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The complex Kohn variational method is employed in four-state close-coupling calculations to
generate integral and differential cross sections for low-energy electron-impact excitation of the
X 'X~ ~(b 'X„+, a 'Xg+, and c H„) transitions in H2. The integral cross sections for excitation of
the a 'Xg+ and c H„states from the ground state are found to be significantly different from earlier
two-state calculations. The a 'Xg+ cross sections are also larger than the most recent experimental
results. This discrepancy is traced to the behavior of the differential cross sections at scattering an-

gles near 0' and 180', where measurements have not been carried out. The differential cross sections
we find for H2 are strikingly similar to cross sections for analogous transitions in He. Previous
theoretical studies of these transitions in He have also shown the two-state approximation to be
inadequate.

I. INTRODUCTION

In several recent studies' we have implemented the
complex Kohn variational method in the investigation of
electron-molecule scattering. We presented applications
to elastic scattering of electrons from CH4 and to vibra-
tional excitation and electronic excitations in e -CHzO
collisions. Besides describing the physics of particular
systems, these earlier works and those of others raise
several issues about the convergence of electronic close-
coupling calculations for electron-molecule collisions in
general. As the incident energy in an electron-molecule
collision is increased toward the ionization energy, an
infinite number of channels opens up. Although in many
applications we are interested only in the cross sections
for excitation from the ground state to low-lying excited
states, these cross sections are needed for incident ener-
gies well above the excitation threshold so that higher ex-
cited states are energetically accessible. The question
naturally arises as to how many open channels above the
threshold of a given excited state must be included to
converge a close-coupling calculation to the point that
the cross section for its excitation from the ground state
is accurate to within a few percent. Also, one may ask
under what conditions states with energies below that of
the state in question may be neglected. It is noteworthy
that questions about the convergence of close-coupling
expansions in electron-atom scattering still pose formid-
able theoretical problems even for the simplest atomic
systems. This work is a preliminary investigation of some
of these issues for molecular targets using e -H2 inelastic
cross sections as test cases.

H2 has six excited states, three singlets and three trip-
lets, with excitation energies below 13.24 eV. These
states, with the exception of the b X„+ state, are diffuse

and may be considered the first members of Rydberg
series converging to the ground state of H2+. A simple
argument can be made that coupling between the singlet
and triplet manifolds might be expected to be weak, be-
cause it consists only of exchange forces. The coupling
among the states within each spin manifold should be
stronger, because longer-range couplings, such as dipole
coupling, can operate between states of the same spin.
Two-state calculations for the excitation of the b X„+

state of H2 have been carried out by several groups using
a variety of ab initio theoretical methods and are in
reasonably good accord with one another as well as with
available experimental data. ' Recently Lima et al.
extended these studies to look at excitation into the
a X+ and c H„states, also within the two-state close-
coupling model. However, the long-range dipole cou-
pling between the a and c states leads one to question the
validity of a two-state model for these excitation cross
sections. Indeed, early calculations' on excitation of the
n =2 states of helium, which is the atomic analog of H2,
showed that it is essential to include dipole coupling in
the excited-state manifold in order to achieve meaningful
excitation cross sections for excitation from the ground
state.

To test this notion we have performed calculations on
excitation at incident energies of up to 40 eV of the first
three triplet excited states of Hz (b X„+, a X+, and
c II„) by including all three excited states as well as the
ground state in a close-coupling expansion. Comparison
of results of our four-state calculations with two-state
close-coupling calculations, involving only the ground
and one excited state, reveals in some detail how coupling
among electronically excited states qualitatively changes
the simple two-channel picture. Comparison of the cal-
culated differential cross sections with experimental re-
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suits suggests the degree to which these calculations may
be converged.

