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Dissociative attachment of electrons to vibrationally excited H2
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Calculations are reported of the dissociative attachment of low-energy (less than 5 eV) electrons
to molecular hydrogen in the states v=0—9 and J=O. The dynamics are treated using resonant
scattering theory, fully including the nonlocal and energy-dependent shift and width operators. The
necessary coupling terms are taken from the ab initio calculations of fixed-8 electron-H~ scattering
performed by Miindel, Herman, and Domcke [Phys. Rev. A 32, 181 (1985)]. Good agreement with
the available experimental data of Schulz and Asundi [Phys. Rev. 158, 2 (1967)] and of Allan and
Wang [Phys. Rev. Lett. 41, 1791 (1978)] is achieved. Exploratory calculations were performed to in-
vestigate various local approximations to the nonlocal shift operator. The results suggest that the
optimum local approximation will, in general, differ from the curve obtained in a fixed-nuclei struc-
ture calculation.

I. INTRODUCTION

Dissociative attachment (DA) of electrons to molecular
hydrogen is a process of great fundamental and practical
interest. It is thought to be a primary source of the H
ions produced in hydrogen plasmas. The process may be
schematically written

e +Hz(U, j)~H +H,
where v and J denote the vibrational and rotational quan-
tum numbers of H2. Measurements for the absolute cross
section for attachment to the ground state (U =J=O)
were reported by Schulz and Asundi, ' and Allan and
Wong showed that the cross section increases dramati-
cally as the internal energy of H2 increases. They mea-
sured relative values of cr for v =0—4 (J=O), and found
that the cross section increased roughly an order of mag-
nitude for each increment of U.

This behavior was explained in 1978 by the analysis of
Wadehra and Bardsley based on the local complex po-
tential model. They used ab initio potential curves avail-
able at that time, and fit a parametrized coupling func-
tion to the experimental data. The same coupling func-
tion was then used to extend the calculations to other
values of (U, J), for which experimental data are not avail-
able.

Recent work in the calculation of potential curves and
coupling terms for electron-molecule scattering has pro-
vided ab initio information of much greater reliability
than was available ten years ago, and this information
can be used to reexamine the treatment of dissociative at-
tachment. For example, the recent calculations of Ber-
man, Miindel, and Domcke have provided the necessary
matrix elements for a treatment of dissociative attach-
ment of Hz that fully includes the energy-dependent and
nonlocal shift and width operators. These authors also
report calculations of DA of Hz for U =0—2 (J=O), but
the emphasis of their work was on vibrational excitation.
We have found that their work, with some additional

analysis, provides a basis for much broader calculations
of DA.

This paper is organized as follows. Section II presents
the theory, including a summary of the resonant scatter-
ing theory and a discussion of specific coupling terms.
Particular care is taken to handle the potentials and cou-
plings in the range of internuclear separations E. near
3.0ao where the X„+ resonant state H2 crosses the H2
potential curve. Section III presents and discusses the
numerical results, and Sec. IV contains concluding re-
marks.

II. THEORY

A. Summary of resonant scattering theory

The formal theory of DA is well developed, " and we
will present only the essential points to facilitate discus-
sion of our implementation. The following summary fol-
lows the notation of Wadehra's review' to a large extent.
We begin with the expression for the total wave function
of the electron-molecule system:

'P(q, R)=ted(q, R)F(R)+ g JdE f, (E)g,(q, R)y, (R) .

open

(2)

q refers collectively to the electron coordinates, and R is
the internuclear separation. It is assumed that the fixed-
R electron-molecule wave functions have been deter-
mined: (bd is a discrete state, corresponding to H2, and
g, is an electron-molecule-scattering wave function. The
vibrational wave functions of H2 are g, . The treatment
of DA requires the determination of F (R), the wave func-
tion describing the nuclear motion. By substituting Eq.
(2) into Schrodinger's equation and formally solving for
the expansion coefficients f„(R), one can derive the fol-
lowing equation for F(R):
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d —Vd(R)+E F(R)
2M dR'

The width (R) of the resonance at fixed R is given by

I (R) =2m'V(R, E„,(R))i . (13)

= V(R, E E,—)g, (R)+ 6 ——I F(R) .

