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To offset the defective behavior of the molecular method of atomic collisions at intermediate en-
ergies, we propose a method to approximate the probability flux towards continuum and discrete
states not included in the molecular basis. We check the degree of accuracy and limitations of the
method for a model case where transition probabilities can be calculated exactly. An application to
the benchmark case of He™ +H™ collisions is also presented, and yields complementary informa-

tion on the properties of this approach.

I. INTRODUCTION

Generalization of the molecular method of atomic col-
lisions with the inclusion of translation factors!™® per-
mits one to treat charge-exchange processes up to the en-
ergy region where their cross section is maximal. To
determine these factors, in previous works’ ™ 1? we mini-
mized norms that measure couplings with states that are
neglected in the molecular expansion, and our con-
clusions® 712 have been widely used for systems with one!®
and two'* active electrons. On the other hand, at higher
collision energies such that electronic and nuclear veloci-
ties are comparable, this approach often fails’*~15 to
reproduce the rapid fall of charge-exchange cross sections
beyond their maximum. Also, the large Euclidean and
weighted norms indicate that ionization channels must be
taken into account if one wishes to preserve a molecular
description of the collision process. In the present work
we propose a way to do so. A preliminary description of
our approach in the general context of discrete-
continuum transitions has been presented elsewhere.'®

The introduction of ionization channels in a close-
coupling expansion has been the object of several
works,'” ™1 and in particular of recent articles of Thor-
son and Bandarage'® and Liidde et al.?°"?2 The former
authors represented the molecular electronic continuum
by packet states explicitly constructed from exact contin-
uum ones. This yields an elegant and rigorous, though
computationally involved,'® theory to calculate excita-
tion, charge-exchange, and ionization cross sections. The
approach of Liidde, Ast, and Dreizler®® is simpler, and
has been applied in the framework of one-center?' and
two-center?? atomic expansions. These authors account
for the interaction between the states included in a close-
coupling expansion and those left out through Feshbach-
type?® optical potentials; then local approximations are
developed for the potential matrix elements.

In Sec. II we develop the ideas of the norm method’ so
as to approximate the probability flux toward (continuum
and discrete) states not included in the molecular basis.
Illustrations for a model Hamiltonian such that the exact
time evolution is known and for the benchmark case of
He' +H™ collisions provide complementary information
on the performance of our method, and are presented in
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Secs. III and 1V, respectively. Atomic units are used un-
less otherwise stated.

II. THEORY

In the framework of the impact parameter semiclassi-
cal model, we start from a molecular ansatz for the elec-
tronic wave function:

LS t
D= a prexp [—ifOEkdt'] . (1)
k=1

We define’ the projectors P onto the manifold spanned
by the wave functions included in (1), and Q onto its com-
plement:

K
P=73 lg {gil, Q=1—P. @)
k=1

In the close-coupling approach Eq. (1) is substituted in
the equation

iP%P@ZPHPd> , (3)
and the ensuing system of differential equations for the
expansion coefficients is solved for each nuclear trajecto-
ry. We can compare Eq. (3) with the exact equation,

9

15‘;‘1’:1‘1‘1’ , 4)
or
iP—a—P\I/=PHP\P+P H—i-a— ov (5a)
ot ot ’ a
.~ 0 _ .0
IQEQ‘I’—QHQ‘I/-I-Q H—lgt‘ PV . (5b)

The last term in (5b) yields a probability leakage from
P to Q space, which is not contemplated in (3). In turn,
the resulting Q population influences that of the P func-
tions through the last term in (5a). The operator
Q(H —id /dt )P is responsible for P— Q flux, i.e., it takes
the state vector out of P space if initially it belonged to it.
In our previous work’ ' we proposed to multiply the
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molecular wave functions by translation factors chosen so
as to minimize a measure of the P-Q coupling operator.
One such measure, which gauges the overall quality of
the P manifold, is provided by the Euclidean norm of the
couplings between P and Q functions:

21172

_ i
N= Q|H lat Py, , (6)

K
2
k=1

although in practice a more collision-specific criterion is
often preferable, and this is given by the weighted norm

