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The Jaynes-Cummings model with cavity damping is investigated in the rotated-wave ap-
proximation. First we introduce six appropriate combinations of the matrix elements of the
density operator, which are still operators with respect to the light field. With the help of the s-
parametrized quasiprobability distributions of Cahill and Glauber [Phys. Rev. 175, 1882 (1969)]
the equations of motion for the density operator transform to six coupled partial-differential
equations. By expanding the quasiprobability distributions into two suitable sets, we obtain six
tridiagonally coupled differential equations for the expansion coefficients, which are solved by a
Runge-Kutta method. Starting with an initial coherent state of the cavity field and the atom
in its upper state, we find that the initially one-peak quasiprobability function splits into two
peaked functions counterrotating in the complex plane and, depending on the damping con-
stant, spiraling into the origin. Revivals of the inversion oscillation are found for those times,
when the two peaks collide. The time dependence of the inversion and the intensity as well as
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some special distributions of interest are also discussed.

I. INTRODUCTION

A fundamental problem in quantum optics is the in-
teraction of light with matter. One of the simplest mod-
els describing this interaction is the Jaynes-Cummings
(JC) model,! where a single two-level atom interacts with
one light mode of the cavity. In the rotating-wave ap-
proximation this model can be solved exactly. Starting
with a cavity field in a coherent state |ao) and with the
atom in its upper state it was found that repeated decays
and revivals of Rabi oscillations occur, see for instance
Refs. 1-6, and that for certain times the field mode shows
squeezing.”~ The predicted collapses and revivals of the
inversion oscillations are in agreement with the experi-
ments done with Rydberg atoms in a microwave cavity;
see Refs. 10 and 11.

In the experiments, the damping of the cavity mode
and the number of thermal microwave photons ny, are
not negligibly small. Thus for a detailed comparison with
experiments, cavity damping must be included in a treat-
ment of the JC model. With cavity damping one has to
solve an appropriate equation for the density operator,
which describes the system. This equation of motion for
the density operator is more difficult to solve. As far as
we know, no analytic solution seems to exist. (An even
simpler model, the so-called Raman coupled model,!?
however, can be solved analytically also with the inclu-
sion of cavity damping.'3) In the JC model damping was
already included by some approximation technique valid
for small damping and n¢,=0 (dressed atom approxima-
tion), see Refs. 14-16, or numerically without any such
approximation.!” In the last reference, an initial inten-
sity of the coherent field of Iy = |ag|?> = 2 has been used.
This number is too small to give pronounced repeated de-
cays and revivals of the Rabi oscillations without detun-
ing. For an appreciable detuning, however, the revivals
can be seen even for this low initial intensity.1” With the
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method presented below initial intensities up to I;=30
can be handled.

The main goal of the present work is the calculation
of the quasiprobability distributions of the light field.
(In the references on the JC model mentioned so far
no quasiprobability distributions have been calculated.)
Here we use the s-parametrized quasiprobability distri-
butions of Cahill and Glauber.!® By specializing the pa-
rameter s, the usual P, Wigner, and @ functions are
obtained. With the help of the quasiprobability distri-
butions one gains new insight into the mechanism of the
interaction of the single atom with the light mode. The
main result is the following: Starting with a light field in
a coherent state |ag) and with the atom in its upper state
the initial shifted Gaussian quasiprobability distribution
splits into peaks counterrotating in the complex « plane
on a circle with a radius given by given /I,. After the
splitting one has a decay of the Rabi oscillations of the
inversion. At the opposite side of the circle the peaks
collide. At this time one observes the revival of the Rabi
oscillations. Then the distribution splits again into two
peaks till they collide again at the original site of the cir-
cle and so forth. The collision of the peaks is connected
with the revivals of the Rabi oscillations. This effect is
found even without damping. With damping the coun-
terrotating peaks spiral into the origin till finally the sta-
tionary distribution is reached. Without damping the Q
function can be given analytically in terms of an infinite
sum, see Appendix A, and already shows this splitting.1®

Without damping a splitting was also found in the Ra-
man coupled model by Phoenix and Knight.?° In this
model a closed expression for the infinite sums can easily
be obtained.?’ As shown recently by Schoendorff and one
of us'3 the quasiprobability distribution and in particular
the splitting can be given analytically even for arbitrary
cavity damping constants for the Raman coupled model.