The total energy E is the sum of the asymptotic (R ~ ~)
kinetic energy of the electron and the vibrational energy
of the molecule, which is E, for vibrational state v. The
initial vibrational state of H2 is vo. Vd(R) is defined as a
matrix element of the electronic Hamiltonian H, ~

vd(R) = (y, IH„y, ) . (4)

6 and I are nonlocal, energy-dependent operators whose
action on the function F (R) yields a function of R defined
as follows:

a ——'r F = jdR y q, (R)q, (R )
U

open

X A(R, R', E E,)—
——I (R,R', E E,)—

XF(R'),
where

A(R, R', e)=P f dE'

I (R,R', )e=2 vir(R, )Ev(R', )E,

v(R, E)=&y, IH„Iq, & . (8)

V„,(R)= VH (R)+E„,(R), (10)

where VH (R) is the ground-state H2 potential. V„,(R) is

shifted by an amount b, (R) from the zeroth-order discrete
state energy Vd(R). V„,(R), E„,(R), and I"(R) are relat-
ed as follows:

V„,(R ) = Vd(R)+ h(R),
where

6(R)=b,(R,R,E„,(R)) . (12)

Equation (3) is solved for the boundary conditions that
F(R)=0 for R=0, and F(R) is an outgoing wave asymp-
totically. The cross section for DA is then

Ak
cr DA

= lim
I
F(R ) IM a

This formulation can be related to the parameters
describing the fixed-R resonant scattering. At each R,
the electron-scattering cross section from the molecule
exhibits a resonance of width I (R) at an electron kinetic
energy E„,(R). It is convenient to define a potential
curve V„,(R) that combines the electron-scattering ener-

gy with the energy of the bound-state H2 target:

The distinction between V„,(R) and Vd(R) has not al-
ways been maintained. It is often assumed that the
operator b, on the right-hand side (rhs) of Eq. (3) can be
neglected, and that Vd(R) on the left-hand side (lhs) can
be replaced by V„,(R). This simplification corresponds
to approximating the dynamical operator 5 by h(R) in
Eq. (3), and then assuming the closure relation for the
sum over open vibrational states. In the present work,
we utilize recent calculations for V(R, e), which allows
us explicitly to include the nonlocal shift operator.

B. Electronic matrix elements

Calculations are available in the literature for nearly all
the necessary coupling terms for DA of H2. Excellent
potential curves for H2 have been obtained these were
used to calculate the vibrational wave functions
E„,(R) has been calculated by Berman, Miindel, and
Domcke. These authors showed that E„,(R) could be
unambiguously defined as the electron-scattering energy
at which the eigenphase sum equals m./2.

For the essential matrix element V(R, e), we have fit
the numerical values calculated by Mundel and co-
workers ' by a convenient analytic function. Although
Miindel, Herman, and Domcke reported a nine-
parameter analytic fit to their calculations, we have found
it preferable to repeat the fit using a different analytic
form. Some difhculty was encountered in trying to use
the functional form reported in Ref. 8. V(R, E) ap-
proaches a nonzero constant asymptotically (as R ~ ~).
Also, Table I in Ref. 8 contains typographical errors.

A good fit to the calculated points was obtained with
the following analytic function:

(8+8)
(14)

1/2 "/ o 2 k 3/2
(2k/~)'~ I e 'j, (kr)r dr ~

(k +ro )
(15)

Since E= —,'k, Eq. (15) is consistent with Eq. (14) and
yields the correct threshold behavior.

