
defined in Sec. IV, one finds

(a, —E)~u, ) =O (5.12)

and

(Ho —E)GO = —1

hold. Hence

(Ho —E)~u +, ) =(Ho E)Gov~g ) = —V—~gj )

(5.13)

(5.14)

and with the aid of Eq. (5.11) the following results are ob-
tained:

&u, ia, —Eiu, ) =O,

&u, ~a E~u &= ——5

&u, +~ H, E~u, ,+—)=—B,
Similarly

&u lvlu, &=1,

& u, ~ V~ uj+, &
=

& uj+, ( V(u, & =B„,

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

& u;+, ~
V~u +, ) =g B;kBk (5.20)

To evaluate of the matrix elements of the Hamiltonian
H we write H =Ho+ V and assume that

u, (r) =k 'sin(kr),

u 2 (r) ——a i exp( ikr),

(5.9a)

(5.9b)

(5.9c)

We now consider the basis I ~uj. ) ] with 1~j~N+ 1.
Because in the internal sum of Eq. (5.20) the term
k =X+ 1 may also contribute, we find, similar to above,

&ui+i~a —E~u, +i &
= (BN BN QN&N—);,

— —

1 ~i,j ~N . (5.21)

Equation (5.9c) follows because Within the complex-Kohn method' we now obtain
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N

TJv+( =a& (u& I vlu, ) —g &u, I vlu;+, &(&u;+, IH —Elu, +, &)-'&u, +& vlu, )

u ] [1+BE(BJv BQ Q+g' ) ~BQ ])) = T~ (5.22)

Hence the complex Kohn method' gives exactly the
same result as the NVP, provided one uses one
Schwinger-Lanczos basis function more in the KVP as
compared to the NVP.

The original version of the KVP (Refs. 16 and 17)
starts from a variationally stable expression for the
tangent of the phase shift, i.e., for the K matrix. This
variationally stable expression involves the Hamiltonian
H, but no Green's functions. We shall call this original
version of the KVP the real KVP because it uses only
real trial functions. The final working equation of the
real KVP is virtually identically to the first part of Eq.
(5.22) except for the fact that T should be replaced by

vr 'K a—nd that the functions lu, . ) should be real func-
tions subject to certain real boundary conditions.

To make contact with the real KVP we replace the free
Green's function Go by the principle value Green's func-
tion Go ',

G~& '(r, r') = —2k 'sinkr & coskr & (5.23)

and find that the recursion now yields real functions lg, ),
I u; ) or

I u; ). The matrix B now becomes real symmetric.
If we consistently replace Go by Go ' and T by —m 'K,
then virtually all equations of this paper remain un-
changed. In particular, we have

K N+N+1 +N ~
(5.24)

i.e., the K matrix of the KVP is identical to the K matrix
of the NVP (except for a different size of the Schwinger-
Lanczos basis). It is well known that the (real) KVP is

plagued by anomalies, i.e., by spurious singularities of the
K matrix. Using the Schwinger-Lanczos basis, however,
we find, that there are no anomalies because the NVP is
anomaly-free. Hence we arrive at the quite remarkable
result that the Schwinger-Lanczos basis leads to an
anomaly-free KVP even when using real functions. This
emphasizes again the unique features of the Schwinger-
Lanczos basis set. In the conventional application of the
KVP one has used basis functions which are energy in-
dependent except for the first two functions (which are
required to asymptotically behave like sinkr and coskr).
Within the Schwinger-Lanczos basis set, however, all
functions are naturally energy dependent. This leads to a
matrix representation of H —E, which is free of spurious
singularities.

VI. THE MULTICHANNEL PROBLEM

The computation of diagonal T-matrix elements is
sufficient for the study of the elastic scattering off spheri-
cal symmetric potentials. For most other problems, such
as, e.g. , the electron-molecule scattering problem, off-
diagonal T-matrix elements are needed. Our present ap-

proach can be fairly straightforwardly generalized to
evaluate off-diagonal T-matrix elements. We may write

& yf ITIC, ) = (nfl v( v —VGo v) 'vip, )

=2 &0'f I vlga &(I —B)~i'&el vl4; &

k, l

=& &pf vlg~ &(I —B)~('&p; vlf; &'" . (6.1)
k

Here lgf ) and IP, ) denote the final and initial free wave.
The Lanczos vectors Igz ) as well as the tridiagonal ma-
trix 8 are defined as above, where the initial free wave

lg, ) is adopted to determine the starting vector g, ) [cf.
Eq. (3.18)]. In a true multichannel case (i.e., a rearrange-
ment collision) one must replace the potential V and the
free Green's function Go by the appropriate channel po-
tential and channel Green's function, respectively. We
will ignore this subtlety and consider only one arrange-
ment channel as it is the case for, e.g. , electronically elas-
tic electron-molecule scattering.

