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The R-matrix theory for the vibrational excitation and dissociative attachment in e-HCl collisions
is developed. Only one pole in the R-matrix expansion is included. This allows for making a con-
nection between the R-matrix and the nonlocal-complex-potential theories, and for obtaining the
expression for the dissociative-attachment cross section without using the R-matrix radius in the in-

ternuclear coordinate. All matrix elements in the equation for the vibrational-excitation and
dissociative-attachment amplitudes are calculated using the quasiclassical approach. We study how
the results depend on the number of vibrational levels of the neutral molecule included in the theory
and show how to exclude the vibrational continuum by a modification of the nonlocal-complex po-
tential. The results for the vibrational-excitation cross sections are extremely sensitive to the behav-
ior of the R-matrix potential curve near the point of crossing this curve with the potential curve of
the neutral molecule. Particularly in some cases the cross section at the threshold peak exhibits the
boomerang oscillations earlier found for HCl by Domcke [in Aspects of Electron Molecule Sc-attering
and Photoionization, edited by A. Herzenberg (AIP, New Haven, 1989), p. 169]. The dissociative-
attachment cross sections are in reasonable agreement with experiment and with other theories.

I. INTRODUCTION

Inelastic processes in low-energy collisions of electrons
with HC1 molecules have been intensively studied since
1976 when Rohr and Linder' discovered a strong thresh-
old peak in the vibrational-excitation (VE) cross section.
The recent data of Knoth et al. give new results for the
angular distribution and the absolute magnitude of the
cross section. Data for dissociative-attachment (DA)
cross sections obtained by Allan and Wong were a new
challenge for theory.

Since the late 1970s great progress has been made in
the development of theory. Most of the theoretical mod-
els can be divided into two classes. The models of the
first class (so-called resonance models) start with the reso-
nance potential curve for HC1 . Interaction with the
electron continuum leads to the appearance of a
nonlocal-complex potential (NCP) for the nuclear
motion.

The first calculation of the DA to the HC1 molecule
was done by Bardsley and Wadehra using a partly nonlo-
cal approximation when the real part of the nonlocal po-
tential was treated in the local approximation. Domcke
and Mundel carried out calculations for VE and DA by
the exact solution of the equations of nonlocal theory.

The theoretical models of the second class do not as-
sume any resonance state of the ion. The threshold struc-
ture is explained in terms of virtual state and nuclear ex-
cited Feshbach resonances whose tails appear just above
VE thresholds, as was suggested by Gauyacq and Herzen-
berg. Actually, models of the first class implicitly in-
clude features associated with virtual-state and Feshbach
resonances since the adiabatic bound state of the negative
ion becomes a virtual state at internuclear distances to

the left of the crossing point of the HC1 and HC1
curves, the so-called stabilization or merging point.
However, the virtual state is not the major point of the
resonance models.

The most striking feature of the nonresonant models is
that in trying to reproduce the experimental data, the au-
thors obtain the stabilization point lying very close to the
equilibrium distance. If we let p be the internuclear dis-
tance relative to equilibrium, then the stabilization point
p„varies between 0.15 and 0.20 a.u. in the effective range
calculations of Teillet-Billy and Gauyacq, and actually
equals 0.15 (as shown by Fabrikant' ) in the calculations
of Dube and Herzenberg. Apparently, putting p„=0 we
would obtain a bound state with zero energy at the equi-
librium distance. It means that the scattering phase shift
in the Axed-nuclei approximation experiences a jump by
~/2 at zero energy and the vibrational-excitation cross
section reaches the unitarity limit at the threshold. ' In a
more general case, when p is close to 0, the cross section
rises very sharply at the threshold and falls off much
more slowly in disagreement with the shape observed by
Rohr and Linder' and Knoth et al. Ab initio calcula-
tions" ' using standard structure methods yield
p„=0.6 a.u. As mentioned by Teillet-Billy and Gau-
yacq, all attempts to reproduce the experimental data
with this merging point were unsuccessful.