The most accurate fit could be achieved by letting both
A and B be functions of R in Eq. (14). However, consid-
erable simplification of the calculations results if B is a
constant. This point will be discussed below. Fortunate-
ly, we found that a reasonably accurate fit could still be
obtained if B is a constant. Figure 1 shows the results of
a least-squares fit to the calculations of Herman, Mundel,
and Domcke, using the analytic form of Eq. (14). The
constant B=7.15 eV was obtained in the fit. This ap-
proach also provides a natural way to extrapolate V(R, e)
to large values of R: one keeps the same B and adopts a
sensible asymptotic form for A (R). As shown in Fig. 2,

This formula is physically plausible. If we consider the
matrix element between a bound hydrogenic function and
an energy-normalized p-wave scattering function
(2k lw) ' j, ( kr), the result is'
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where P denotes the principal part integral.
Simplification follows by the change of variable to
x =c'/B and by the introduction of a factor of ~/16 for
future convenience:

o E b(R, R', E)= — A (R)A (R')&' 'p(E/B),
16

CC where

16 ~ x dxp(a)= P x+1'x —a
(18)

The function p (a) only needs to be evaluated in the inter-
val [—1,1]. The value of p elsewhere follows from the
symmetry relation

e (eV)
p ( I /a) = —ap (a), (19)

FIG. 1. Comparison of the numerical values
I (R,s)=2~~ V(R, s)~ calculated by Mundel and co-workers
with the analytic fit used in the present work.

the values of A (R) fit in the range 1.4ao & R (2. 75ao (for
which calculations were reported) suggest a linear extra-
polation out to the R for which A (R) is zero.

The advantage of the form Eq. (14) for V(R, E,) is two-
fold. First, the principal part integral in the definition of
the shift operator [Eq. (6)] can be done analytically.
Second, a separable form of the shift operator results,
permitting Eq. (3) to be solved by Bardsley's Green's-
function method. ' ' We consider the principal part in-
tegral in this section, and defer discussion of the method
of solution to Sec. II C.

We now consider

y
~ A (R) A (R')(E) dE'

o (E'+8) (s —E')

50

which is easily verified by writing the integral expression
Eq. (18) for p ( 1/a), and then changing variables to
y =1/x.

Figure 3 illustrates the values of p (a) calculated nu-
merically. The special values p (0)= 1, p ( 1)=0, and
dp/da(0) =5 follow from Eqs. (18) and (19).

We now illustrate the explicit values of the coupling
matrix elements used. Particular attention is paid to the
region of R near 3ao. For R ) 3ao, there exists a well-
defined bound-state H2 at an energy below the corre-
sponding Hz energy. For fixed R &3ao, there exists a
scattering resonance at an energy E„,(R))0. Formally,
one expects' the bound state at large R to join smoothly
with the resonance at small R; the potential curves adopt-
ed to treat DA must behave this way as well. Using the
values of E„,(R) calculated by Berman, Miindel, and
Domcke for R (3ao, and the potential curve calculated
by Senekowitsch et al. ' for R ) 3ao, we found indeed
that the H2 curve at large R could be smoothly joined
with the curve V„,(R) defined by Eq. (10). Another way
of stating this is that for R ) 3ao, E„,(R) is negative and
corresponds to a bound state.

We can now define the potential curve Vd(R) for all
values of R. Since E„,(R) has been shown to be a smooth

40

30—

Linear Least-squares
Fit to A(R)

1.5

20—
1.0

10—

0.5

R (units of ao)

FIG. 2. Determination of the least-squares fit to 2 (R). The
values of I (R, s) =2m~ V(R, s)

~
shown in Fig. 1 and calculated

in Ref. 8 can be inverted using Eq. (14) to give a value of A (R)
for each (R, c.) pair. The range of values of 2 thereby calculated
at each R is indicated by the boxes.

0
-1.0 -0.5 0.5 1.0

FIG. 3. Reduced function used to determine the principal
part integral defined by Eq. (18).
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FIG. 5. Calculated cross section for dissociative attachment
of electrons with H2+ (U, J=O) through the X„resonant state.
The full energy-dependent and nonlocal shift and width opera-
tors were used for these calculations.

