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Global expression for representing diatomic potential-energy curves
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We propose a three-parameter expression that gives an accurate fit to diatomic potential curves
over the entire range of separation for charge transfers between 0 5Z 1. It is based on a general-
ization of the universal binding-energy relation [J. R. Smith et al. , Phys. Rev. A 39, 514 (1989)]
with a modification that describes the crossover from a partially ionic state to the neutral state at
large separations. The expression is tested by comparison with first-principles calculations of the
potential curves ranging from covalently bonded to ionically bonded. The expression is also used to
calculate spectroscopic constants from a curve fit to the first-principles curves. A comparison is
made with experimental values of the spectroscopic constants.

I. INTRODUCTION

It has long been of interest to determine whether a sim-
ple analytic relation exists that represents the binding-
energy relation of diatomic molecules over a wide range
of separations. ' lf such a relation were known, then it
could greatly facilitate simulation of molecular energet-
ics. In the following we will provide such a relation and
test it against first-principles calculations and experiment.
Rose, Smith, and Ferrante ' have demonstrated that
there exists a "universal" binding-energy relation which
accurately describes the shape of the binding-energy
curves for metallic and covalent bonds in adhesion, '

chemisorption, cohesion in metals, diatomic molecules,
and even of nuclear matter. Graves and Parr' devised a
test of universality for diatomic molecules based on the
highly accurate experimental values of spectroscopic con-
stants. They constructed several parameters, consisting
of combinations of spectroscopic constants, which were
predicted to be constant if universality existed. In a test
of 150 molecules they found considerable scatter in the
parameters because their sample included both covalently
and partially ionically bonded molecules. Recently,
Smith et al. " showed that in testing for universality it
was necessary to separate the molecules into two distinct
classes: covalent and partially ionic. They found that the
parameters for the 88 covalently bonded molecules inves-
tigated clearly demonstrated universal behavior. Tel-
linghuisen et al. ' reported results leading to a similar
conclusion. Furthermore, Smith et al. showed that the
addition of an ionic term to the universal equation, in the
case of the remaining 62 partially ionic molecules, elim-
inated most of the scatter in the appropriate test parame-
ters. Thus, if the effect of charge transfer is included in a
generalized universal equation, all 150 diatomic mole-

cules exhibit universal behavior. Additionally, the
charge-transfer values found from the universal equation
are comparable to those predicted by other means. "

The above tests of universality' ' probed the rela-
tionship only in the vicinity of the minimum at the equi-
librium separation. This is a severe test, since predictions
of third and fourth derivatives were involved. However,
the results of Refs. 2 and 11 suggest that it may be possi-
ble to find a simple globally accurate functional represen-
tation for potential curves away from the vicinity of the
minimum. In this study we examine the use of a three-
parameter form, based on the results of Refs. 2 and 11, to
represent the potential curves for a number of diatomic
molecules obtained from first-principles calculations.
The molecules investigated range from covalently bonded
to ionically bonded. Finally, we show that this three-
parameter functional form can be used to determine the
spectroscopic constants from first-principles calculations,
and that these compare well with experimental values.

II. ANALYSIS

l= D,
d E

1/2

,
'dR

e

The authors of Ref. 2 found that the binding-energy re-
lation for diverse physical phenomena could be scaled,
i.e., written in a functional form

E(R)=D,E(a*),
where a *= (R —R, ) /l, E ( a *

) is a universal function ofa, R is the separation, R, is the equilibrium separation,
D, is the binding energy, and I is a scaling length defined
as
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E*(a*
) = —( I +a * )exp( —a *

) (3)

was a good representation of the potential curves for co-
valently bonded materials. In fact, Smith et al. " found
that Eq. (3) represented experimental spectroscopic pa-
rameters well for the 88 covalently bonded molecules out
of the 150 molecules examined. As might be expected,
this expression was found to be inadequate for the

This particular choice for the scaling length, l, was
selected since it could be calculated from experimentally
measurable quantities. Although, universality, i.e., scal-
ing, is independent of the functional form used to
represent it, Rose et al. found that the Rydberg func-
tion,

remaining 62 ionically bonded molecules. Smith et al. "
proposed a simple extension of Eq. (3) for bonding with
charge transfer (atomic units are used throughout)