For the calculations reported here, we restricted our-
selves to the use of simple target wave functions, each
consisting of a single configuration. The 8 'X„+ state
does not admit of such a simple description and was
omitted, as were the E,F 'X+ and C 'II„states. The pur-
pose of this paper is to examine the effects of long-range
coupling between the triplet excited states and to obtain
the cross sections for excitation of the a, b, and c states
using single configuration descriptions of those states.
Although a recent study has reported the effect of
excited-state coupling on the b X„+ state cross section, a
full set of excitation cross sections has not appeared pre-
viously. The calculations we present here are preparato-
ry to a larger study involving six or more excited states
that will include coupling to the singlet states involving
the same orbitals as the triplets we have already included.
In this study, we have concentrated on the intermediate
energy region above 13 eV where all four channels are
open. We do not report results below 13 eV here because
this region is expected to be dominated by resonance
structures that might be sensitive to the excited singlet
states we have neglected.

In Sec. II we summarize the complex Kohn variational
method as we have applied it in calculations on electron-
molecule collisions. Section III describes the details of
the calculation, and Sec. IV discusses our results and
compares them with the other theoretical calculations
and experiment.

II. COMPLEX KOHN VARIATIONAL METHOD
IN e -MOLECULE COLLISIONS

A complete description of the implementation of the
complex Kohn variational method to e -molecule col-
lisions is given elsewhere, ' and therefore only a brief
overview will be given here. We will employ atomic units
in the equations which follow. We choose our trial wave
function as

+I o( r I & r2 & 3 ) Q ~ (Xr( r I & r2 )+I I o( 3 ) )
r

+ g d„'e„(r„r2,r3),

where the first sum is only over open channels denoted by
I . In Eq. (1) the target-state wave functions are yr, and
the continuum functions are Fzz-, describing an electron

0
incident in channel I o and scattered into channel I . The
second sum may include either closed-channel
configurations and/or configurations to relax the ortho-
gonality constraints discussed below. The continuum
functions Ezz are further expanded as

0

+rr, «) = 2 I f1"(r+II,&,&rr,
l, m

+TI I,',gI"(r)]&I (r)lr

where I'I (r) is a spherical harmonic and gk(r) denotes a
square-integrable basis function, which, for this case, is a
linear combination of Cartesian Gaussians. The continu-
um functions appearing in the expansion are defined in
terms of regular, jI ( kr), and irregular, nI ( kr),
Ricatti —Bessel functions according to

h (r)jI(krr) sin(krr —lIrl2)

Qkr -- Qkr
ih (r)[j 1(krr)+inI(kr )c(r)]

exp[i (k„r—i ~/2)]
~ oo

fI (r)=

gI"(r) =

(3)

(4)

h(r)=(1 —e r")" .

To complete the definition of the trial wave function, the
channel momenta are given by

kr =+2(E Er) . —

In the trial wave function in Eq. (1) it is the T-matrix
elements that are the objects of this effort, since they are
the quantities from which both differential and integral
scattering cross sections are constructed. These T-matrix
elements are determined, using the Kohn principle, as the
stationary value of the functional

[T '] = T '—2f %'r(H, s. E)+r— (6)

rr0 rr0The parameters T&m&'m and ck
' are thus obtained from

0 0

a set of linear equations that result from the requirement
that the derivatives of Eq (6) wit.h respect to these pa-
rameters vanish. To cast the Kohn principle in this form,
Feshbach partitioning is employed to define the efFective
Hamiltonian in Eq. (6):

H II:HIP+(H E)Ig(E H)(2g(H E)gP

=&~p+ ~.pt .

The Q space consists of the functions 6„ in Eq. (1) and
thus the parameters d„' need not be computed explicitly.
The P space consists of the other terms in the trial wave
function in Eq. (1).

The coe%cients produced by the solution of the linear
equations are then substituted back into Eq. (6) to yield
the stationary value of the T matrix as

The functions c(r) and h (r) in Eq. (3) are cutoff func-
tions with c(r) chosen to regularize nI at r=O and h (r)
chosen to further exclude both the regular and irregular
functions from the region of the target molecule. The
cutofF functions are defined here to be

( 1
—ar)(21+1)

+ g ck %k(r),
k

(2)
[T]=—2(MOO M'OM 'M 0) . —

Here M; is a matrix whose elements are obtained from
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TABLE I. Exponents of Cartesian Gaussian basis in which the target states were expanded.