The main procedure for calculating the quasiprobabil-
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ity distributions is as follows. First we introduce the four
matrix elements of the density operator with respect to
the two-level atomic states. These matrix elements are
still operators with respect to the light field. Next we
form six suitable combinations of these matrix elements.
As it will turn out later on, these combinations lead to
more simple recurrence relations than the four original
ones. The equation of motion for the density operator
then leads to a closed system of six coupled equations for
the six combinations. With the help of the quasiprob-
ability distributions of Cahill and Glauber,'® the equa-
tions of motion are then transformed to coupled partial-
differential equations for the quasiprobability distribu-
tions. A suitable expansion of these distributions into
two complete sets finally leads to a system of ordinary
differential equations for the expansion coefficients. Be-
cause of the introduction of the six combinations these
equations are tridiagonally coupled in only one index. By
using a Runge-Kutta integration procedure for the tridi-
agonally coupled equations we thus obtain the quasiprob-
ability distributions. In addition, we also obtain the in-
version and the mean intensity as well as other moments
as a function of time.. This procedure and some of the
main results have been reported in Refs. 21 and 22.
The paper is organized as follows. In Sec. II the equa-
tion of motion for the density operator, its atomic matrix
elements, and the six combinations and their equations of
motion are given. These combinations are still operators
with respect to the light field. In Sec. IIT we introduce the
quasiprobability distributions and show that the coupled
equations of motion for the combinations are transformed
into coupled partial-differential equations. In Sec. IV
the quasiprobability distributions are expanded into two
suitable sets, which finally leads to a system of tridi-
agonally coupled ordinary differential equations for the
expansion coefficients. In Sec. V we solve these tridi-
agonally coupled equations with the Runge-Kutta proce-
dure and present the results for inversion, mean intensity,
variance, and various quasiprobability distributions. In
Sec. VI the photon distribution, the distribution of the
rotated quadrature phase as well as of the phase are pre-
sented. Finally in Sec. VII we summarize our results.

II. DAMPED JC MODEL
AND ITS EQUATION OF MOTION

As already mentioned the Jaynes-Cummings model
consists of a single two-level atom, coupled to a single
cavity mode. The Hamiltonian of this system reads, in
the rotating-wave approximation,® see also Ref. 23,

H/h =weala +wa0,/2 + g(act +alo™), (2.1)

where o,, ot, and o~ are the Pauli spin matrices, af
and a are the creation and annihilation operators of the
light mode, w, and w, are the frequencies of the atom
and of the cavity mode respectively, and g is the coupling
constant. In the presence of cavity damping with a decay
rate k the equation of motion for the density operator

p = p(t) of the system takes the form

p = —ilH/h,p) + kLic(p) , (2.2)

where L;,, which describes the irreversible motion caused
by cavity damping, is given by

Lie(p) = 2apa’ — pata — alap + 2nunlla, pl,a']
= (nen + 1)(2apa’ — pata — alap)

+ nen(2al pa — paat — aalp) . (2.3)

In (2.3) nyn = 1/{exp[hw./(kT)] — 1} is the number of
thermal quanta. In the interaction picture

expliw.(ala + o, /2)t] p exp[—iwc(ata + o, /2)t] = p
(2.4)

we obtain the same equation of motion (2.2) with (2.3)
unchanged, but with the transformed Hamilton operator

H/h = Ac,/2+ g(ac™ +alo™), (2.5)

where A = w, — w, is the detuning.
Introducing matrix elements with respect to the two

atomic states |T),|l) (denoting (1|p|1) by p11, etc.) the
equations of motion read

prr =ig(pria’ — apy) + kLic(prt)
pru=ig(pyra —alpry) + kLic(pyy)
(2.6)
P11 =—ilpry +ig(prra — apyy) + £Lic(pry) »
i1 =iApiy +ig(priat — alprr) + kLic(pyr) -
Notice that the atomic matrix elements are still operators
with respect to the light mode.