E (R ) = —C ( ]+a *)exp( —a *
)
—5Z /R, (4)

where a" =(R —R,')/I, C is the well depth for the Ryd-
berg function, l and R,' are respectively the scaling length
and the equilibrium position for the Rydberg function,
and 5Z is the charge transfer. We note that there are
only two independent fitting parameters if we require that
E (R, )= D, —and (dE/dR)~ z =0. It was found

e

that" Eq. (4) represented well the experimental spectro-
scopic constants for the 62 partially ionically bonded

TABLE I. Charge-transfer values from spectroscopic constants (Ref. 30).

Molecule

CuF
CuCl
CUBI'

CUI
AgF
ARCl
AgBr
AgI
BeF
BeCl
MgCl
CaF
CaCl
SrF
BaF
CF
SiF
GeF
SnF
PbF
BF
BCl
BBr
AlF
AlCl
AlBr
AlI
GaF
GaCl
GaBr
GaI
InF
InCl
InBr
InI
TlF
T1Cl
TlBr
ScF
ScCl
YF

Pauling
(Ref. 14)

0.668
0.261
0.183
0.086
0.668
0.261
0.183
0.086
0.790
0.430
0.555
0.895
0.632
0.895
0.910
0.430
0.702
0.702
0.702
0.702
0.632
0.221
0.148
0.790
0.430
0.345
0.221
0.763
0.387
0.302
0.183
0.734
0.345
0.261
0.148
0.702
0.302
0.221
0.838
0.514
0.859

Dipole
(Ref. 14)

0.688

0.653
0.521

0.106

0.082

0.193
0.147

0.287

0.357
0.329

0.419
0.378
0.357

Universal
(This work)

0.616
0.567
0.491
0.495
0.520
0.441
0.446
0.324
0.617
0.506
0.423
0.802
0.664
0.807
0.878
0.552
0.618
0.605
0.396
0.474
0.769
0.681
0.438
0.849
0.795
0.723
0.645
0.815
0.797
0.728
0.604
0.780
0.765
0.711
0.629
0.714
0.666
0.601
0.690
0.450
0.698

Dielectric
(Ref. 31)

0.766
0.746
0.735
0.692
0.894

0.850
0.770

C/D,

0.310
0.437
0.541
0.546
0.470
0.623
0.618
0.773
0.378
0.552
0.648
0.178
0.379
0.223
0.190
0.407
0.399
0.410
0.765
0.573
0.176
0.316
0.679
0.136
0.200
0.283
0.389
0.140
0.190
0.274
0.426
0.189
0.235
0.303
0.410
0.252
0.344
0.430
0.394
0.618
0.425
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molecules. Also, reasonable estimates of 6Z for the alkali
halides" were obtained from application of Eq. (4) to the
spectroscopic data, as compared with estimates from di-
pole moments, Pauling electronegativities and dielectric
constants. In Table I we present 5Z values for the
remaining partially ionic halide molecules not reported in
Ref. 11.

Equation (4) differs from a form used to represent the
binding energy of ionic solids, the Born-Mayer poten-
tial. ' The Born-Mayer potential consists of two terms,
an exponential term which is completely repulsive and a
second term which is identical to the ionic attractive
term in Eq. (4). Use of the Rydberg function in Eq. (4) in-
stead of the repulsive exponential allows for the possibili-
ty of some covalent bonding and thus fits the Pauling' '
description of a bond as being partially ionic and partial-
ly covalent. This is more realistic from a physical stand-
point than the Born-Mayer potential.

For the purpose of representation of first-principles po-
tential curves at large interatomic separations, Eq. (4) has
a basic limitation in that it is referenced to dissociation
into two ions at infinite separation, whereas the experi-
mental dissociation energy D, is referenced to two neu-
trals. Thus, when an ionic diatomic dissociates, a cross-
over to the neutral state occurs when it becomes energeti-
cally favored over the ionic state. ' ' In the crossing re-
gion (Fig. 1) the first-principles potential curves include a
mixture of these two states. This suggests that the second
term in Eq. (4) be modified in order to represent first-
principles results not only in the vicinity of the equilibri-
um separation, but also at intermediate and large separa-
tions. We propose the following analytic form that has
ionic, (1/R), behavior near the equilibrium radius and

yielding

E(R)= —C(1+a*)exp( —a*)
—5Z I 1 +exp[a(R —R o ) ] ] '/R, (Sb)

where a is a parameter obtained from fitting and Ro is
the crossing radius. Note that there are three indepen-
dent parameters remaining if we impose the conditions
E(R, ) = D, a—nd (dE/dR)z =0 as in Eq. (4), and pro-

c

vided that we have an independent method for specifying
Ro.