K 5 21172
No=| S la,P Q(H—z;; P
k=1
K 172
= E|ak|2N]% N (7)
k=1

which also defines the partial norm N, for the kth molec-
ular state. It can be shown”? that N, >0 provides an
upper bound and an oscillation-averaged measure for the
deviation vector?* between exact and approximate wave
functions:

e=V—@ . (8)

When the nuclear velocity v is comparable to those of
the active electrons, one finds that N and N, are large,
which indicates that the P— Q probability flux cannot be
neglected. However, when the P manifold is adequately
chosen, it is reasonable to assume that we can approxi-
mate that missing flux through transitions to a small
number of “probability absorbers” belonging to Q space.
More specifically, we ascribe to any given P function ¢,
an absorber state @Y, such that, when added to the an-
satz (1), the new partial norm Ny is identically null along
all nuclear trajectories, that is, such that @{!’ absorbs all
direct probability leakage from ¢, toward Q space. We
notice that it is impossible, in general, to achieve N; =0
by multiplying ¢, by a translation factor. Addition of
these absorber states to the close-coupling basis may then
be considered as a “best augmentation” procedure that
selects, from Q space, those (nonadiabatic) functions that
are more closely coupled to the P-space ones.

To infer the form of @'’ let us assume that at t =t the
system is exactly described by ¢;. At t=t,+8¢, the ex-
act electronic wave function has evolved according to Eq.
(4), while the approximation (1) fulfills Eq. (3), and it can
be seen that the deviation vector is

e(1)=—i(81)Q H—i—aa7 Py 1)+ (51 . )

Hence, when transitions from ¢, to Q space just begin to
be important, the first term in (9) will be responsible for
them. We now show that this Q function

. 0
Q[H—t—(,; Py,
P = (10
3
HQ[H 2 |pg,
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is the probability absorber sought. From Eq. (10) we
have

_ . 0 <1>>
= —i— . 1
Nk (‘pk H lat P (11)

Addition of @{!’ to P space yields a new projector,
0'=0—le el 2
fulfilling, from Egs. (2) and (10),

H—i2

0 5 |ex=0. (13)

Hence, the new partial norm is Ny =0 for all trajectories,
as required.

Our proposal consists, therefore, in augmenting the
molecular close-coupling basis by a (selected) set of ab-
sorbers. By taking these Q-space representatives as those
functions that absorb all direct flux from P space one
seeks to improve the convergence properties of the
molecular expansion, and in particular to take into ac-
count the probability flux towards the ionization con-
tinua. This is obviously much simpler than augmenting
the basis with continuum functions, but the price one
pays for this simplicity is that, since absorbers are super-
positions of discrete and continuum wave functions, the
interpretation of their populations, e.g., as ionization
probabilities, is not straightforward, and requires empiri-
cal verification.

At this stage of our development, it may be of interest
to show that, from the formal point of view, the method
can be made, in principle, as exact as required with re-
gards to transition probabilities corresponding to P func-
tions. For this, we generalize the idea of probability ab-
sorbers. For any given P function ¢, we define a se-

quence {@{; n=0,1,...] starting from @ =¢,,
0{V=0:
‘pgcn):(Nl(cn))_lQl(cn) [H—'l% ¢(kn—1) , (14)
with
Qlin):Ql(cn—l)_|¢)(kn—1)>(¢)(kn—1)| (15)
and
N]((n)z} Q’((n) H—i% ¢>(kn_1) (16)
It can then be easily seen that, for n > 1,
_ . d
N’((n)=<(p$(n 1) H_IE (p(kn)> (17
and
(n—1) . 0 —
((pk H—tglj )(>-O (18)

if
(ol ™) = (@i ~Vlx) = (@i x) =0 (19)
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and Y=QYx. We thus obtain an extension of Egs. (11) and
(13), whereby each member of the @{" sequence is an ab-
sorber for the previous one, @{" ~!; this latter function is
only directly coupled to the former and (when n > 1) to
@\ ~%; and there exist no couplings to functions orthogo-
nal to the set {¢>§c");k=0,l, ...,K; n=0,1,...}. If at
t =t, the state vector can be represented by a linear com-
bination of ¢, (k=1,...,K), for t5t, it will stay im-
mersed in the space spanned by {@\"; k=1,...,K;
n=0,1,2,...}. It may be remarked that, just as for
atomic-orbital (AO), incremented AO (AO+), or triple-
center expansions, this basis is probably formally over-
complete. This often results in a faster convergence, but
we do not belabor this point since in actual calculations
we shall keep to small values of n in @{", and for the
present aim it is more practical to introduce a different
generalization in the theory.