Hydrogen
Hydrogen
Center
Center

Center

s type
p type
s type
5' type

Exponents

48.4479, 7.283 46, 1.651 39, 0.462447, 0.145 885, 0.07
4.5, 1.5, 0.5, 0.25, 0.125, 0.03125
0.25, 0.083, 0.027, 0.0093
0.19, 0.0655, 0.0226, 0.00779

the operator (H, fr E). —The subscript 0 denotes the sub-
space spanned by the functions turf i YI I and the sub-
script q denotes the subspace spanned by the functions
IXrgl" Yim I and tgryk}. For examPle, a matrix element
of Moo is defined by

(~oo)l I, ,= f~(Xrfl ~l

X(H, fr E)A(Xr—f, 'Y, ) .

Since gI" is defined to correspond to outgoing boundary
conditions, the matrix M is complex symmetric and
generally has a nonsingular inverse when evaluated at
real energies. ' '

The effort required to evaluate the matrix elements ap-
pearing in Eq. (8) determines the viability of the complex
Kohn variational approach. In this regard several points
need to be mentioned. First, the choice of Cartesian
Gaussians as the basis in which both the target functions

gr and the square-integrable portion of the continuum
functions yak in Eqs. (1) and (2) are expanded, allows the
use of standard electronic-structure methodology in the
evaluation of the necessary bound-bound matrix ele-
ments. Second, orthogonalizing the continuum functions

fi and gi to the square-integrable part of the scattering
basis yk is allowed by a property of the Kohn principle
called "transfer in variance, " discussed in detail else-
where. ' ' In short, this property is that the T matrix
remains unchanged by any unitary transformation among
the basis functions. Additionally, by including "ortho-
gonality relaxing" configurations in the Q space, the con-
tinuum functions can also be held orthogonal to the or-
bitals used to describe the target states. For example, if
the continuum functions are orthogonalized to the 2o.

orbital of the ( 1erg 2o g ) target state, then the
configuration (lo.g2cr ) must be included in the Q space.
Without the inclusion of these "orthogonality relaxing"
configurations, the calculation would enforce an unphysi-
cal constraint on the total wave function. Third, the ma-

trix elements of the optical potential V,pt as well as the
exchange portions of the matrix elements in Eq. (7), are
evaluated by approximating these operators with separ-
able expansions. ' For example, the exchange portion
of Kpp is approximated by

Hpp'"= & lekvar &&gkXr~Hpp'"leak Xr & &gk Xr ~
.

r, r,
k, ko

(10)

In this approximation, matrix elements between bound
functions are not changed but any exchange matrix ele-
ment involving free functions vanishes by orthogonality.
Finally, the direct matrix elements of Kpp involving con-
tinuum functions are evaluated by using a three-
dimensional adaptive quadrature scheme discussed in de-
tail elsewhere.

III. COMPUTATIONAL PROCEDURES

A. Target states

The target states in Eq. (1) were obtained as follows.
The ground state, X 'X+(lcr ), wave function was calcu-
lated in the self-consistent-field (SCF) approximation in
the basis described in Table I. The excited states, b X„+

(log la „), a Xz+ (icrg2crz), and c II„(loller„), consist
of single-configuration wave functions in which the
molecular orbitals are expanded in the Gaussian basis de-
scribed in Table I. The excited orbitals (iver„, 2cr, and
lm„) were determined in the V& i potential of H2 with
its electron in the H2 1o.

~ orbital. All calculations were
performed at the experimental equilibrium internuclear
distance, 1.40ao. The SCF energy was —1.133 308 har-
trees and the V& &

calculations lead to vertical excitation
energies of 9.98, 12.03, and 12.31 eV for the b X„+,
a 2+, and c II„states, respectively. Accurate

TABLE II. Supplementary basis for expanding scattering functions in Eq. (2), augmenting basis in Table I.