Instead of the four matrix elements pt1, p1},... we use
the following six combinations of the matrix elements:

pPL=p11+PLL

P2 =Pt —PLL >
ps=i(apyr = pr1a")/2, (2.7)
pa=i(pyra—a'p)/2,

ps = (apyy + pyiat)/2,

pe = (p1ra+a'py)/2.

These combinations are Hermitian operators with re-
spect to the light field. From the equations of mo-
tion of the four matrix elements we obtain the following
closed system of equations of motion for the combinations

P1;---,p6:
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p1 = —29p3+ 29ps + chir(Pl) ;
p2 = —29p3 — 29ps + £ Lir(p2) ,

p3 = —Aps + (9/4)(praa’ + aa'p, — 2ap;a’
+ p2aa'f + aang + 2ap2a*)
+ &[Lir(p3) — (2nen + 1)p3 + 2n¢npa) ,
(2.8)
pa = —Aps + (9/4)(2a'pra — a'apy — prata
+ 2a'pra + alapy + prata)
+ K[Lir(pa) + (2nen + 1)pa — 2(nen + 1)p3] ,

ps = Aps +i(g/4)(praat — aa’p; + praa’ — aalpy)
+ k[Lir(ps) — (2nen + 1)ps + 2nenps]

pe = Apa+i(g/4)(pra'a — alaps — paata+ atapy)
+ &[Lir(ps) + (2nen + 1)ps — 2(nen + 1)ps] -

As shown in Sec. III, the equations of motion for the ex-
pansion coefficients of the quasiprobability distribution
following from (2.8) are tridiagonally coupled in only one
index whereas the equations of motion for the expan-
sion coefficients of the four matrix elements are tridiago-
nally coupled in both indices. Therefore the equations of
motion for the expansion coefficients are much easier to
solve for the six combinations than for the four matrix
elements. The reason why (2.8) leads to a more simple
coupling than (2.6) is the following. In (2.8) the creation
and annihilation operators only occur bilinearly, i.e., in
the form pa'a, apal,..., whereas in (2.6), in addition to
these bilinear terms occurring in Li,, the creation and an-
nihilation operators occur also linearly, i.e., in the form
pal, pa, ... . In the equation for the quasiprobability
distributions in Sec. III these linear terms lead to terms
which contain exp(+i¢), whereas the bilinear terms do
not contain any explicit dependence on ¢ (though deriva-
tives with respect to ¢ do occur). The terms exp(+i¢)
lead to a coupling of the coefficients also in the other
index. .

The Fock representation of (2.8) is also much simpler.
Denoting the matrix elements in the Fock representation
by pn,m the terms apa! and afpa give rise to terms pro-
portional to pn41 m41 and pp_1 m—1. Thus the difference
n — m between the two indices is not changed. Introduc-
ing the sum and the difference of the two indices as new
indices leads again to a coupling in only one index.

If we are interested in the properties of the light field,
we have to perform a trace with respect to the atom (A4),
ie.,

Tra(p) =pri+puu=p1- (2.9)

If we are interested in the inversion D of the atom, we
have to perform a trace with respect to the atom (A) and
the field (F') according to

D = Trar(o:p) = Trr(prt — p11) = Trr(p2) -

Without detuning (A = 0) ps and ps do not enter into
the first four equations in (2.8). Because we are mainly
interested in the field (p1) and in the inversion (pz) we
Jjust need to solve the first four equations in (2.8) for
vanishing detuning.