The generalization stems from the fact that, to fulfill
the correct boundary conditions of the problem, transla-
tion factors are commonly introduced in the molecular
functions. To be definite, suppose we choose a basis set
{@r} of adiabatic wave functions multiplied by a com-
mon translation factor?> (CTF). Then the numerator in
Eq. (10) can be written as a sum of radial ¢{®’ (propor-
tional to v,), rotational @} (proportional to v,), and
O(v?) components, which unlike ¢!, transform like irre-
ducible representations of the C,, point group and have
couplings that are easily interpolated. In collisional
problems it is then useful to separately incorporate these
components as new terms in the basis.

Finally, it is often convenient to orthogonalize the re-
sulting set of Q functions. For this purpose, although P-
state populations are independent of the particular
method employed, to be able to give a physical interpre-
tation of the wave functions (as far as this is possible, as
mentioned above), we have chosen the Wannier?’-
Lowdin?’ orthogonalization procedure, which ensures a
maximum preservation of character.

III. MODEL CALCULATION

We now illustrate for a model case such that the transi-
tion probabilities as functions of time and trajectory can
be exactly evaluated, the accuracy and limitations of our
method to deal with a competition between bound-bound
and bound-continuum processes. The detailed informa-
tion thus obtained cannot be reached from benchmark
collisional calculations, for which exact time evolution is
not available, nor from the example of Ref. 16.

We have chosen as model P space a two-dimensional
manifold {@,,@,}. Q states are assumed to belong to the
continuum spectrum, and to be coupled to ¢,. To
achieve physically meaningful P-Q couplings we have
differentiated a fit of the sum of moduli of the radial cou-
plings (modified by the CTF of Ref. 28) S|(E;) between
the HeH?"' 2po orbital and the pseudostates of positive
energy E; (j=1,2,...,J) obtained in the calculations of
Refs. 8-10. For R=2.3 a.u. we compare in Fig. 1 the ac-
cumulated function S;(E;) and its smoothed version.
The values of iv, {@,| —id/dt|@g ) are displayed in Fig.
2, as a function of both E and R. The adiabatic energies
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FIG. 1. (— — —), sum S, of the moduli of the modified radi-

al coupling between the 2po orbital of HeH?>" and the pseudo-
states of positive energy calculated in Ref. 8, as a function of
this energy, and for an internuclear distance R=2.3 a.u.
( ), smoothing of this S; function.

E, , [Fig. 3(a)] and the P-P dynamical coupling [Fig. 3(b)]
were chosen so as to obtain sizable one-way transition
probabilities for v =1 a.u. The energies and couplings
corresponding to @\’ (=¢@!® for the present illustration),
calculated from exact sum-over-states expressions, are in-
cluded in Fig. 3(a); for the sake of conciseness their
analytical form is not given; it is available from the au-
thors upon request.

We present in Figs. 4(a) (v=1), 4(b) (v=1.5), 4(c)
(v =2), and 4(d) (v =3) exact and approximate transition
probabilities P, =|a,( » )| times the impact parameter b,
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FIG. 2. Model dynamical coupling iv,”! {¢,|H—id/3t|¢@y)
as a function of both energy E and internuclear distance calcu-
lated by differentiation of S of Fig. 1.
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FIG. 3. (a) Model energies as functions of the internuclear distance R for

(1) (2),

the function ¢j'’; —- —-—- , the function ¢;

0.5+

I
>
I
=

P2 (b) b(a.u)

e

w
T
~

-

0.2} / \

ol f \

P2(b) b(a.u.)o
N

e
=

00

, the two adiabatic wave functions @, ¢,; — — —
(b) Dynamical coupling iv,”'(@,|H—id/3t|p,).