Supplementary scattering
Center
Center
Center
Center
Hydrogen

Center

s type
p type
d„~, d„„and d~, type

d ~ type

Exponents

0.0031, 0.00103, 0.000344
0.002 69, 0.000926, 0.000 319
0.2, 0.08, 0.032, 0.0128
0.005 12, 0.002048, 0.000 8192
4e 5p 1 r 8p Oo072p 0+02 8 8& OeO 1 1 52& Oo004 608
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TABLE III. H2 bound and continuum basis for Xg+ and X„+ (see text for notation).

Target P space Q space

x 'r+
g

b 3X+

a 'X+
g

3
uy

c rr„

(loglo. gno. g) n =3, . . .
(lo.glo. unou) n =2, . . .
(log20gnog) n 3
(lo.

g lw„yn~„y) n =2, . . .
(10.gin„„nm.„„)n=2, . . .

m =0; 1=0,2,4,6
m =0; 1= 1,3,5,7
m =0; 1=0,2,4,6
m=+1; 1=1,3,5,7
m = —1; I= 1,3,5,7

(10g20 g)
(1o.

g 1o.„)
(log 20 g )

x 'r+
b 3X+

a 3r+
3c II„y

c n„

(lo.
g

lo.gnou) n =2, . . .
{10glo.„no.g) n =3, . . .
(lo.g2o. gno. „) n =2, . . .
{lcrg 1~„ynm.gy) n =1, . . .

2@+
u

m =0; I= 1,3,5,7
m=0; 1=0,2,4,6
m =0; I= 1,3,5,7
m = + 1; /=2, 4,6,8

m = —1; I=2,4,6,8

( 1o.
g

10.
u }

{lo.
g

lo.u2o g)
( lo.g2o.g

lo.„}

Target

TABLE IV. H2 bound and continuum basis for Hg and H „.
P space

x 'r+
g

b 3y+

a 3r+
g

3c H„y
rr„„

(log logn7T y ) n 2

(1o.
g

lo.„n~g„y) n =1, . . .

(log2ognmu x y) n 2

(log 17T ynog) n 3

(log 1& nog) n =3,

m = —1; I= 1,3,5,7
m = + 1; 1= 1,3,5,7
m = —1; I=2,4,6,8
m=+1; 1=2,4,6,8
m = —1; 1=1,3,5,7
m = + 1; 1= 1,3,5,7
m =0; 1=0,2,4,6
m =0; 1=0,2,4,6

( log 1&u x y )

( lo g2o.g lm„y )

(10.gin„y20. g)
(10'g 1& 20g)

x 'r+

b 3y+

a 3r+

c 'H„
c 'II„„

(log logn&g y ) n 1

(lo.glo. un~uxy) n =2, . . .

(lo.g2ogn~g y } n =1, . . .

{10g 1vr„y n o.„) n =2, . . .
(10.„1m „no.„) n =2, . . .

2
ITg x,y

m = —1; /=2, 4,6,8
m = + 1; 1=2,4,6,8
m = —1; /= 1,3,5,7
m = + 1; I= 1,3,5,7
m = —1; /=2, 4,6,8
m = + 1; I=2,4,5,8
m =0; /= 1,3,5,7
m =0; I= 1,3,5,7

{1o.
g 1o.„1 m.„}

{lo.
g

le.„y 10.„)
{10.gin„, lo.„)

Target

TABLE V. H2 bound and continuum basis for A«y and Au xy.

P space

2~g xy

Q space

x 'r+
g

b X„+

a 3X+
3e Huy

(log logI25gy)n 1

(lo. lo„n5ux ) n =1, . . .
'( log2ogn5gxy) n 1

(lo. 1m„„nmu ) n =2, . . .

m=+2;
m= +2'
m=+2;
m = —1'

m=+1;

1=2,4,6,8
I=3,5,7,9
I=2,4,6,8
I= 1,3,5,7
I= 1,3,5,7

(10. 1m„y lm„)

x 'x+
b 3m+

a 3r+
g

e H„y
c'n„„

(log logn5y)n 1

(log lo.„n5g„y} n =1, . . .
(10g20gn5y)n 1

(log lm„yn~g ) n =1, . . .
(10„lm„nm ) n =1, . . .