Recently Morgan et al. ' carried out the first ab initio
calculations of inelastic processes in e-HC1 collisions us-
ing the A-matrix theory of Schneider et al. ' They also
calculated the adiabatic potential curve for HC1 and
their value of p„ is significantly lower than that obtained
from the calculations using structure methods. They ob-
tained p„=0.24 or 0.34 depending on the polarization
model they chose. Naturally, in the first case they ob-
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tained a sharper threshold peak. In order to include
more completely the short-range interaction of the elec-
tron with the molecule, a rather large R-matrix radius in
the electron coordinate (r0 =10 a.u. ) was chosen. This
led to five R-matrix poles necessary to describe the
electron-molecule interaction in the fixed-nuclei approxi-
mation, and did not allow for a direct connection be-
tween the R-matrix theory and resonance theories.

The first R-matrix calculations' of VE and DA in e-
HCl collisions were not ab initio but semiphenomenologi-
cal. In order to reduce the number of input parameters
to the minimum, this theory started from the resonance
expression for the R matrix in the fixed-nuclei approxi-
mation

R(p)= ~ +R„.'( )

E, (8) E, —

Here E, is the electron energy, and y(p) and E, (p) are
usual parameters of the R-matrix theory. R, is a back-
ground term weakly dependent on p and E, . For simpli-
city we will assume that R„does not depend on p and E,
at all. The R matrix in the form (1) was used as input
data for the theory including nonadiabatic effects, as was
suggested by Schneider et al. '

Recently Fabrikant' showed that such formulation of
the R-matrix theory is completely equivalent to the
nonlocal-complex-potential (NCP) theory. The major
difference between the two theories is in the methods of
evaluation of the input parameters. The only input data
of the R-matrix theory are functions y(p) and E, (p)
which can be calculated ab initio. All energy-dependent
terms of the theory are calculated from the logarithmic
derivatives of the electronic wave functions in different
vibrational channels on the R-matrix sphere. These
derivatives also incorporate long-range interaction be-
tween the electron and the molecule. In applications of
the NCP theory it is necessary to postulate not only in-
ternuclear dependence but also energy dependence of the
parameters.

The major deficiency of the results obtained by Fabri-
kant' is that the VE cross sections near the threshold are
very sensitive to the R-matrix radius in the internuclear
coordinate. This problem could be solved self-
consistently only in ab initio calculations of the type
completed by Morgan et al. ' However, the difficulty
can be eliminated even in the model approach if we
would employ the equivalence between the R-matrix and
NCP theories and calculate the DA cross sections using
the NCP approach.

The purpose of the present paper is to obtain self-
consistent results in the framework of the resonance R-
matrix theory. Particularly, we study the following
points which are important for both ab initio and model
approaches.

(i) We investigate the dependence of the results on the
number of vibrational levels of the neutral molecule in-
cluded ir; calculations, since both nonlocal and R-matrix
approaches show that even the vibrational continuum
may be important for the problem.

(ii) We study the dependence of the results on the be-
havior of the ion potential curve near the stabilization

point. We investigate how this behavior is related to the
results of ab initio calculations of the adiabatic potential
curve.

(iii) We study oscillations in the VE cross sections near
the threshold, the so-called boomerang phenomenon,
first theoretically predicted for the HC1 molecule by
Domcke. '

(iv) We discuss the shape of the threshold peak ob-
tained from different theories.

An important part of the calculations includes an eval-
uation of the matrix elements of the Green's function for
the nuclear motion in some effective potential. The direct
computation of these matrix elements requires high-
precision arithmetic. Kazansky and Yelets developed a
quasiclassical method for evaluating this type of matrix
elements. Recently, Kazansky and Kalin used it to de-
velop a quasiclassical NCP theory. Here we will use this
approach to calculate the matrix elements of our theory
with some modifications which will be discussed below.
Therefore, our theory may be called the quasiclassical R-
matrix theory.

II. BASIC THEORY

U(p) = &0(p)+E&(p), (4)

where T is the kinetic-energy operator for the nuclear
motion, Vo(p) is the potential-energy function of the tar-
get molecule, and E is the total energy.

In order to calculate the VE cross section, let us con-
sider the set of radial electron wave functions at r ) ro,
which can be represented in the following matrix form:

where S is the scattering matrix and u —are diagonal ma-
trices with the asymptotic form

Ik, r
U U

where e„v =0, 1, . . . are eigenenergies of the Hamiltonian
for the neutral molecule and k, =2(E —e„).

The S matrix describing the vibrational transitions can
be calculated from the matching conditions

(u —u+S)i, „=R (u —u+S)i„d

Redefining the channel functions as

The basic theory has been discussed by Fabrikant' '
and only the essential outlines will be given here. We will
also discuss in more detail the method of evaluation of
the DA cross sections based on the NCP theory.