(2.10)

A. Initial values

In this paper we assume that initially the atom is in its
upper state and that the cavity mode is in the coherent
state |ag). (For the sake of simplicity we further assume
that «q is real. If og is complex we can always transform
to a real o by a suitable rotation.) Therefore the initial
condition for the density operator of the system reads

p(0) = | TT| ® |exo){eo] -

The initial conditions for the six combinations py,..., ps
then take the form

£1(0) = p2(0) = |ao){exo] ,

(2.11)

(2.12)
p3(0) = p4(0) = p5(0) = ps(0) =0 .
B. Stationary solution

For a finite cavity damping constant & and a finite
coupling constant g the solutions of (2.8) always reach
the stationary solution for ¢ — oo,

P~ T 14+ ngn \ 1+ nen
=(1-e")exp(—rala),

p2(00) = =[1/(1 + 2nen)]p1(o0)

= — tanh(r/2)p1(c0) , (2.13)
pi(c0) =0 for ¢=3,...,6,
where 7 is the ratio
r = hw./(kT) . (2.14)

In the stationary state the inversion (2.10) is given by

D(o0) = —1/(1 4 2n¢) = — tanh[hw./(2kT)]

&~ — tanh[hw, /(2kT)] . (2.15)

In the rotating-wave approximation the damping con-
stant, the detuning, and the coupling constant must be

small compared to the frequency, i.e.,
K, IA') 9K Wwe R w, . (216)

Neglecting the coupling in (2.1), the stationary solution
in the original and in the interaction picture is thus given
by the thermal solution

p = exp[—Ho/(kT)]/Trar{exp[—Ho/(kT)]} ,
with Hy given by hw.ala + hwgo, /2.

(2.17)
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III. QUASIPROBABILITY DISTRIBUTIONS

As quasiprobability distributions we use the s-
parametrized quasiprobability distributions W (e, s) in-
troduced by Cahill and Glauber.!® These distributions
are c-number representations of the density operator,
which contain the usual quasiprobability functions (P,
Wigner, Q function) as special cases. In the present
case we use for each of the six p;(t) the distributions
Wi(a, s;t). They may be defined as Fourier transforms of
the characteristic functions (our definitions deviate from
those of Ref. 18 by a factor of 1/)

xi(€, s;t) = Trr[exp(€al — €*a + s|€]2/2)pi(2)] ,

ie.,

(3.1)

Wi(a,s;t) = -7;15 /Xs(f,S;t) exp(a* — a*€)d?¢ .
(3.2)

With these distribution functions, s-ordered products
({(a")®a™},); can be obtained by proper integration with
weight W;(a,s;t) in the complex « plane according to
{(ah)*a™}s)i = Trr[{(ah)"a™}spi(t)]
= /(a*)”a"‘VV;(a,s;t) d?a (3.3)

W1=—-2gW3+2gW4+lc( aI

Wo = —2gWs — 2gWs + & (2i

For the special choices of the parameter s = 1,0, —1, the
s-ordered products are the normal, symmetric, and anti-
normal ordered products and the quasiprobability distri-
butions are the P, Wigner, and @ functions. (For a defi-
nition of s-ordered products for arbitrary s, see Ref. 18.)

The system of equations of motion (2.8) transforms
into a system of partial-differential equations for the dis-
tributions W;. Applying the relations in Table I of Ref. 24
twice, this system is obtained by a simple though lengthy
calculation. For further considerations it is advantageous
to use intensity I and phase ¢ variables defined by

= VT exp(i¢) . (3.4)
Because of
a o} i 0 —
== (31" arag) VI
s}
— —i¢
=VIe (8[ 21 6¢) (3:5)

and its complex-conjugate counterpart, the transforma-
tion to intensity and phase variables is easily achieved.
In this way we obtain from (2.8) the following system for
the quasiprobabilities W;(I, ¢, s;t):

9
—I+ (Qnth +1- S)Ag) Wy,

I+(2nm+1- s)A2> W, ,

o1
W3=—AW5+% (1— %I+ = 1A2) Wi+ <2I+s+(1—25)—1+ se=DA )
0
+ k& (2——1 —2ngpn + 1)+ (2nen + 1 — S)Az) Wa + 2nthW4] )
o1 (3.6)
_— 7] s+1 g 7] s(s+1)
Wa= AW6+2(1 I+ A2> 2(2I+s——(1+25)611+ T8 ) W
e}
+ & ( aII+ 2nn + 1)+ (2nen +1 — s)Az) Wy — 2(nen + 1)W3] ,
oW, OW. i}
W5—AW3+ ( 6¢1 +T¢2>+ [(261[ (2nth+1)+(2mh+1—s)A ) W5+2nthW6] N
OW; OW.
We =AW, + = ( 3¢1 - %2) + kK [( 611+ (2nen + 1) + (2nen + 1 — 8)A2> We — 2(nen + 1)VVs] .
T
Here A, is an abbreviation for Therefore the inversion (2.10) now takes the form
o .0 1 6%
AZ_WIE-*.EEF’ (3.7) [
which is one-fourth of the two-dimensional Laplace op- D() = E/0 0 Wa(l,¢,s;t) dI dg . (3.9)