2~u xy

m=+2;
m= +2;
m=+2~
m = 1;
m=+1;

I=3,5,7,9
1=2,4,6,8
I=3,5,7,9
1=2,4,6,8
I=2,4,6,8
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values ' of these excitation energies are 10.62, 12.54,
and 12.93 eV.

B. Scattering basis, numerical details,
and relaxing the orthogonality constraints

OJ p
C3

3.0—

2.5—

2.0—
~ ~

The scattering trial wave function is determined by
specifying the square-integrable basis functions yk and
the continuum basis in Eq. (2). The square-integrable
basis functions were constructed in a basis formed by
augmenting the target basis with the "supplementary
functions" listed in Table IE.

The scattering continuum functions were chosen to be
those corresponding to the first four lm pairs that con-
tribute to the symmetry of the appropriate scattered
wave as indicated in Tables III—V. For example, in the
X symmetry component, the ground state X 'Xs+ (1crg)

is combined with the no. scattering orbitals, and the
continuum functions correspond to the lm pairs with
m=0 and 1=0,2,4,6. We chose the cutoff parameters,
which complete the definition of the continuum functions
f&" and g&" in Eqs. (2)—(4), to be a=1.0, ) =1.0, and
n=0. In Tables III—V the entries under the heading "Q
space" indicate orbital occupancies. All spin couplings
leading to an overall doublet are included.

As a test of the numerical parameters (grid, continuum
basis, etc. ) of our Kohn variational calculations, and to
assure ourselves that the final results do not depend on
our choice of Gaussian basis, we performed a series of
two-channel calculations. We first used a basis of Gauss-
ian functions identical to that employed by Lima et al.
For the b X„+ state we obtained results that agreed to
within 5% with both the linear algebraic and Kohn vari-
ational calculations of Schneider and Rescigno. ' We then
employed the larger basis set in Table II, and the results
of those calculations agreed (for all transitions from the
ground state) with the results from the smaller basis set
to within 3%. However, our results for the b and c states
at this level agreed to within 10% with those of Lima et
al., and only within 25% for the a state. We speculate
that the discrepancies between the present results and
those of Lima et al. are due to their method of comput-
ing free-free matrix elements of the Green's function in
their calculations. These authors have since developed a
more sophisticated method for calculating these matrix
elements.

IV. RESULTS AND DISCUSSION

As mentioned previously, our calculations differ from
the two-channel calculations of Lima et al. in that the
three excited states (b X„,a X+, and c II„are allowed
to couple among themselves as well as with the ground
state (X 'Xz+). One would expect this coupling to be
strong, since transitions between the a X+ and c II„
states as well as between the a X and b X„+ states are
dipole allowed. The effects of this coupling can be seen in
a comparison of the cross sections for the a X and

3 g
c II„channels in the two-channel calculations of Lima et
al. with those of the present calculations shown in Figs.
1 —3. Figure 1 shows that the integral cross section for

1.5—

1.0—

0.5—

0.0
10

(

15
I

20 25
E (eV)

I

30 35
I

40

FIG. 1. The integral cross section for the X'Xg+ to b'X„+
channel. The solid curve is the present results; dashed curve the
results of Lima et al. (Ref. 6); +: experimental results of Hall
and Andric, (Ref. 26); X: experimental results of Nishimura
and Danjo (Ref. 27); 0: experimental results of Khakoo et al.
(Ref. 28).