We start from Eq. (1) for the R matrix in the fixed-
nuclei approximation. To include vibrational dynamics
as suggested by Schneider et a/. ,

' we introduce the
operator

R (p) =y(p) [H~(p) E] 'y(p)+—R„, (2)

where

H~(p) = T+ U(p),
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S=
0

where

4

y(E —T V—, , ) 'y
0 Q

we obtain the following expression for S:

(9)

y. (E)= &. Iy lx',+'&, (21)

with the asymptotic form of the incident plus the outgo-
ing wave.

Defining now the zero-order amplitude

VoP,
= U —yLy (10)

and L is an operator function of E—T—Vo with eigen-
values

dQE+

LE =
v — d7ElE r=r 0

where E, =k, /2. Equations (9) and (10) allow us to es-
tablish the direct connection between the resonance R-
matrix theory and the NCP theory. ' We can use this re-
lation to calculate the DA cross section without introduc-
ing the R-matrix radius in the internuclear coordinate.
The cross section for the DA to the vth vibrational state
in the NCP theory is defined as

we obtain a set of linear equations for the amplitudes

y,
——y, + t, L, , U yG(+)y U y (22)

S" = —2i(u +) '(yG' yL —1)
dQ

t&
(23)

Equation (22) is a set of algebraic equations if we include
only discrete states in the right-hand side (r.h.s.), and it is
a set of integro-matrix equations if we also include the
continuum. After these equations are solved, the DA
cross sections can be calculated directly from expression
(16). The matrix elements & v

I y G ' 'y
I v

'
& can be also

used for the calculation of the VE cross sections since, as
follows from Eq. (7), the expression for the nondiagonal
part of S can be written in the form

4 3

~DA, .=, I &u I VE I@E"& I',
U

(12) where G' '=ReG'+'.

(T+ V, , E)Q~+'=0, — (13)

with the outgoing-wave boundary condition. Using the
relation'

y pV~(p) =
7T QE

and defining the DA amplitude

y, (E)= & u lylq'F. +'&,

we obtain

(14)

(15)

where VE is the coupling amplitude describing the in-
teraction between the diabatic state and the continuum in
the NCP theory and P'E+' is the solution of the equation

e, —Vo(p, ) =E—U(p, ) . (24)

III. QUASICLASSICAL APPROACH

Evaluation of the matrix elements & v
I y IXE+ '

& and
& v

I y G '+ 'y
I

v'
& requires high-precision arithmetic be-

cause of rapid oscillations in the integrands, especially
when one deals with highly excited states. In order to fa-
cilitate the computations and get more physical insight
into the problem, Kazansky and Yelets suggested the
quasiclassical method for the Herzenberg theory based on
the stationary-point technique. When dealing with y,
defined by Eq. (21), the method is straightforward and
was discussed in detail elsewhere. ' The stationary
point is defined by the generalized Franck-Condon condi-
tion

4~' y. (E)
DA, U

kU gE
(16)

The evaluation of the matrix elements of yG'+'y is a
more complicated problem. Using the spectral represen-
tation of the Green's function, we obtain

G,'+'=(a, —E —io)-' (19)

is the Green's function for the nuclear motion in the po-
tential U and yE is the regular solution of the equation

(Hl E)xE =0, — (20)

Using the representation of the eigenstates of the neutral
Hamiltonian T+ Vo, we have

V, , =U —
g, ylv &Lz &vly, (17)

where the symbol f means the summation over discrete
states and integra ion over the continuum. Then the
solution of Eq. (13) can be written in the form

O'+'=X'+ ~+ )'.L.y. f G'+'(p p )y(p )0 (p )dp',

where P„(p)= & pl u & and

r y„(E)y, (E)
& u lyG'+'ylu'& =), " '

. de, (25)

& u lyG'+'y lu' & =~y, .(E)g'.+-,'(E),
where v& =min(u, v'), u& =max(v, u'), and

(26)

where we have to sum over the discrete levels, if any, for
the potential U.

Using the quasiclassical analytical expression for y, (E),
we can calculate this integral numerically. Since the sta-
tionary point p, is a function of c., we have a whole region
of p contributing to the integral.