2 4 6 R(a. u.) 8

0.30
“\ (b)
o, 0
/s N\
/ N,
\
0.20 i \
3 o
3 r ~. N\
ry / // h N\
) { AN
o iy NN
o= /) N\
U AN
/. // \\
/ o
0.0 I | 1 1
1 2 4
b(a.u.)
3 015 /./ - \'\(d)
! 7 . \'\
2 oal P "«
a /. RN
= S .
a /- L
005+ /. e ——— \\
0 - -~ Y
/ /// \\\'\:' >
0.0 Z - { 1 1 1
1 2
b(a.u)

FIG. 4. “Charge-exchange” transition probability P, times the impact parameter b as a function of b for different values of the im-

pact velocity: (a) v=1.0 a.u,; (b) v=1.5 a.u,;

(c) v=2.0 a.u;
— — —, two-state {@;,q,] result; — —. —., three-state {@;, @2, @'"} result;- - - -

(d) v=3.0 a.u.

, exact result obtained by solution of Eq. (20);

, four-state { @, @,,@\",@{?’} result.
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versus b. The corresponding ‘“charge-exchange” cross
sections are given in Fig. 5, together with the exact and
approximate “ionization” cross sections. For the approx-
imate calculations, we employed the program PAMPA?’ to
integrate, along each nuclear trajectory R=b+v?, the
systems of differential equations that result when solving
the impact-parameter equation in the representations
{PrP2)s (P1P2 @1}, and (@1, @re1", @P']. For the ex-
act calculations, we solved the set of integrodifferential
equations: :

da, t
i—gt—=a2<cp1 —ig; <p2>exp [—ifO(Ez—-El)dt’]
+deaE<<p1 _iE rpE>
X exp -—ifot(E—El)dt'] ,
ii:ti=al<¢t2 —-i—a—t— <p1>exp [—ifot(El—Ez)dt’] , (20)
id:tE =a,<<pE _iE <p1>exp —ifOI(El—E)dt']

using a Gauss-Laguerre quadrature for the energy, and a
Burlisch-Stoer? integration for the time.

Figure 4(a) shows that when the two-state approxima-
tion is adequate (v =1 a.u.), approximate and exact treat-
ments yield the same answer, as they should. For v=1.5
[Fig. 4(b)], the effect of P-Q couplings is sizable, and for
v =2 [Fig. 4(c)]*“ionization” (p;— @) dominates “‘charge
exchange” (@, —@,); in both cases addition of a single ra-
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FIG 5. “Charge-exchange” (CE) and ‘“‘ionization” cross sec-
tions as functions of the impact velocity. Same symbols as in
Fig. 4.
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dial derivative function @{!’ to the basis considerably im-

proves P,. Finally, for v =3 a.u. [Fig. 4(d)] the ‘““ioniza-
tion” cross section is an order of magnitude larger than
the “charge-exchange” one; then transitions to the con-
tinuum are so important that adding ¢{!’ to the basis
causes the method to “overshoot,” and even addition of
@2 is insufficient to significantly increase the accuracy of
the method.

We have plotted the behavior of the state population
la,(2)|? as a function of time—the “collision history” —
for an impact parameter of b =1 a.u., in Figs. 6(a)
(v=1), 6(b) v=1.5), 6(c) (v=2), and 6(d) (v =3). Transi-
tions from ¢, to ¢, occur with a large probability both
for the way-in (¢ <0) and for the way-out (¢ > 0) stages of
the collision, which is a reasonable situation at intermedi-
ate nuclear velocities; we notice that such a model is sen-
sitive to mechanisms that decrease the population of ei-
ther channel by even a small amount. Most importantly,
when agreement between exact and approximate results
holds (namely, when v <3 for P,), it does so along the
whole nuclear trajectory. We believe this excludes fortui-
tous agreement between exact and approximate probabili-
ties. In fact, as could be expected from Eq. (9), the error
in our approximate treatments is cumulative during the
collision, and can be traced to the substitution of a single
energy phase (or two phases when @{? is also included)
for the nondenumerable amount of them that appear in
Eq. (20). Finally, we notice from Fig. 6 that inclusion of
Q states in the basis always changes the population of ¢,
in the correct direction, and that v=3 a.u. is a
sufficiently high velocity that there begin to appear
Stuckelberg-type oscillations in |a1(t)|2 from couplings to
the continuum. Even though the magnitude of this en-
trance channel population is not well approximated at
that high energy by our treatment, it is noteworthy that it
does reproduce the oscillation effect.