1.4—

1.2—

1.0—

0.8—

0.6—

0.4—

0.2—

0.0
I I 1 I I I I I I I

15.0 17.5 20.0 22.5 25, 0 27.5 30.0 32.5 35.0 37.5 40.0
E (eV)

FIG. 2. The integral cross section for the X 'Xg+ to a 'X~+

channel. The solid curve is the present results; dashed curve the
results of Lima et al. (Ref. 6); X, experimental results of
Khakoo and Trajmar (Ref. 29).

excitation from the ground state to the b X„+ state is rel-
atively unchanged by coupling of the excited states,
whereas the integral cross sections for the a X+ and
c II„channels in Figs. 2 and 3 show a significant change
from the two-channel results. We observe the apparent
transfer of Aux from the c II„ to the a 2+ channels in
the energy range from threshold to about 30 eV.

This effect is primarily a result of the differences in rel-
ative importance of the various symmetry contributions
to the total cross section between a two-channel calcula-
tion and a four-channel calculation. For example, in a
two-channel calculation including only the ground state
and the a X+ state, the contribution from the 6 sym-
metry is negligible, and the calculation is found to be con-
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3.5— 0.40—

3 0—
Al p

CJ

2.5—O

2.0—

1.5 —~

I

1.0—

'~

0.35—
O

0.30—

0.25—

(

0.20—

b
0.15-

~r

rrr

0.10— x
X X

0.0
15.0 17.5 20.0 22.5 25.0 27.5 30.0

E (eV)

I I I I

32.5 35.0 37.5 40.0
0.05

I

20
I

40
I

60
1 I I

80 100 120
Scattering Angle (deg)

I

140 160 180

FIG. 3. As in Fig. 2, for the X 'Xg to c H„channel. FIG. 5. As in Fig. 4, for the b X,+ state at 15 eV.

verged with respect to angular momentum contributions
with inclusion of only the four symmetry contributions
X+, X„+, H, and II„. However, upon coupling of the

three excited states, the contribution of the 6 symmetry
to the a Xz cross section becomes as important as the
X+ contribution. In the analogous He 2 S excitation

cross section, the L=2 total angular momentum contri-
bution is also large. We also find that the importance of
the H and II„symmetry contributions grow at the ex-
pense of the X„+ symmetry contribution in the four-
channel calculations.

Differential cross sections for excitation of the a, b, and
c states are compared with experiment in Figs. 4—9.
The increase in the relative importance of the 6 sym-
metry contribution has a marked effect on the differential
cross section for the excitation into the a X+ state, as is
shown in Fig. 7. Here we note the striking similarity be-
tween the differential cross sections for the excitation of
H2 from its ground state X 'X+ to the excited state a Xg
and for the excitation of He from its ground state 1 S to

the excited state 2 S (Ref. 30) (the united-atom limit of
Hz in a X+). We note here that the experimental He
points given for 0', 160, and 180' were obtained by extra-
polation. From these results it appears that coupling
between the excited states is necessary to describe the ap-
parent double minimum feature of the differential cross
section in the a X+ cross section. We find that the
discrepancy between the experimental values for the total
cross section for the excitation into the a X+ state and
our theoretical results is due to contributions from
scattering near 0' and 180' where no measurements were
made (see Fig. 6). Khakoo and Trajmar state that they
used available theoretical data "as a guide" in extrapolat-
ing their differentia cross sections into these regions for
the purpose of computing total cross sections. The fact
that our cross sections for the a X+ state are larger than
the earlier results of Lima et al. beyond 120, where no
direct measurements were made, may thus be partly re-
sponsible for the larger values of the total cross section
that we find. For scattering angles below 30', however,

po

0.5—

cU p
C3

0.4—

0.4—

CA

C:
0.3—

O
0.3—

U
0.2—

0.1—

x x x

O.2—
U

b
G

0. 1 —-

0.0
I

20
I

40
I

60
I I I

80 100 120
I I I

140 160 180
0.0

20
I

40
I

60
I I I I I I

80 100 120 140 160 180
Scattering Angle (deg) Scattering Angle (deg)

FIG. 4. DifFerential cross sections for excitation to the b 'X„+

state at 13 eV. The solid curve is the present results; dashed
curve the results of Lima et al. (Ref. 6); X: experimental re-
sults of Nishimura and Danjo (Ref. 27).