Another approach was suggested by Kazansky and Ka-
lin. Starting from the expression for the Green's func-
tion in coordinate space and applying the stationary-
point method twice, they obtained analytical expression
of the form
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„(.+-'(E)=+(
I (27)

where g' —i is the solution of Eq. (20) with the asymptotic
form of outgoing (for positive sign) or ingoing (for nega-
tive sign) wave, and we have the positive sign if p, )0 and
the negative sign if p, (0.

The results of calculations of the matrix elements show
that the two approaches are roughly in agreement within
the accuracy of the quasiclassical approximation. How-
ever, since Eq. (26) was obtained by the double use of the
stationary-point method and represents the contribution
due to only one stationary point p, (E), we consider Eq.
(25) as more accurate. Also, Eq. (26) cannot be used
below the DA threshold.

IV. THE ROLE OF THE VIBRATIONAL
CONTINUUM AND LONG-RANGE BEHAVIOR

OF THE OPTICAL POTENTIAL

The crucial question for application of the method de-
scribed above is how many vibrational states we have to
include in Eq. (22) or in the similar equation for the VE S
matrix. Domcke and Mundel ' and Fabrikant' '
pointed out that even the vibrational continuum is impor-
tant for the calculation of the cross sections. In order to
understand this point, we can consider the dependence of
y, (E) on U. The function y, (E) is non-negligible if the
root p, of Eq. (24) is real and lies in the classically al-
lowed region. In Fig. 1 we demonstrate the dependences
of p, and the right turning point for Vo on e, for the en-

ergy c, near the DA threshold. The stationary point is
real for

e, (e,„=ED+E—U( oo ),
where E~ is the dissociation limit. We see from Fig. 1

that e,„ lies in the vibrational continuum. This is a
consequence of the mainly repulsive character of the po-
tential curve U(p). If U(p) would have a large attractive
part, as in the case of N2, the main contribution to the

process would be given by s ( U( oo ) and the vibrational
continuum would be inessential.

In making this conclusion, we assumed that y( ~ )WO.
This is usually the case in the R-matrix theory, and, as a
consequence, U( ~ ) in the R-matrix theory does not cor-
respond exactly to the DA threshold, or, in other words,
ED —U( ~ ) is not exactly equal to the electron affinity A

of Cl.
Since the solution of Eq. (13) for the nuclear motion

should have the correct asymptotic behavior, we should
assume that the nonlocal part of the optical potential
should have a long-range part nonvanishing at infinity.
Indeed, at large p we have

v.„—U( ) —y'1 )f ~U&L. &Ul, (28)

and both local and nonlocal parts are nonzero.
Equation (28) shows that the part of the nonlocal po-

tential, nonvanishing at infinity, simply compensates the
part of U which differs from ED —A at infinity, and we
should not have any unphysical effects at p —+ ~. Howev-
er, from the computational point of view the long-range
behavior of the nonlocal part may cause some difficulties.

In order to facilitate our treatment, we will use the lo-
cal approximation for the long-range part. At a very
large p only high1y excited states and the vibrational con-
tinuum make an essential contribution to the nonlocal
part of the optical potential (17). If the energy E lies well
below the dissociation limit, we can neglect the depen-
dence of IE on E, for these states and get

U

V„,—U(~)= —y'(~)L- &(p —p'), (29)

where E, =E—e„and e„ is some mean excitation energy
lying above the dissociation limit. We can obtain the ac-
tual value of LE from the condition U(~ )

—y (~ )LE
U U

=EDA, where EDA is the DA threshold.
For concrete calculations it is convenient to write

down the function y(p) in the form

y(p)=y, (p)+y, (p), (30)

where y, (p)~0 for p~ ~ and y, (p)~y(p) for p~ ~.
Now, using the local approximation for the long-range

part, we have

V, , =U —gy, IU)Lz (UIy, +DU, (31)

O
Q) 3
D

c3 2

where

&U(p) = L~ yi(p)I 2y, (—p)+yi(p)) . (32)

A simple parametrization for yi(p) may be chosen in the
following form:

0
0.0 0.5 I.O 1.5 2.0 2.5 3.0 3.5

ene rgy{eV)
4.0 4.5 5.0

FICi. 1. The dependence of the stationary point p, (curve 1)
and the right turning point for the curve Vo(p) (curve 2) on the
energy e of the neutral molecule for the total energy E=1 ev.
Parameters of the potential curve U{p) correspond to model 1

(see Table I). The dashed vertical lines denote asymptotes.

and

p (po
yi(p)=. —(v —

p ~v
y(p)(1 —e ), p) p

y, (p) =y(p) yi(p)—

(33)

(34)
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A parametrization of this type was used in nonlocal
theories ' for the width function directly connected with
the coupling amplitude (14) in order to avoid the long-
range behavior of the optical potential. Here we have
chosen a form which gives sufficiently smooth behavior of
& U(p).