The procedure of Eq. (6.1) has several shortcomings.
Most important is the asymmetric treatment with respect
to the initial and final state. As a consequence the T ma-
trix becomes asymmetric; symmetry is reached only when
the Lanczos algorithm is fully converged. The Lanczos
iterative scheme is now more complicated. The matrix
elements (pf I Vlgz ) have to be computed and stored
when generating the Schwinger-Lanczos vectors Ig&).
Furthermore, the whole first column of the matrix
(1—B) ' is now needed rather than only the (1,1) ele-
ment. Thus the T matrix can no longer be represented by
a simple continued fraction and our considerations on the
convergence of the Lanczos method (see Sec. II and the
Appendix) no longer apply. It has been shown else-
where' that the computation of the off-diagonal T-
matrix elements by Eq. (6.1) requires about twice as many
iterations as the computation of diagonal matrix elements
when the same degree of convergence is desired. Note,
finally, that the Lanczos procedure is to be performed
separately for each possible initial state. Each set of
Lanczos iterations yields one column of the T matrix.

There is more efficient way to tackle the multichannel
problem than the one offered by Eq. (6.1). One can com-
pute all desired matrix elements of the T matrix at once
by adopting the band-Lanczos algorithm. ' ' Let us
denote by I P, ), . . . , I P„) the states with respect to which
we want to know the T-matrix elements. These functions
may, e.g. , represent the free partial waves IE, l, m ) for
various angular momenta (l, m). The band- (or block-)
Lanczos algorithm takes all these n states into account
simultaneously because it employs a set of n starting vec-
tors which span the same space as the physical states

ly, ).
To arrive at an appropriate set of starting vectors,

which have to be orthonormal with respect to the poten-
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tial, we generalize the Gram-Schmidt orthogonalization
procedure simply by replacing there the scalar product
& I & by & I Vl &. Doing so one computes an upper tri-
angular matrix R and a set of starting vectors
Ig, &, . . . , Ig„& such that

and

I(b &=+ Ig;&R;, j=l, . . . , n
i=1

&g;lvlg, &=&;,, ~,j=l,

(6.2)

(6.3)

B,, =&g, IvG, vlg, &,

B; =B, ,

B, =0 if li —.jl on+1 .

(6.5a)

(6.5b)

(6.5c)

Hence the matrix B is a banded complex symmetric ma-
trix with n subdiagonals on each side of the diagonal.
The explicit working equations read in a computer adapt-
ed language

lr &:=G,vlg; &—
j=max(i —n, 1)

B;, Ig, & . (6.6a)

For j =i, . . . , i +n —1 do

B,, :=&rlvlg, &,

I
r &:= Ir &

—B;, Ig, &,

end do

B, , +„.——&rlvlr &'"

Ig;+. &:=Ir &B;,;+.

(6.6c)

(6.6d)

(6.6e)

Note that one needs to keep only the last 2n Lanczos vec-
tors and one scratch vector in the fast memory.

We now turn to the Schwinger expression for the T
matrix and adopt the band-Lanczos basis Ig; & to invert
the Schwinger operator V —VGo V. We find

T;, = & y; I
v( v vGo v) vip, &

=g &y, lvlg„&(&g„lv —VG, vlg, &)-'&g, lvly, &

k, l
n

R„;(1—B)kI'R(J .
k, 1=1

(6.7)

hold. The use of the Gram-Schmidt procedure is not cru-
cial; one may adopt any other orthogonalization pro-
cedure. It is only important that the starting vectors are
orthonormal with respect to the potential Icf. Eq. (6.3)]
and that they span the same space as the physical states

IPJ &, i.e., that Eq. (6.2) holds for some matrix R. Note
that Eqs. (6.2) and (6.3) are a generalization of Eq. (3.18)
to many dimensions.