The calculations can be compared with experimental
data, and with other calculations in the literature, in
several different ways. Figure 6 shows the cross section
for attachment by H2 (u=0) as a function of energy.
Several recent calculations are compared with the data of
Schulz and Asundi. ' The calculated peak values are very
similar. It is plausible that the calculations are all larger

than the experiment; Gauyacq has pointed out that con-
voluting his calculation with an electron-energy distribu-
tion whose full width at half maximum (FWHM) is 300
meV would decrease the calculations from 2.3 to
1.5X10 A . The primary difference between the calcu-
lations is the width of the threshold peak. The present
calculation agrees closely with that of Gauyacq, and ob-
tains a FWHM of about 340 meV; the calculated widths
of Wadehra and Bardsley and Miindel, Berman, and
Domcke are about 500 and 530 meV, respectively.
Schulz and Asundi' reported two sets of data taken under
different conditions. The set with the narrower width,
about 400 meV, is shown; the width of the other set was
about 600 meV. Further experimental data would be
desirable to differentiate between the various calculations.

Allan and Wong have measured the relative cross sec-
tions at threshold for v =0—4, and we compare our cal-
culations with their data in Fig. 7. The relative experi-
mental measurements have been converted to absolute
cross sections by using the measurements of Schulz and
Asundi for U=O (=1.6X 10 A ). Comparison with oth-
er calculations is also possible over the range v =0—9.
We note that Wadehra and Bardsley ' and Wadehra ' fit
their calculations to the experimental data, and used the
same coupling potentials and matrix elements for the cal-
culations at higher v. The present calculations are closest
to those of Miindel, Berman, and Domcke for v =0—2,
who also took into account the nonlocal, energy-
dependent shift and width operators. The present calcu-
lation rests on a fully numerical solution of the nuclear
wave equation [Eq. (21)], which was facilitated by a par-
ticular choice of the form of the electronic coupling ma-
trix element [Eq. (14)]. Miindel, Herman, and Domcke fit
Vd(R) with a Morse potential, and treated the shift and
width operators by an expansion in a Lanczos basis. We
believe that the present approach uses more accurate po-
tentials for the range of internuclear distance where the
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FIG. 6. Calculated cross section for dissociative attachment
of electrons with H& (v =0, J=O) is compared with several pre-
vious calculations and with the experimental data of Schulz and
Asundi.

FIG. 7. Peak cross section for dissociative attachment as a
function of the internal energy of the molecule. The scale on
the top of the figure shows the corresponding vibrational quan-
tum number for J=O.
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0.01
Noniocal Shift

Local Shift

that the local shift is the static shift that is obtained when
one solves the fixed nuclei scattering problem [Eq. (11 ].
We have tested these two forms of the local shift.

A similar argument can be used to reduce the nonlocal
width operator to a local form. In this case, however,
there is no clear way to eliminate the energy dependence
as there was for the shift. Substituting F«, (R for E —&,
in the expression for I (R,R, E —Z, ) in Eq. (5) is the most
straightforward approach. As expected, ' ' ' test calcula-
tions with such an energy-independent but nonlocal
width show spurious threshold behavior: the cross sec-
tion decreases discontinuously (generally less than 10%%uo)

as a new channel for vibrational excitation opens up. The
calculations also suggested that the sum over open vibra-
tional states was converged within 10—20 %.

We performed a series of calculations to test the vari-
ous approximations to the shift operator. In all cases the
nonlocal and energy-dependent width was preserved. We
found that the local shift defined by Eq. (31) was a
reasonably good approximation. Figure 9 compares the
results with the local shift and with the full shift opera-
tor. The largest error, about a factor of 2, occurs for
v=O, and the approximation rapdly converges for in-
creasing v. This behavior is completely consistent with
the arguments that led to the local approximation in the

and becomes progressively smaller for larger v. Hence
approximating p [(E E, )/B] b—y p(0) should become

~ ~ ~

progre 'vressively more accurate for larger initial v, and thrs
behavior is exhibited by Fig. 9.