The parameter po is the distance beyond which the
nonlocal potential can be treated in the local approxima-
tion. This distance should correspond to the right turn-
ing point of the vibrational state starting from which we
can neglect the energy dependence of the logarithmic
derivative L,E . For the calculations in the region not far

from the DA threshold, we can choose po& 1. This cor-
responds to the right turning point of the level U =5.

In some sense we are returning to the R-matrix radius
in the internuclear coordinate. However, in contrast
with the previous work, ' the choice of this radius is now
physically grounded, and calculations do not indicate any
dependence on po when po increases from 1 a.u. to larger
values.

The modification of the nonlocal potential considered
above leads to an upper limit of p, values contributing to
the matrix elements y, (E) and (yGy)„. As we see from
Fig. 1, choosing the limit in the region of 1 a.u. allows us
to neglect the vibrational continuum. It shou1d be em-
phasized that this becomes possible only after
modification of the optical potential, and rejects specific
features of the e-HC1 scattering. For example, if the DA
threshold were lower, the inclusion of the vibrational
continuum would be necessary even after the
modification of the optical potential ~

V. DIABATIC AND ADIABATIC
POTENTIAL CURVES

TABLE I. Parameters (in a.u. ) of the potential curve.

Model
U(p) =Be ~~ —Ce P~+D

B C D

2.026
1.690
2.026

0.041 56
0.023 90
0.061 56

0.01105
0
0.031 05

0.024 62
0.025 0
0.024 62

imation. The adiabatic potential energy can then be ob-
tained as

U,d(p)= Vo(p)+&, (p) . (38)

In our first calculations' ' of e-HCl scattering we chose
U(p) by fitting U,d(p) to the results of the stabilization
calculations of Goldstein et a/. " Since that time, a num-
ber of new calculations of U,d(p) have been done. '

The multiconfiguration self-consistent-field (MCSCF) cal-
culations of O' Neil et al. ' seem to be most precise.

In order to compare our results with these data, we
started from the Morse potential curve for U(p). The
calculations have been done using three sets of the Morse
parameters listed in Table I. Set 1 corresponds to the
adiabatic potential curve which gives the best fit to ab ini-
tio results of O' Neil et a/. ' At the same time we tried to
preserve the same form of the curve near p =0 as in the
old version' ' in order to fit the eigenphase sum to that
obtained from ab initio calculations of Padial et a/. As
we see from Fig. 2, the resulting U,d(p) fits the data of
O' Neil et al. quite well, but of course the Morse function
for U(p) is not fiexible enough to reproduce all details of
the ab initio curve. It should also be mentioned that the
Morse potential curve does not give the proper asymptot-
ic behavior

The optical potential can now be represented in the
form

U(p) =—
2(p+R, )

(39)

&.„=U, (p) —y y, IU ) & U ly, , (35)

where

Ud(p) = U(p)+ & U(p) (36)

is equivalent to the diabatic potential curve of the NCP
theory. However, they are not completely identical be-
cause of some arbitrariness in their definitions in both
theories. In the NCP theory this arbitrariness follows
from the definition of the I' and Q space in the Fano-
Bardsley approach, and in the R-matrix theory from the
way of inclusion of the 1ong-range part of the nonlocal
potential. In order to get a direct connection with ab ini-
tio calculations for the HC1 system, it is better to con-
sider the adiabatic potential curve at p) p„. This curve
may be obtained by solving the equation

(37)

for the electron energy E,(p), where u and u' are the ra-
dial function and its derivative in the fixed-nuclei approx-

) Q

CD

2

0
—0.60 -0.20 0, 20 0.60 1.00 1.40 1.80 2.20 2.60

distance(a. u. )

FIG. 2. Potential curves of the problem. Solid curves: 1,
U(p), for model 1; 2, potential curve Vo(p) for the neutral mole-
cule; 3, adiabatic potential curve corresponding to curve 1. Cir-
cles, ab initio calculations of 0 Neil et al (Ref. 14) of adiabatic
energies. Triangles, ah initio calculations of Krauss and Stevens
(Ref. 12). Short-dashed curve, U(p) for model 2. Long-dashed
curve, U(p) for model 3. Horizontal lines indicate vibrational
levels of the neutral molecule.
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where +=4.5 a.u. is the polarizability of the H atom.
However, as was found by O' Neil et al. , the ab initio
curve starts to fit the expression (39) only at a rather large
distance of p=2. 6. The contribution of distances p) 2.6
is not important in our calculations with po 1.

