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Improved semiclassical Regge-pole description of rainbow scattering
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A phase-integral formula for calculating Regge-pole residues, which has recently been derived by
Froman and Froman [preceding paper, Phys. Rev. A 43, 3563 (1991)],promises to be a powerful
tool in the complex angular-momentuxn description of scattering. The present authors demonstrate
the power, simplicity, and usefulness of that formula already in the first-order approximation. Ap-
plication to proton-neon elastic scattering reveals that the new residue formula considerably im-
proves the existing semiclassical Regge-pole description of the prominent rainbow oscillations in the
differential cross section.

The well-known two-turning-point Wentzel-Kramers-
Brillouin (WKB) formulas for Regge-pole positions and
residues, which have been widely applied in theoretical
studies of atomic and molecular collisions (see Refs. 1, 2,
and references therein), date back more than 20 years to
the papers by Brander and by Dombey and Jones. The
latter authors successfully applied the WKB theory in the
study of the asymptotic distribution of Regge poles in
the complex angular-momentum plane for pure inverse-
power potentials. Like Brander, who used an asymptot-
ic theory due to Olver, Dombey and Jones correctly
showed that infinitely many Regge poles extend out to
infinity along almost vertical strings in the first and third
quadrants of the complex angular-momentum plane. The
WKB formulas give correct approximate results for
Regge-pole positions and residues in the large quantum
number limit.

A decade ago, one of the present authors showed that
the error in the Bohr-Sommerfeld-type quantization con-
dition for the Regge-pole positions vanishes in the large-
wave-number limit for any quantum number of the Regge
pole, i.e., even for low quantum numbers. It was not pos-
sible to show that the error in the formula for the Regge-
pole residues vanishes in the'large-wave-number limit; a
discussion is given in Ref. 7. In the context of elastic
atom-atom and atom-molecule scattering extensive nu-
merical data ' on the results of exact and WKB calcu-
lations clearly show that WKB residues have systemati-
cally a relative error of as much as 7—8 % for the leading
pole, i.e., the pole with quantum number zero. The error
gradually decreases as the quantum number becomes
larger. In contrast to this, the WKB pole positions are in
general very accurate.

It is highly desirable that accurate formulas for the
properties of the Regge poles be available. The leading
Regge pole, for example, plays a dominant role in the de-
tailed interpretation of elastic and inelastic Fraunhofer
diffraction in atomic and molecular collisions. '" ' A
new arbitrary-order phase-integral residue formula de-
rived by Froman and Froman' and numerically applied

by Amaha and Thylwe' has proved to be extremely ac-
curate. It differs from the previously derived arbitrary-
order phase-integral residue formula' by a factor, which
corrects for a possible proximity of the two relevant turn-
ing points. The analysis of Froman and Froman is uni-
formly valid with respect to the positions of the two
relevant complex turning points, whereas this is not the
case with the analysis in Ref. 16.

The purpose of the present paper is to demonstrate the
power, simplicity, and usefulness of the residue formula
already in the first-order approximation. The Bohr-
Sommerfeld quantization condition for the Regge pole l
is still valid in the uniform Froman-Froman theory, i.e.,
we have

y=(m+ —,'), m =-0, 1,2, . . . ,

where

y= —f Ik —U(r) (I+—,') —/r ]' dr .
7T

(2)

In (2), t, and t2 are the two relevant complex turning
points, k is the wave number, and U(r)=2@V(r)/fi,
where V(r) is the physical interaction potential. For the
corresponding Regge-pole residues the phase-integral for-
mula reads, in the first-order approximation,

r =f (m + —,') 2rri
1=1

exp(2iri& ) (3)

with
m +1/2

(2~)&/& m +—'

f (m + —,')= (4)

being the usual complex asymptotic WKB phase with

respect to the outer turning point t2, see Ref. 1 for de-
tails.

Equation (3) is recognized as the familiar residue for-
mula multiplied by f (m + —,'), a function only of the
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1.075 048
1.027 508
1.016 655
1.011920
1.009 276
1.007 590
1.006 422
1.005 565
1.004 910
1.004 393
1.003 974
1.003 628
1.003 338
1.003 090
1.002 877
1.002 691

TABLE I. Numerical values of the first-order correction fac-
tor f (m + —') for m =0, 1, . . . , 15.2

f(m+ —,')

pi-oton-neon p=( =0 952 atomic mass units) elastic scatter-
ing at 2.5-eV center-of-mass energy studied experimenta-
ly by onra .K d. ' A Lennard-Jones (8,4) potential was ta-
en o appt roximate the ion-atom interaction wit we
dept e=h =2.28 eV at an internuclear distance o
r;„=0.996 A. Table II reports the positions and resi-
dues of the 16 Regge poles used in the calculation. Apart
from the fact that we use the new first-order phase-
integral residue formula instead of the old one, our ca cu-
lation of the differential cross section follows the usual

tation o e sf the scattering amplitude is thus written in terms
of two subamplitudes, viz. , the background integra an
the resi ue senes.d ' The background integral is evaluated
by the saddle-point method, and at the end one replaces
the exact phase shift by its first-order phase-integral ap-

d L gendre function by its leading
asymptotic expression. In the residue series one inserts

Regge-pole quantum number m and not depending on
any details of the physical potential. For the leading

~ ~

for m =0, we haveRegge-pole residue, i.e., for
=(orle)' =1.075, which accounts for the previous-

ly observed relative error of 7 —8%. We alsoiso see that the
th semiclassical residue is essentia y associated

with its absolute value but not with its argument. is
fact has not been pointed out before in the literature.
The uniform residue formula explains the universal char-
acter of the error caused by the proximi y oit of the two
relevant turning points.