erator. Because of (2.9), the Cahill-Glauber distribution
for the light field is given by W;(I, ¢,s;t). In the inten-
sity and phase variables the integration with respect to
a has to be replaced according to

oo p2m
/-~-d2a=>%/ / --- dldg .
[¢] [¢]

(3.8)

The initial conditions for the distributions Wj(a, s;1t)
are easily obtained by inserting (2.12) into (3.1) and eval-
uating the integral in (3.2). At t=0 the W), W, are
shifted Gaussians in the « variable. With ao = /T real,
the W; read in intensity and phase variables for =0



350 J. EISELT AND H. RISKEN 43

Wl(Iy¢:s;0)
:WZ(I’¢y5;0)
-2 ( 2 _(1-2/II I)
_ﬂ_(l_s)exp —(1—5)( - ocosp+ 1Ip) |,

Wi(I,,50)=0 for i=3,...,6. (3.10)

For the stationary distribution W; we obtain from
(2.13)

WI(I)¢7S;OO)
2 21
N = ). 31
m(1 — s+ 2ny,) exp( 1—s+2nth) (3.11)

IV. EXPANSIONS OF THE
DISTRIBUTION FUNCTIONS

In order to handle the coupled partial-differential equa-
tions (3.6) we expand the distributions W; into two com-

plete sets. Because the W;(1, ¢, s;t) are periodic in ¢ and
only defined for I > 0 we use a Fourier series with respect
to ¢ and Laguerre functions with respect to I, i.e.,

Wl d,si)=3" S e (1/Tyr2

m=0 n=-o00
x LI"D(1/TYexp(~1/T). (4.1)

Here LS’l‘nI) are the generalized Laguerre polynomials and
I is an arbitrary scaling intensity, which is chosen such
that good numerical convergence is achieved. Inserting
the expansion (4.1) into (3.6) and using the recurrence
relations and orthogonality relations for the generalized
Laguerre polynominals,?® we obtain the following equa-
tion of motion for the expansion coefficients (m > 0,
coefficients with a negative index m formally occurring
for m = 0 can be omitted because of the prefactor m):

&), = —29¢3), + 29, + klamcl),_; — (2m + |n])el,]

&2, = —29c®), — 2g¢), + klamcP), _; — (2m + |n])cR]

&2 = —A), + g{(1 + m + |n|/2)c, — m[1 — (1 — s)/(21))c))

n,m-—1

+[21(2m + 1+ |n]) + s — (1 = 25)(m + |n]/2)]c?)— bTmeP) = 21(m + 1 + n])c{), 11 }/2
+ Ii:[amcgzn_l — (2m + |n| + 2nen + 1)6532,, + 2nthc$f,,)n] ,

& = —A®, + g{(1 + m+ |n]/2)cS), — m[L + (1 + 5)/(2D)]cY)

(4.2)

n,m—1

+[2I(2m + 1+ Inl) + s+ (1 + 25)(m + |n|/2))c?) — b~ mcZ), 1 — 2I(m + 1 + |nl)c() 11 1/2
+ klamelt), ) — (2m + |n] = 20 — 1)c{, — 2(nen + 1)1,

n,m+1

&8, = Ac®), + ign(c$), + ) /4 + wlamel), ) — (2m + |n] + 2nen + 1)eS), + 2ncE]
&9, = Ach), +ign(c$), — ¢B)/4+ slamel), _y — (2m + n| = 2ng — 1)c), — 2(nen + 1)el),] .