On the other hand, we see a rather strong disagreement
between the results of two ab initio calculations. The
curve of Krauss and Stevens' has a well-pronounced
minimum at p = 1.6 a.u. and is very close in energy to the
asymptote at the crossing, whereas the curve of O' Neil
et al. shows a more shallow minimum and turns attrac-
tive again at distances near p„. This behavior was
confirmed by the calculations of Raizmann et al. ,

' who
found that the curve falls down towards the unbound re-
gion from the inAection at p = 1.65 a.u. The same
features are exhibited in the curve obtained by Morgan
et al. "

The overall behavior of the U(p) curve used in this pa-
per is quite similar to that used in the old version of the
theory, but it differs somewhat near the crossing point p„
which is very important for the VE cross sections, as we
will see later. The function y(p) affects mainly the be-
havior of the eigenphase sum and it remained in the same
form as in the old version.

VI. RESULTS AND DISCUSSION

When performing the calculations of the VE and DA
cross sections, we first investigated the dependence of the
results on po. This dependence turned out to be very
weak for po ~ 1 a.u. which confirms our assumption about
the validity of the local approximation for p ~ 1 a.u. The
dependence of the VE cross sections on the number of vi-
brational levels is more essential and is demonstrated in
Figs. 3, 4, and 5. For the value of the parameter po of
about 1 a.u. , the transition points p, up to 2 a.u. may be
essential, which roughly corresponds to v =15 for a typi-
cal energy v=1 eV. Therefore, we can expect conver-
gence starting from this value of v. Indeed, the results for
v,„=14and 20 differ slightly for VE of the v =1 level.
For VE of the v =2 and 3 levels the convergence is poor-

2,0—
1.8—

o ~
0

V)

V)
(o0!
U

1.4
1.2—

1.0—
0.8—
0.6—
0.4—
0.2—

0.0
0.5 0.7 0.9 '1 . 1 l.3 1.5 1.7 1.9 2.1 2.3 2.5

energy(eV)

FIG. 4. The same as in Fig. 3 for u =2. Triangles are experi-
mental data of Rohr and Linder (Ref. 1).

er, and we still see an essential difference between the
cases U,„=14 and 20. However, for U,„=24 (the edge
of the discrete spectrum), the results are almost indistin-
guishable from that of v „=20.

The convergence of the cross sections with v,„ is
better for higher energies. When the electron energy in-
creases and becomes large compared to the vibrational
spacing, nonadiabatic effects become inessential. As a re-
sult, only small p, corresponding to the classically al-
lowed region for the initial and final vibrational states,
contribute to the process. Virtual transitions to higher
vibrational states, which occur at larger p, become
inessential.

For v „=8 the threshold peak appears in all cross
sections presented in Figs. 3 —S. However, the increase of
v „leads to the suppression of the peak in the cases
v =2 and 3. In the first case we still have the threshold
peak but the following rise of the cross section leads to
essential disagreement with the experimental results of
Rohr and Linder. ' Also, the absolute magnitude of the
cross section for v =2 is too large compared to the exper-
iment and other theories. In the case v =3 the suppres-
sion of the threshold peak agrees with the results of
Domcke and Mundel but the absolute magnitude of the
cross section is too large compared with their maximum

8—

o ~
C0

(D
tn
C/)

V70

1

0
0.00

I I I I

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
energy(eV)

0.3—
o ~

C0
o 0.2

0
0

0. 1

FIG. 3. Vibrational excitation of HC1 (u = 1), results of mod-
el 1. Solid curve, u,„=8; dashed curve, u,„=14; dotted
curve, u, „=20. Lang-dashed curve, experimental results of
Knoth et al. (Ref. 2).

0.0
1 .00 1.25 I .75

energy(eV)
2.00 2.25

FIG. 5. The same as in Fig. 3 for u =3.