FIG. 6. DiA'erential cross sections for excitation to the a 'Xg
state at 20 eV. The solid curve is the present results; dashed
curve the results of Lima et al. (Ref. 6); X: experimental re-
sults of Khakoo and Tramjar (Ref. 29).
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0.14—

0.12—

V) 0.10—

0.08—

0.06—

b
0.04-

0.02—

'S ~ 2'S channel at 29 6eV'

~q~p+
I I I I I I I I

~ e~ eo,o~ q9

X

0. 1 6—

oJ p
0.14—

O
0.12—

0.10—

0.08—
U

0.06—b
0
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0,00
20
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I
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Scattering Angie (deg)

I I

140 160 180
0.00

I

20 40

x x x x x
I I

60 80 100 120
Scattering Angle (deg)

I I I

140 160 180

FIG. 7. As in Fig. 6, for the a Xg+ state at 30eV. (a) The in-
set contains a differential cross section for excitation of the He
2'S state (Ref. 30) adjusted to units of square Bohr for compar-
ison with present results. Note that the experimental He points
given for 0, 160, and 180 were obtained by Khakoo and Traj-
mar (Ref. 29) by extrapolating their experimental results.
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FIG. 8. As in Fig. 6, for the c 'II„state at 20 eV.

our a X+ cross sections are larger than both the experi-
mental results of Khakoo and Trajmar and the two-
state results of Lima et a/. As we stated previously, the
sharp forward and backward peaks in our a X+
differential cross section are caused by the strong contri-
bution from 6 symmetry, which only comes about from
the coupling between the a X+ and c II„states and is
hence not evident in the two-state results of Lima et al.
It is possible that more elaborate target wave functions
and the inclusion of more excited states would modify
these results to some extent. We are currently investigat-
ing these questions.

Comparison of the other excited states of H2 with their
analogous, united-atom limit He excited states is less
straightforward since the 2 P state of He has three com-
ponents x, y, and z. The z component maps onto the
b X„+ state of H2 and the x and y components map onto

FIG. 9. As in Fig. 6, for the e 'II„state at 30 eV.

the x and y components of the c II„state. However, the
differential cross sections for the excitation of the 2 P
state is fairly isotropic as are those of the H2 b and c
states.

Before concluding, we would like to comment on a
subtle aspect of these calculations. We eliminate the
orthogonality constraints on the scattering wave function
by the inclusion of appropriate Q space configurations.
However, these configurations can also couple to open
channels not explicitly included in the close-coupling ex-
pansion. For example, the configuration (lcr lo„j re-
laxes the constraint that the continuum function be or-
thogonal to the lo.„orbital used in the b X„+ target state.
However, this configuration, which couples both to the
b X„+ and B 'X„+ states, is precisely the one that would
be included in a calculation including the B 'X„+ state ex-
plicitly. Effects such as this have recently been discussed
by da Silva et ai. and by Branchett and Tennyson and
clearly point out a need for more extensive calculations in
which all of the low-lying electronic states are included.

In summary, the strong dipole coupling between the a,
b, and c states of H2 dictates that all of these states be in-
cluded in close-coupling electron-impact-excitation calcu-
lations. These calculations also have highlighted the
similarity between excitations in H2 and analogous pro-
cesses in He. In addition, the differential cross sections
obtained in our four-channel calculations were found to
be in good agreement with experiment in the angular re-
gions in which measurements have been made.
Based on the similarity of these calculations with earlier
experimental and theoretical studies of He and on the
comparison of our differential cross sections with avail-
able experimental results, we believe the integral cross
sections we obtain for electron-impact excitation from
the ground state of H2 to the a X~ and c II„states to be
the most reliable theoretical cross sections yet to appear.
We also wish to emphasize the importance of considering
dipole coupling among the excited states in the design of
electron-impact calculations in which a limited number
of open channels are included in the close-coupling ex-
pansion.
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