The crossing radius Ro equals the classical value' '
1/(I —A) for 6Z=1. Since there is no analytic expres-
sion for Ro when 5Z ( 1, as a reasonable first-order ap-
proximation we choose a linear interpolation in 6Z be-
tween the equilibrium radius R, and the classical value
1/(I —A ):

Ro=R, (1 5Z )+o—Z /(I —A),
where I is the ionization potential of the electropositive
ion and A is the electron amenity of the electronegative
ion. We will demonstrate that Eq. (5b) with Ro given by
this functional form accurately represents the shape of
the potential-energy curves for a variety of diA'erent mol-
ecules with varying degrees of ionicity. The quality of
the curve fits to the first-principles potential curves wi11
illustrate the appropriateness of this choice of R o. As an
additional test of these expressions, we will also use the
fitting parameters obtained from this procedure to calcu-
late the spectroscopic constants for the molecules. To
reiterate, we have constructed an expression that mimics
the physical behavior of the binding, namely: a repulsive
core, covalent and ionic binding, and the crossing to the
neutral state at large separation.

converts to an exponential decay in the vicinity of
R )Ro~

—5Z [1+exp[a(R —Ro)] j '/R,

I-A

ARATION

SSING

ION

CURVE

0.0—
-0.2—

CC -0.&—
LLJ

IONIC CURVE

I I I I I I

-3.0 -1.0 1.0 3.0 5.0 7.0 9.0 11.0
SCALED SEPARATION &

FIG. 1. Schematic of the ionic and neutral potential curves
showing the crossing between states. I is the ionization poten-
tial of the electropositive ion and A is the electron affinity of the
electronegative ion.

FIG. 2. Scaled potential curves showing the agreement with
the Rydberg function [Eq. (3)] for Liz, Be&, InH, PbO+, and
SnO+.
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HI. RESULTS

We sort the potential curves into three categories.
First, are those with negligible charge transfer [Li2, '

Be&,
'9InH, PbO, ' SnO (Ref. 21)] and for which the Ryd-
berg function [Eq. (2)] is a good representation. The
second set includes the alkali hydrides [LiH, NaH (Ref.
23)], and the hydrogen-halogen diatomics [HC1, " HF,
HBr (Ref. 24)] with a range of charge transfers and thus
constitute an intermediate category. Finally we have
those halides [A1F, AlC1, LiF (Ref. 26)] with large
transfers where Eq. (3) is clearly inadequate.

We have obtained the three parameters in Eq. (5b) by

fitting with a Simplex method to first-principles total-
energy curves for LiH, NaH, HF, HC1, HBr, A1F, A1Cl,
and LiF (Figs. 2 —5). The selection of first-principles re-
sults was based on the necessity to span a wide range of
charge transfers and separations from the compressive to
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FIG. 3. A comparison between first-principles potential
curves (o) and the Rydberg function iA) [Eq. (3)]. (a) LiH, (b)
NaH.

FIG. 4. A comparison between first-principle potential
curves ( o ), the Rydberg function [Eq. (3)] (2 ), and the present
work i-e-) in the intermediate charge-transfer region [Eq. {5a)].
{a) HBr, (b) HC1, (c}HF.
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the tensile regions as a test of Eqs. (5) and (6) and the
availability of calculations for a large range of separa-
tions. These criteria are necessary in order to test the
various terms in Eq. (Sb) which dominate in diff'erent re-
gions of the potential curves.