I

2.50
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0
value of about 0.1 A . In this case we have better agree-
ment in absolute magnitude with Morgan et al. ' They
obtained the maximum value of about 0.37 A but their
maximum occurs near the threshold whereas our cross
section has the maximum at E =2.2 eV.

Let us turn now to the discussion of the v = 1 cross sec-
tion. As in most calculations, we see a sudden drop of
the v = 1 cross section at the v =2 threshold, followed by
a sharp rise. What is new in our results is that we ob-
tained small-scale oscillations in the region of the thresh-
old peak. These oscillations were first discussed by
Domcke ' as a boomerang phenomenon namely, the in-
terference of the outgoing wave in HC1 with a weak in-
going component which has been reAected by the attrac-
tive part of the HC1 potential curve at large p. Domcke
obtained these oscillations right above the threshold
peak. In our calculations they are seen also in the
threshold-peak region. A slight variation of the potential
curve for HC1 in the region near p„can drastically
affect the form and absolute value of the threshold peak.
This is demonstrated in Figs. 6 and 7 where we present
the results for VE using our old potential curve, ' and a
curve which is more attractive in the region near p„.
Note that in the last case we have a rather large absolute
value of the VE cross section at the threshold peak which
exceeds the experimental result. In contrast with non-
resonant theories we obtain such a large value when p„ is
still quite far from p=0 (namely, p„=0.45). Since the
VE cross sections, especially for v=2, are too large in
this model, we consider it less realistic.

In his time-dependent treatment of the problem,
Domcke introduced two time scales corresponding to the
time decay of the X shape resonance (which traps the
electron to form the HCl state) and the time of the os-
cillatory nonexponential decay of HC1 which is respon-
sible for the threshold peak. As we can see from the
boomerang phenomenon, one can introduce a third time
scale corresponding to the time of motion of the nuclei in
some effective potential until the refiection. However, it
is difficult to relate this potential to any of the fixed-
nuclei potentials (diabatic or adiabatic). Although
discrete states in these potentials do exist due to the
long-range polarization part, it is not the polarization
that causes these oscillations because they are mainly
affected by the behavior of the potential near the crossing
point. We think that the nonlocality of the problem is
the crucial point for the form of the threshold peak and
the boomerang oscillations. However, a simple physical
picture explaining this relationship still does not exist.
The time-dependent approach of Domcke and Ger-
titschke ' seems to be quite promising in that regard.

The boomerang oscillations were not obtained in ab in-
itio calculations. ' Apparently, this means that for the
appearance of the oscillations the resonance approxima-
tion is important. If few resonance terms were included
in the theory, the oscillations would probably be
smoothed out.

Since nonadiabatic and nonlocal effects are very impor-
tant near threshold, we cannot associate directly the
threshold peak with an S-matrix pole. The existence of
an isolated S-matrix pole near the threshold would lead
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FIG. 6. Comparison of the results from different models for
VE of U =1. Solid curve, model 1; dashed curve, model 2; dot-
ted curve, model 3 (see Table Ij; long-dashed curve, experimen-
tal results of Knoth et aE. (Ref. 2).

to either the Breit-Wigner form of the threshold peak or
to the form typical for the virtual or bound state near the
threshold,

(40)
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FIG. 7. The same as in Fig. 6 for U =2. Triangles are experi-
mental data of Rohr and Linder. (Ref. 1).

(a being a parameter) with some modifications for polar
molecules. Neither of these forms was obtained in the
resonance theory of Domcke and Mundel and in our ap-
proach. However, the investigation of the S-matrix poles
would be useful for the further understanding of the
problem and may be done using the explicit expression (9)
for the S matrix.

At this point it is worthwhile to mention that in
nonresonance theories the threshold peak is associated
with a virtual state at p &p„which gives another form of
the threshold peak than that observed experimentally.
Namely, the cross section has a very sharp rise with a
more moderate falloff as described by Eq. (40). In con-
trast, a resonance theory gives a broad peak with super-
imposed structure. The ab initio calculations of Morgan
et al. ' using polarized pseudostates look like the non-
resonant model results, whereas their static-exchange-
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FIG. 8. DA cross section. Dotted curve, experimental data
of Abouaf and Teillet-Billy (Ref. 29) for DA to U =0 normalized
to the measurement of Orient and Srivastava (Ref. 30) at the
peak.

polarization results look like the resonant model results
of Domcke and Mundel, except for the superimposed
structure obtained by Domcke and Mundel. The experi-
mental results are between the two sets of results of Mor-
gan et al. '

As in all resonance theories, we also obtained the
broad X shape resonance which was observed experimen-
tally. However, the position of this resonance is shifted
to lower energies due to the rather small value (about 1.5
eV) of the vertical attachment energy in our calculations.