Generalizing now the band-Lanczos recursion ' to
nonsymmetric operators and nonorthogonal states, simi-
lar to the way in which we have generalized above the
simple Lanczos recursion, we arrive at the recursion

i+n —1

(6.4)
j =max(i —n, 1)

where

Rather than to invert (1 —B) one may solve n sets of
linear equations

N j =1,
k=1

(6.8)

and find T, =+Rk, Xk . An alternative way is to evalu-
ate the inverse of the banded matrix 1 —B by a matrix
continued fraction, e.g. , like in Ref. 19. The use of Eq.
(6.7) has several advantages over the use of Eq. (6.1).
Equation (6.7) is faster convergent with respect to the
number of Lanczos iterations' and it treats diagonal and
off-diagonal T-matrix elements on the same footing. The
only disadvantage of the band-Lanczos method is its re-
quirement of a larger working space in the computer
memory.

VII. CONCLUSION

In this paper we have combined the Schwinger varia-
tional principle with the Lanczos algorithm. We have
given arguments that one should not use the Schwinger
operator V —VGO V as the Lanczos operator, but rather
1 —V' Go V' (or, equivalently, V' Go V' ). The in-
convenient operator V' can easily be removed from all
working equations. We have called the resulting ap-
proach the generalized Lanczos algorithm. The general-
ized Lanczos basis is nonorthogonal and it tridiagonalizes
the Schwinger operator V —VGO V. The combination of
the Schwinger variational principle with the Lanczos al-
gorithm has recently been investigated and applied by
Dunezky and Wyatt. These authors, however, have used
the more complicated biorthonormal Lanczos algorithm.
The need for the biorthogonal form arises quite naturally
because they used the nonsymmetric operator GOV to
derive the Lanczos recursion. In the present investiga-
tion we start from the symmetric operator V' Go V'
The usual Lanczos algorithm for this operator boils down
straighforwardly to a recursion involving the operator
GoV. Rather than keeping separately left- and right-
hand Lanczos vectors we use a single set of nonorthonor-
mal vectors. Hence the new method is numerically less
demanding compared to the one of Duneczky and Wyatt.

The Schwinger-Lanczos algorithm derived in this pa-
per could be shown to be equivalent to the very efficient
MCFV approach of Horacek and Sasakawa. ' Hence
the present investigation also provides a new and vivid in-
terpretation of the MCFV approach. We believe that the
use of the present approach rather than the MCFV is of
advantage numerically. However, no detailed compar-
ison on the numerical performance was performed.

We have further applied the Schwinger-Lanczos basis
to solve other variational principles such as the C func-
tional, the Newton variational principle, or the Kohn
variational principle. Within this basis set it was found
that the Schwinger variational principle and the C func-
tional give the same result for the T matrix. Within the
same basis set the result of the Kohn variational principle
(provided one uses one basis function more) is found to be
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identical to the one of the Newton variational principle.
This equivalence remains valid when turning from the T
matrix and complex basis functions to the K matrix and
real basis functions. Hence the (real) Kohn variational
principle, which is known to be plagued by anomalities,
turns out to be anomaly-free when the Schwinger-
Lanczos basis is used.

The generalization of the Schwinger-Lanczos approach
to the multichannel case leads quite naturally to the
adoption of a generalized band-Lanczos algorithm. This
provides a new result which is different from the mul-
tichannel MCFV treatment. Our findings on the perfor-
mance of the Schwinger-Lanczos basis when applied to
other variational principles (see Sec. V) carries over to the
multichannel case as well. The multichannel Kohn varia-
tional principle is thus anomaly-free when the
Schwinger —band-Lanczos basis is used.

Finally, two technical remarks are in order. First, one
may replace the free wave and the free Green's function
by a distorted wave and a distorted-wave Green's func-
tion. The potential V then denotes the residual in-
teraction. Such a modification will speed up the conver-
gence. Second, in an actual calculation one may wish to
replace the T matrix by the K matrix and the free Green's
function by the principle value Green's function, similar
to what we have done at the end of Sec. V. By doing so
all appearing quantities become real, which considerably
simplifies the numerical treatment. In our analytic inves-
tigations, however, we preferred to work with the T ma-
trix because the K matrix may be unbounded.
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IP& I' & c'la&a&+ 1 I (A7)

for all j and for some 0 & c & —,'. One can then show that

where QN denotes an N XN matrix, the matrix elements
of which are all vanishing except for the (N, N) element,
which is unity. Developing the right-hand side into a
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APPENDIX
hence

la, a2 . aNI(1 —4c )