We now make several observations concerning these
results. First, we note that the Rydberg function gives an
excellent fit to the scaled energy curves for the first set
(Fig. 2) and for the unscaled energy curves [Eqs. (1) and
(2)] for LiH and NaH (Fig. 3) as might be expected. In
the next set (HBr, HC1, HF) (Fig. 4) the ionic term of Eq.
(5a) makes an increasingly important contribution to the
energy as 5Z increases through the set. Thus, the Ryd-
berg function yields the best fit for HBr, while Eq. (5b) is
slightly better for HC1 (5Z=0.062) and substantially
better for HF (5Z =0.16). However, note that we do not
have values for large R for these molecules. Finally, we
see that for the ionic molecules (LiF, A1C1, and A1F) Eq.
(Sb) provides an excellent fit to the potential curves over
the entire range of separations. Values of the fitting pa-
rameters for LiH, NaH, HC1, HF, A1F, A1C1, and LiF
are given in Table II.

We found from the curve fits for LiF, A1C1, and A1F
that the contribution from the exponential in Eq. (5a) was
negligible near the minimum and thus this term had an
1/R dependence in this region. Thus, for this type of
molecule the exponential function in the ionic part of the
equation models the crossover from the ionic state to the
neutral state with an exponential decay in the region for
R & R 0. For these molecules, therefore, the simple
identification of 6Z as the charge transfer has validity.

As 5Z approaches zero, Eq. (5b) approaches the Ryd-
berg function. For this case, the ionic term provides a
negligible contribution to the binding energy as shown by
Figs. 3 and 4.

The simple identification of 5Z in Eq. (5a) as the

-0.04,—
0.00—

-0.05— -0.08—

-0.10—

-0.15—

-0.20— -0.16—

-0.25
0.0

(c)
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16.0 -0.2O
2.0 5.0 4.0 5.0 6.0 7.0 8.0 9.0

SEPARATION (a.u. )

FIG. 5. A comparison between first-principles potential
curves (o ), the Rydberg function [Eq. (3)] (4 ), and the present
work [Eq. (Sa)] (-e-) for ionic molecules. (a) AlF, (b) A1C1, (c)
LiF.

FIG. 6. A comparison between the Kim-Gordon potential
curve for Na+Cl (Ref. 27) (o ), the Rydberg function [Eq. (3)]
(E ), and the present work [Eq. (4)] (-e-)
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TABLE II. Values for parameters in Eq. (5a) (atomic units).

LiF
A1C1
A1F
HF
HC1
HBr
NaH
LiH

0.708 756
0.806 112
0.661 312
0.612 931
0.686 376
0.702 877
1.150 67
1.112 33

R,'

3.669 01
4.371 39
3.4315
1.791 03
2.420 09

0.490 93
1.030 63
1.51 103
8.782 71

11.48 06

6Z

0.823 405
0.779 209
0.777 838
0.160466
0.062 4222
0.0
0.0
0.0

0.22 4177
0.050 5117
0.068 994
0.219 587
0.218 012

Ro

10.2247
8.559 83
7.614 48
1.756 96
2.410 73

0 ~ 10—

0.05—

0.00—

l

1

l

l

l

l

-0.05—

-0.10—

-0
~ 15—

(a)

charge transfer is questionable for the molecules with in-
termediate values of 5Z, (i.e., HC1, HF), since the ex-
ponential in Eq. (Sa) is not small and therefore, the "ionic
term" differs substantially from 1/R behavior. Thus, for

these Eq. (Sb) should be regarded as an interpolation for-
mula which gives an accurate fit to the potential-energy
curves for intermediate values of 6Z.

As a test of the ionic portion of Eq. (Sa), we examine
the calculations of Kim and Gordon for diatomic
Na+Cl . They use a simple overlap of ionic wave func-
tions and density-functional theory with no electronic re-
laxation included for calculation of the potential curve.
Thus with a purely ionic second term Eq. (4), we obtain a
highly accurate fit (Fig. 6) giving 5Z = 1.0,
C =1.26X10, and R,'=9.39. From the value of the
constants we see that the result is very close to a Born-
Mayer potential. Thus, our procedure gives an excellent
fit and the correct charge transfer for a calculation that is
purely ionic by construction. In Fig. 7 we compare the
covalent and ionic parts of our fits to the potential curves
for A1C1 and Na+Cl [Eq. (4)]. We can readily see that
for A1C1 the covalent part has an attractive well, whereas
for Na+Cl it is essentially an exponential repulsion. It
is interesting to note that the absence of electronic rear-
rangement in the Kim-Gordon calculation suggests that