The discussion presented above confirms our point'
that the resonance theory is adequate for the description
of all features of the VE cross section. However, the pa-
rameters of the model should be calculated with a very
high accuracy in order to reproduce the experimental
data near the threshold.

Another essential feature of ab initio calculations of
U(p) should be the proper account of the higher angular
modes for the projectile electron, since all model theories
(including the present one) take into account only the
lowest angular mode, which is mainly an s-wave mode.
Recent experimental results of Knoth et al. show essen-
tially a nonisotropic angular distribution of electrons in

the final state, indicating that the inclusion of the higher
modes is necessary for a proper calculation of the thresh-
old peak.

Let us now turn to the discussion of the results for the
DA cross sections. They do not exhibit as strong a
dependence on the number of vibrational levels as the VE
cross section and change very slightly starting from
u,„=8. In Fig. 8 we present cross sections for DA to
different vibrationally excited states of the HCl molecule
and compare the data for u =0 with the experimental re-
sults of Abouaf and Teillet-Billy normalized at the peak
to the measurements of Orient and Srivastava. We
have also studied the isotope effect —namely, DA to the
DC1 molecule. The comparison of peak values between
different theories and experiments is presented in Table
II. Like all other theories, our theory gives values that
are too low for DA to u=2, both for HC1 and DC1 as
compared to the experimental values. Also, our cross
section for DA to u =0 falls off too slowly in the energy
region between 1 and 2 eV. Otherwise, the agreement
with the experiment is good. The stepwise structure of
the cross section at the VE thresholds discussed in experi-
mental and theoretical ' papers is very well pro-
nounced.

VII. CONCI. USION

Although the first results' of ab initio calculations of
the inelastic processes in e-HC1 collisions have already
appeared, it seems that model calculations are still very
useful for at least two reasons. That is, they allow us to
get a better understanding of the physics of the processes
and give directions for ab initio calculations. According-
ly, we can conclude the following from the present work.

A large number of vibrational states of the neutral mol-
ecule should be included in order to get a convergence in
the close-coupling or R-matrix calculations. In order to
exclude the vibrational continuum, the long-range part of
the NCP should be added to the R-matrix potential curve
U(p) to obtain the physical DA threshold for U(ao ).
The corresponding modification of the function y(p)
should also be completed. This procedure corresponds to
the local approximation for the long-range part of the
NCP.

TABLE II. Peak values (in A ) of the cross sections for the DA to HC1 and DC1 in vibrational states
U =0, 1,2.

HCl
Theory Expt.

DCl
Theory Expt.

0 33'
6 90'
61.0'

0.14b

1 30
100b

0.30'
5.1'
44'

0.2
6.0
80

0.52'
90'
24'

0.266'
10.1'
234'

0.042'
0.68'
8.33'

0.033'
0.66'
6.0'

0.054'

'Present, model 1.
Bardsley and Wadehra (Ref. 5).

'Domcke and Mundel (Ref. 6).
Teillet-Billy and Gauyacq (Ref. 9).

'Morgan et al. (Ref. 16).
Experimental data are taken from the paper of Domcke and Mundel (Ref. 6), who combined different
absolute and relative measurements (Refs. 3, 30, and 31) to obtain these values.
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The absolute value of the VE cross section at the
threshold peak is determined primarily by the interaction
between vibrational states of the neutral molecule and the
eigenstates of Hl near the region p=p„. Very accurate
ab initio calculations of U(p) in the region near p„should
be performed to get a realistic VE cross section at the
threshold peak. On the other hand, the form of the
threshold peak may be strongly a6'ected by the
boomerang oscillations first found for HCl by Domcke '

in the region right above the threshold peak.
The resonance approach or any other theory implicitly

including the resonance concept (such as ab initio R-

matrix theory) seems to be adequate for the description of
inelastic processes in e-HCl collisions. We believe that
any other approach using a single potential curve for the
description of the HCl ion, such as the frame transfor-
mation theory of Greene and Jungen can be applied for
this problem.
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