N
7TJ

IdetBNI la, a2 . aNlg 1 —2ccos %+1

(A8)

In this appendix we investigate the convergence prop-
erties of the Lanczos algorithm used to compute the ex-
pectation value of an operator inverse, i.e., (Pl A 'IP).
We start our investigation by assuming that the infinite
tridiagonal Lanczos matrix B is known. It is then clear
(see Sec. II) that the method converges, if the continued
fraction

2d (8 1) & 1 c
c la, aNI 1 —4c

and finally

2

l(BN )„(8„')„—
1 —4c

N

(A9)

(A 10)

(8 ')ii=

p2
0!2

Q 4 ~ ~

3

(A 1) Hence for c & —,
' we have proved the convergence. It is

clear that the convergence is also guaranteed when the
relation (A7) holds for j)No only. The above equation
is easily generalized to

converges. Terminating this continued fraction after the
Mth term rather than after the Nth term (M )N) obvi-
ously has the effect of replacing aN in Eq. (2.14) by

I( BN )11 (8 )iil

P1P2 PNO —1

detBN
0

2laN Ic'
c2

1 —4c

N —N 0

+N+ 1

PM —1

2
(A2)

(Al 1)

Hence (BN ')» will be close to (BM')» if (BN ')» de-
pends only weakly on aN. A brief calculation yields

which holds when the conditions N )No and
Ip I

&c la.a +, I
for j)NO are satisfied.

We have shown that the Lanczos method converges if
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the ofF-diagonal matrix elements of the Lanczos matrix
are sufficiently small as compared to the diagonal ones.
However, more important is to relate the convergence
properties directly to the operator 2 because the Lanczos
matrix 8 is known only after the Lanczos recursions are
performed. The speed of convergence of the Lanczos
method has recently been investigated' by using Eqs.
(2.11) and (2.12). Generalizing this approach from ma-
trices to operators we introduce the quantity q defined by

estimate the speed of convergence. However, there is
another class of operators for which we can prove the
convergence. Assume that there is a constant A, WO such
that 3 —

A, 1 is a Hilbert-Schmidt operator, ' i.e., the
Hilbert-Schmidt norm

(A15)

is finite. Using the Lanczos basis to evaluate the trace we
arrive at

q =inf sup
l

(A12) (A16)

where the A, , denote the eigenvalues of the operator A.
(More precisely, they denote those eigenvalues, the eigen-
vectors of which have a nonvanishing overlap with the
vector fP). ) The quotient q has a simple geometrical
meaning. Suppose there is a circle in the complex plane
which encloses all the eigenvalues A, q denotes the ra-
dius of this circle divided by the distance of its center
from zero. One has to search for that circle which makes
q smallest. If q is smaller than unity, then the error of the
Lanczos method vanishes at least like q (Ref. 10), i.e.,

' —A~ 'l0 & I

~ const Xq" . (A13)

If 2 is a Hermitian, bounded, and definite operator, then
one can easily show' that

~max ~min

~max+ ~min
(A14)

holds, where A, ,„and k;„denote the smallest and larg-
est eigenvalue of 3, respectively. Hence we can conclude
that the Lanczos method converges for any Hermitian,
bounded, and definite operator. The convergence is the
faster, the smaller is the value of q. For more general
operators it is difficult to prove the convergence and to

i.e., P —+0 and a ~k as j~ ae, which, together with Eq.
(A 1 1), proves the convergence.

In closing this section we want to summarize our re-
sults. The Lanczos method converges faster the better
the eigenvalues of 3 are clustered around some common
nonzero value. The clustering is very pronounced if
3 —X1 is a Hilbert-Schmidt operator. In this case al-
most all eigenvalues of 3 lie in a circle of radius, say
fA, I3

f
centered at A, . The finite number No of eigenvalues

not belonging to this circle does not harm the conver-
gence. The convergence will be rapid, at least after we
have performed more than Xo iterations.

The Lanczos algorithm is known to be numerically un-
stable due to roundoff errors. In all our considerations
above we have ignored this fact because we have implicit-
ly assumed exact arithmetic. The Lanczos instability can
be cured by reorthogonalizing the Lanczos vectors,
which, however, is expensive computationally. For-
tunately it turns out that the Lanczos instabilities are ir-
relevant when computing the expectation value of an
operator inverse. ' The instability, however, slows
down the convergence because —due to the instability-
the Lanczos algorithm computes multiple copies of cer-
tain eigenvectors.
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