-0.20
0.0 2 ' 0 4.0 6.0 8 ' 0 10 ~ 0

0.3,—
0 ~ 2— -0.05—

0.1—

0.0—

-0 ~ 1—

-0.10—
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-0 3—
I I l I [

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
SEPARATION (a. u. )

-o.zo
1.0 2.0 3.0 4.0 5.0 6.0

SEPARATION (a.u. )
7.0 8.0

FIG. 7. Decomposition of the potential curves from the
present work into the covalent part (

———) and the ionic part
( ). (a) A1C1 [Eq. (Sa)], (b) Na+Cl [Eq. (4)].

FIG. 8. A comparison between first-principle potential
curves calculated for A1F (0 ) and the present work (-0-) using
spectroscopic constants for calculating the parameters in Eq.
(4).



43 GLOBAL EXPRESSION FOR REPRESENTING DIATOMIC. . . 3493

TABLE III. Diatomic spectroscopic constants (cm ). Values in parentheses are experimental values (Ref. 31).

LiF
A1C1
A1F
HF
HCl
HBr
NaH
LiH

946.6
502.8
824.8

4368.6
3573.4
2725. 1

1194.7
1471.1

(910.3)
(481.3)
(802.2)
(4138.3)
(2991)
(2649)
( 1172.2)
( 1405.7)

1.315 (1.345)
0.2404 (0.2439)
0.5371 (0.5525)
20.97 (20.96)
10.59 (10.59)
8.471 (8.465)

4.7901 (4.901)
7.534 (7.513)

0.01604
0.001427
0.004144

1.119
0.3489
0.2428
0.1258
0.1868

(0.02029)
(0.001611)
(0.004984)
(0.798)
(0.3072)
(0.2333)
(0.1353)
(0.2132)

Cue Xe

7.819 (7.929)
2.24 (1.95)

4.756 (4.77)
281.93 (89.88)

106.2 (52.82)
56.17 (45.22)
21.61 (19.72)
25.37 (23.20)

co, =2.642 829X 10 k, /m,

B,=4.561 3274X 10 co, /(4b, D, ),

a, =6(1+a, )B, /co, ,

co,x, = —1.5B,(a 2
—1.25a

& ),
where

(7)

(9)

(10)

d E
dR

d E
dR

d'E
Elle =

dR4

inclusion of electronic relaxation leads to the attractive
part of the first term in Eqs. (4) or (Sb).

Next we compare the first-principles potential curves
to Eq. (4) with constants obtained from the spectroscopic
constants for A1F (Fig. 8). This molecule was selected for
comparison, since there is close agreement between the
experimental and theoretical values of D, and R, . As
might be expected the agreement near the minimum is
quite good by construction. Surprisingly, the agreement
is rather good over a fairly large separation range.

We make one final comparison, namely, we calculate
the spectroscopic constants, co„B„a„and co,x, (Refs.
28 and 29) as defined by

k, R,'
(2D, )

I R3

k,

m, R,
(12k, )

2

m is the reduced mass, D, is the binding energy in atomic
units, and R, is the equilibrium spacing in atomic units.
The spectroscopic constants have units of cm '. In
Table III we show the results of using our fitting parame-
ters to calculate the spectroscopic constants compared
with experimental values obtained from Ref. 30. First,
we note that the values we obtain for these constants are
only as good as the first-principles calculations used for
fitting. We also note that these are values obtained from
a global fit to the potential curves and not from values of
the curve near the minimum. With these provisos we feel
that the agreement is quite good, since we are extracting
higher-order derivatives at the minimum from a global fit
to the potential curves.

In conclusion, we have found a three-parameter func-
tional form which accurately represents the potential
curves for diatomics obtained from first-principles calcu-
lations, over a wide range of charge transfers and spac-
ings. This expression has a simple interpretation in terms
of Pauling's description of partially ionic and partially
covalent bonding. Good agreement is obtained between
the spectroscopic constants extracted from this pro-
cedure and the experimental values of the spectroscopic
constants.
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