We also performed calculations in which the local shift
was approxima eroximated by the fixed-R shift defined by Eq. 11 .
As before, the energy-dependent and nonlocal wid
operator was use .t as used. For v=O the cross sections were
about an order of magnitude too large, confirming t e o-
servation of Miindel, Berman, and Domcke that this
form of the local shift is a poor approximation. The cross
sections were generally less accurate than those obtained
with Eq. (31), although the results were within a few per-
cent for v =5—9.

The two local potentials corresponding to the alterna-
tive local shifts are compared in Fig. 10. V&„,t is ob-
tained by adding the local shift defined by Eq. 31 to Vd,
it led to reasonably accurate cross sections. V„, was
defined earlier in Eqs. (11) and (12) as the position of the
fixed-nuclei electron-scattering resonance. It is the curve
that would be obtained in a standard fixed-nuclei calcula-
tion and we have seen that it does not lead to accurate
cross sections.

These results demonstrate that part of the failure of the
LCP reported in Ref. 8 can be attributed specifically to
the choice of a local shift, and that the LCP can be im-
proved by alternative choices of b.(R). However, the op-
timum choice in the present case is not the fixed-nuc ei
form one might expect on physical grounds. These re-
sults provide a rationale for the success of Wadehra and
Bardsley's calculations based on the LCP model. Be-
cause of the accuracy of a local shift constructed by well-
defined mathematical approximations, it appears plausi-
ble that a fitting procedure would lead to a legitimate, ap-
proximate local shift and width. However, using ab initio
fixed-nuclei shifts and widths in a LCP model calculation
can lead to serious errors.

CD

Sx 10&z0
UJ
CO

2.5 3.0 3.5 4.0 4.5
IV. CONCLUDING REMARKS

Calculations have been reported of the dissociative at-
tachment of low-energy electrons to molecular hydrogen
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FIG. 9. Comparison of the cross section for dissociative at-
tachment calculated using the full energy-dependent, nonlocal
shift operator with a calculation using the local shift defined by
Eq. (31). The energy-dependent, nonlocal width operator was
used for both calculations.

I

2 3
R (units of ao)

FIG. 10. Comparison of two forms of the local potential used
for the results presented in Fig. 9. The local potentials V„, an

lVl &
are obtained by adding to the potential Vd different locaVl„,&
are o taine

approximations for the shift operator.
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in several vibrational levels. The calculations are based
on fully ab initio calculations, obtained from the litera-
ture, of the potential curves and electronic-structure ma-
trix elements that characterize the fixed-R electron-H2
scattering. The present calculations have fully included
the energy-dependent and nonlocal width and shift opera-
tors.

By monitoring the accuracy of the calculations as the
shift and width operators are reduced to local form, we
have demonstrated that a poor choice of the local shift
can seriously degrade the accuracy of the results, even if
the correct, energy-dependent and nonlocal width is used.
Unfortunately„ the best choice of a local resonance poten-
tial curve, which follows from the optimum local shift, is
not the one available from fixed-nuclei calculations of the
resonant potential curve. Furthermore, our results sug-
gest that a satisfactory local approximation to the shift
operator may not always exist. Our experience with H2
suggests that an important requirement is that several vi-
brational channels be open at the threshold for DA. For

H2, ten vibrational channels are available at this energy,
so the requirement is satisfied. The situation could be
quite diA'erent for other systems.

This analysis of the results underscores the need for de-
tailed electronic-structure calculations of the fixed-R
electron-H2 scattering. In particular, the energy-
dependent matrix element V(R, e) coupling the resonant
state with the continuum must be obtained for a
definitive calculation. The present work has shown that
once the necessary fixed-nuclei information has been
determined, the dynamics equations involving energy-
dependent and nonlocal operators can be efhciently for-
mulated and solved.
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