The constants a and b* are defined by

a:2—(2nth+1——s)/f,
(4.3)
bt =2T+2sF1+s(sF1)/(2]).
By introducing the vector
(1)

Cn,m

n

Cm = ; (4.4)
o

the system (4.2) can be cast into the tridiagonal vector
recurrence relation

ém = Q;;cm—l + chm + Q;{;;Cm+1 ’ (45)
with matrices Q% and Q,, following from (4.2). In the

[
system (4.2) of ordinary differential equations or, equiva-
lently, in the tridiagonal vector recurrence relation (4.5)
a tridiagonal coupling occurs in only the second index m,
the first index n appears only as a parameter. Because
of this simple coupling, it is quite easy to solve (4.2) or
(4.5). If we apply the same method to the four matrix
elements p11, p1y, P11, p1| We obtain, in addition to the
tridiagonal coupling in the second index m, also a tridi-
agonal coupling in the first index n.

A. Initial values

In order to obtain the initial values for the expansion
coefficients cS:,)m we first expand the phase part of the
initial distributions Wi, W3 in (3.10) into modified Bessel

functions I,, according to

exp[z cos(¢)] = Z I,(2) exp(ing) .

n=-—00

(4.6)
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Comparing the exp(ing) terms of (3.10) with the corre-
sponding terms in (4.1) we have for ¢ = 1,2

e () (350

1—s 1—s

= S @ /DMLY (1T Yexp(~1/T)

m=0

(4.7)

Multiplying this equation by (I/I)"/2LI"D(1/7), inte-
grating the resulting equation over I, using the orthogo-
nality relation for the Laguerre functions and Ref. 26 we
thus obtain

e (0) = ¢{u(0)

_ ml (gg)'"'“ 2l +s—1Y)
T al(m+ )\ I 21

w LAnD (_~_2{0___) ,
m™o\2l+s—1

¢D.,(0)=0 for i=3,...,6. (48)

B. Expectation values

Expectation values are usually expressed by some of
the first few coefficients. For instance, the averaged in-
tensity, the averaged complex amplitude, and the inver-
sion are given by

I(t) = (I) = Trplalap: ()]
o0 2m
:&/0 /0 IWi(I,é,5;t) dI dg — (1 — 5)/2
= w2 [§d(t) — SO - (1—s)/2, (4.9)
a(t) = Trr[ap1(t)]
= %/0 /ﬂ VI Wy (I, ¢,s;t) dI dé

=132 (1), (4.10)

D(t) = (o:) = Trr[p2(t)]
:%/00 Wal(I, ¢,s;t) dI dé

=l c(3(t) . (4.11)
(To derive (4.9) we have used the relation ata = {ata}, —
(1 — s)/2 for the s-ordered product, we have expressed
IbyI [Lgo)(I/f) - Lgo)(I/I~ )] and applied the orthogo-
nality relations for the Laguerre polynomials.) Thus, in
order to obtain I(t) and D(t), we need to solve (4.2)
only for n=0, to obtain a@(t) we need to solve (4.2) only
forn = —1.

C. Numerical method

The system (4.2) or, equivalently, the tridiagonal vec-
tor recurrence relation (4.5) with given initial conditions
such as (4.8) can be integrated by any numerical method
for solving systems of ordinary differential equations. For
these numerical methods the infinite system has to be
truncated. The truncation indices M and N at which
the infinite sums in (4.1) are truncated must be cho-
sen such that a further increase of M and N does not
change the results within a given accuracy. The trunca-
tion indices increase for increasing initial photon intensi-
ties. For Ip=10 we get results with an accuracy sufficient
for the plots with M =100 and N=20. Because the ex-
pansion coefficients are not coupled in the first index n,
we can integrate the system for each n separately. As
already mentioned the p; in (2.5) are Hermitian opera-
tors. Therefore the W; are always real, leading for the
expansion coefficients in (4.1) to the relation

), () = [, (0] .

Thus we generally need to integrate the system (4.2) only
for n > 0.