IV. CHARGE EXCHANGE IN He* +H* COLLISIONS

As a second illustration, we have calculated the cross
sections for the reaction

He'(1s)+H'T—He?" +H(1s) , (21)

choosing as the basis of the P functions the set of HeH?™"
molecular orbitals (MO’s):

‘1so, 2so, 2pm, 3po, 3do ,

(22)
3dm, 4fo, 5go,and 4f T,

multiplied by the CTF of Errea, Méndez, and Riera?®
with the choice of parameters p,=0.44 and $=3.5. We
present in Fig. 7 the cross section obtained with this
molecular basis (22) and with the augmented one ob-
tained by adding to it the orthogonalized radial com-
ponents pi:

1sa®), 2p7'R) 4 7R and 5g0 R, (23)

These values are compared in Fig. 7 to accurate theoreti-



43 OFFSETTING THE DIFFICULTIES OF THE MOLECULAR MODEL OF ATOMIC. .. 3583

cal’®~3% data. We have checked that rotational ¢} and
O(v?) components, as well as radial derivatives of other
MO’s in (i), are not important for the energy range con-
sidered. In fact, the number and kind of Q functions to
be incorporated, as well as their properties, strongly de-
pend on the P basis included. For example, with a single
P function, 1sc'® tends to reproduce the 2po orbital
plus ionizing and other components; with the full basis
(22) the Q operator in (10) then projects out the 2po or-
bital from 1so'®, and singles out the other components;

1.0#

0.8

P(Z)

0.2

1 1 1 1 1 1 1
00 4 0 4 8

Z=vt(a.u)

0.8

o P(2)

AN

0.2+

0.0

similarly, 2po‘®) partly tends to reproduce 3do when
this MO is not included in the basis; 3do'® is close to
4fo; 4fo'® partly describes 5go, and so on. The ener-
gies and couplings corresponding to the adiabatic states
(i) are well known, and will not be presented; those for
the radial derivatives (ii) are displayed in Figs. 8 (ener-
gies) and 9 (¢, — @&’ couplings).

The P-Q couplings were evaluated by accurate sum-
over-pseudostates expressions as explained in Ref. 11.
On the other hand, since the accuracy of these expres-

1.01

0.8~

P(z)

0.4+

0.2+

0.0

0.6

P(Z)

0.2+

0.0

Z=vt(a.u.)

FIG. 6. Population of the adiabatic wave functions ¢,,¢, as a function of Z =ut, for a nuclear trajectory with impact parameter
b=1.0 a.u. and different values of the impact velocity: (a) v=1.0 a.u.; (b) v=1.5 a.u.; (c) v=2.0 a.u.; (d)v=3.0 a.u. Same symbols as in
Fig. 4.
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FIG. 7. Cross sections (107!® cm? for the
He'(1s)+H™'—He?" +H(1s) reaction, as a function of the pro-
ton energy (in keV). Present calculations: - - - ., ten molecular
orbital basis set of Eq. (22); , basis set augmented by add-
ing the four orbitals of Eq. (23). Other results: O, Winter, Hat-
ton, and Lane (Ref. 30); O, Kimura and Thorson (Ref. 31); X,
Winter (Refs. 36 and 38); +, Winter (Ref. 39); — — —, Fritsch
and Lin (Ref. 37); ¥, Reading, Ford, and Becker (Ref. 32); A,
A, Bransden, Noble, and Chandler (Ref. 35).
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FIG. 8. Expectation values of the electronic Hamiltonian for
the four radial components %’ of Eq. (23) as functions of the
internuclear distance.
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FIG. 10. Cross sections (1077 cm? for the