The residue formula is as simple to use for computa-
tions as the old semiclassical formula. In fact, the on yf (m +—') which fordifference is the correction factor ~

& m —, , w ic
the first-order approximation can be calculated for any
quantum num er m yb by a pocket calculator, once and for
all, and is given in Table I for m =0,=0 1 . . . 15. A com-
parison o resu s of its obtained by means of the uniform
arbitrary-order residue formula' and previous y pu-
lished numerical and nonuniform phase-integral results
are planned to be presented by Amaha and Thylwe. '

The first-order uniform results are found to agree wit in
an error of about 1'//g with the best available numerical
results.

r has suc-In recent applications the Regge-pole theory as suc-
cessfully described various interference phenomena
occurring in e as ic i1 t' d'fferential cross sections. However,
with the approximations used until now, the theory has
failed to reproduce the angular distribution on the bright
side of atomic and molecular scattering rainbows. '

Severe numerical difhculties are involved in summing up
the terms in the residue series. ' Typically, severa
R - le residues of widely varying magnitudes giveegge-po e
significant con ri u

''fi t t ibutions and delicate cancellations are
present. With the Froman-Froman residue formula the
situation has improved considerab y.

Using the residue formula in first-order approximation
to calculate the differential cross section, we consider t e
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FIG. 1. Di6'erential cross section for proto-roton-neon elastic
scattering at 2.5-eV center-of-mass energy. The se solid lines in (a)
and (b) represent the same accurate partiartial wave calculations.
The dashed lines represent semiclassical an i pim roved semiclas-
sical Regge-pole calculations in (a) and (b), respectively, with 16
poles consi ere in ed d

'
the residue sum. The dotted lines illustrate

semiclassica an impr
'

1
'

1 d
'

roved semiclassical calculations in a an
(b), respectively, with only the leading pole, i.e., I =0, con-
sidered in the residue sum.
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TABLE II. For the proton-neon elastic scattering at 2.5 eV, first-order Regge-pole positions are calculated from the Bohr-
Sommerfeld quantization condition (1), and first-order residues are calculated from the nonuniform formula obtained from (3) when

f (m + —) is replaced by unity, and from the uniform formula (3) with (4). The digits within parentheses indicate powers of 10.

Rel

Position

Iml Rer

Residue
(nonuniform)

Imr Rer

Residue
(uniform)

Imr

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

50.6796
49.8625
49.0942
48.3915
47.7678
47.2332
46.7937
46.4514
46.2045
46.0485
45.9764
45.9801
46.0507
46.1795
46.3582
46.5792

4.8528
6.6555
8.5509

10.5288
12.5760
14.6773
16.8161
18.9761
21.1413
23.2982
25.4350
27.5429
29.6153
31.6478
33.6380
35.5846

—6.1858(2)
—9.2766(3)

8.7491(4)
—1.9584(5)

4.0998(4}
2.7732(5)

—1.6727(5)
—1.1460(5)

3.9484(4)
3.9837(4)
1.0001(4)

—1.4808(3)
—2.6348(3)
—1.6451(3)
—8.3267(2)
—4.0007(2)

—2.0511(3)
2.0598(4)

—3.6246(4)
—9.5718(4)

3.1494(5)
—1.6504(5)
—1.8258(5)

1.0263(5)
7.2172(4)

—2.3926(3)
—1.5371(4)
—8.1246(3)
—2.6534(3)
—5.4716(2)

2.8087(1)
1.2132(2)

—6.6500(2)
—9.5317(3)

8.8949(4)
—1.9818(5)

4.1378(4}
2.7942(5)

—1.6835(5)
—1.1524(5)

3.9678(4)
4.0012(4)
1.0041(4)

—1.4862(3)
—2.6436(3)
—1.6502(3)
—8.3507(2)
—4.0115(2)

—2.2050(3)
2.1165{4)

—3.6850(4)
—9.6859(4)

3.1786{5)
—1.6629(5)
—1.8375(5)

1.0320(5}
7.2526(4)

—2.4031(3)
—1.5433(4)
—8.1541(3)
—2.6623(3)
—5.4885(2)

2.8168(1)
1.2165(2)

the first-order phase-integral pole positions and the
nonuniform [to obtain Fig. 1(a)] and uniform [to obtain
Fig. 1(b)] residues, respectively, and replaces a Legendre
function by its leading asymptotic expression.

In Fig. 1 we compare the proton-neon scattering
differential cross section, obtained by accurate partial
wave calculations, with (a) semiclassical and (b) improved
semiclassical Regge-pole results. The improved semiclas-
sical results with 16 poles included are in very good
agreement with the partial wave calculations at scattering
angles 0) 10 and reproduce the supernumerary rainbows
very well. However, the corresponding semiclassical cal-
culations are of the same accuracy only for 0) 80', and
therefore not even the primary rainbow is accurately de-

scribed.
In calculating differential cross sections, we have

demonstrated the significance of the uniform residue for-
mula already in the first-order approximation. The
Regge-pole treatment has thus obviously been much im-
proved with very little extra computational efforts.
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