Het(1s)+H" —>He?"+H™' +e ™ reaction, as a function of the
center-of-mass energy (in keV). Present calculations:
Winter (Ref. 39); +, Winter (Refs. 36 and 38); O, Fritsch and
Lin (Ref. 37); ¥, Reading, Ford, and Becker (Ref. 32). Experi-
ment: § , Watts, Dunn, and Gilbody (Ref. 42); § , Angel
et al. (Ref. 40) as corrected in Ref. 42; ——, Peart, Rinn, and
Dolder (Ref. 41).
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sions for Q-Q couplings is difficult to ascertain and transi-
tion probabilities to derivative functions were seen to be
very small, we have neglected these couplings in the
present calculations. Numerical integration of the set of
differential equations for the expansion coefficients was
performed, as for the previous illustration, with the pro-
gram PAMPA,? modified so as to include the corrections
due to the translation factor.

The main purpose of this second illustration is to show
that our proposed method can be implemented, and is not
restricted to ‘“‘easy” examples such as those of Sec. III.
On the other hand, since the exact behavior of the elec-
tronic wave function is unknown, it provides less infor-
mation on the pointwise approximations obtained. It is
therefore encouraging that our results follow the same
trend as in the previous example. From Fig. 7 we see
that addition of the derivative functions (23) is able to im-
prove the behavior of the charge-exchange cross section
beyond its maximum; in this respect, it may be remarked
that addition of four adiabatic states to the basis does not
lead to a noticeable improvement of that curve. We no-
tice that the highest nuclear velocity considered in the
present work is superior to that of the electron in the ini-
tial He*(1s) orbital, so that ionization fully competes
with charge exchange at this velocity. Then, probability
flux towards Q space is no longer a small correction to
the molecular method and 14-term treatment begins to
break down. In Fig. 10 we show that our calculated cross
section for exit through the derivative functions closely

agrees with theoretical®>*¢~3° and experimental**™*? re-
sults for the ionization process:
He*(1s)+H" >He " +H +e ™ . (24)

Nevertheless, since those functions have a component of
higher-lying bound states as well as continuum ones, and
transitions to the former states do not necessarily lead,
through ladder-type processes, to ionization, our results
in Fig. 10 must be interpreted as upper-bound estimates
to the ionization cross section. As mentioned in Sec. II
this ambiguity in the interpretation of probability ending
up in absorber states is intrinsic to our approach.

We finally plot, as for the previous example, in Figs.
11(a) (v =3'2) and 11(b) (v =5'"2?) charge-exchange tran-
sition probabilities calculated with the bases (22) and
(22)+(23), as functions of the impact parameter b, to-
gether with the corresponding ionization probability

V. CONCLUSION

The molecular model (generalized by the introduction
of translation factors) fails to describe charge-exchange
cross sections when couplings to an infinite number of
(Rydberg and) ionizing states, spanning what we have
called Q space, are effective. Accordingly, when ioniza-
tion cannot be neglected, a departure from this usual
molecular treatment is required but, when v is not too
high, it seems reasonable that the departure need not be a
drastic one. In this work we have proposed to approxi-
mate the probability flux towards Q space by adding to
the molecular expansion some representative (nonadia-
batic) wave functions, defined so as to absorb all direct
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FIG. 11. Transition probabilities P(b) times the impact pa-
rameter b: - . . ., charge-exchange results obtained with the
basis set of Eq. (22); , charge-exchange results obtained
with the basis set of Egs. (22) and (23); — — —, ionization re-
sults. (@) v=3"%2a.u., b)v=5"2a.u.




3586

probability leakage from states included in the molecular
expansion.

To check the degree of accuracy and limitations of the
method for a case where transition probabilities can be
calculated exactly, we have set up a model system, and
compared exact and approximate channel populations as
functions of time and impact parameter. For this model
system, the method was seen to perform as desired. Its
main limitation is that phase effects due to discrete-
continuum energy differences are difficult to reproduce by
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adding a few terms to the basis. An application to the
benchmark case of He"H™ collisions is also presented,
and yields encouraging results as to the implementation
of our new approach to atomic collision problems.
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