For the integration we have used a fourth-order Runge-
Kutta method.?” With the Runge-Kutta method the next
time step follows through some intermediate steps explic-
itly from the previous one. Using the vector notation we
thus obtain the coefficients c,,(t + h) at the later time
t + h from the previous coefficients ¢, (t) starting with
m=0 and proceeding to m = M. This procedure has the
advantage that the previous coefficients can be overwrit-
ten. Therefore, besides 6 x 12 coefficients needed for the
intermediate steps, we only need to store 6 x M complex
numbers. Even for M =100 a PC can easily handle these
numbers and therefore the integration can be performed
on a PC. The value of the time step h has to be chosen
in such a way that a further decrease does not change
the final result. If h is too large, numerical instabilities
usually occur.

As explained in Chap. 9 of Ref. 28, the eigenvalues
as well as the Laplace transform of the Green’s func-
tion of the tridiagonal vector recurrence relation (4.5)
can be obtained in terms of matrix continued fractions.
By numerically inverting the Laplace transform of each
of the coefficients, the solution of (4.5) with the initial
values (4.8) may in principle be obtained. If only a few
coefficients as in (4.9)—(4.11) enter, this method is fea-
sible. For calculating the quasiprobability distribution
W, where all the N x M Laplace transforms of the coef-
ficients csllzn need to be inverted, this procedure becomes
too time consuming. Therefore the direct integration as
described above is much more suitable for calculating the
quasiprobability distribution.

(4.12)

V. RESULTS

We first discuss the @ function for vanishing damp-
ing. As explained in Appendix A without damping the
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@ function is easily evaluated. The method developed
in Secs. II-IV also works for vanishing damping up to
Iy = 30. For the initial condition (2.11) the contour lines
of the @ function are shown in Fig. 1 for several times.
In addition, the inversion D(t) as a function of time is
also shown in this figure. As seen, the initial distribution
of the @ function is a single Gaussian distribution cen-
tered around ap. The most striking result is that in the
course of time the initial one-peaked function splits into
two peaks, which counterrotate on the circle |a| & ap till
they collide at ¢ = 7. Then they split again, collide at
¢ = 0 and so on. Near the initial time the inversion shows
pronounced Rabi oscillations. When the distribution has
split into two peaks the Rabi oscillations collapse. At the
collision of the peaks a revival of the Rabi oscillations is
observed. The details of the initial splitting are shown in
Fig. 2. At first the maximum shifts a little bit to a larger
value because the inversion goes down and the light in-
tensity is thus increased. Next the inverse effect occurs,
i.e., the peak is shifted to lower intensities. After a cou-
ple of oscillations the peak is finally split into two peaks.
A similar oscillation of the intensity is observed when the
peaks collide at ¢ = .

In the course of time the width of the peaks in the ¢
direction increases monotonously. If it has spread along
the circle |a| & ap, the collapse of the inversion ceases to
exist. Finally for very large times we obtain the nearly
annular but coarse structure, see Fig. 3.
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FIG. 1. (a) Contour lines of Q(a,t) = Wi(a,—1,1) in
the complex o plane without detuning A = 0 and damping
k = 0 for Iy = 40 at the times gto = 0, gt; = 10, gt2 = 20,
gts = 40. (b) The inversion D(t) as a function of gt for the
same parameters. The times o, t1, t2, t3 are indicated by
the vertical bars.
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FIG. 2. Initial splitting of Q(«, t) = Wi(a, —1,t) without
detuning A = 0 and damping k = 0 for Jo = 10. Shown are
those times which correspond to the extrema of the inversion,
see the black squares in the inset.

With a small damping constant the two peaks first
counterrotate and at the same time move towards the
origin, or in other words, they spiral in a countermotion
towards the origin, see Fig. 4. As was the case without
damping, the width in the ¢ direction becomes broader.
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|
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5 Re(a)

FIG. 3. Contour lines of Q(a,t) = Wi(e,—1,1)
= 0.004,0.008, ... for the large time gt = 430 and for I = 40,
A=£k=0.
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4 . . .
0 Re(a) 0 Re(a)

FIG. 4.

The contour lines of Q(a,t) = Wi(a,s = —1,1)
in the complex o plane for the times (a) gt = 0, (b) gt = 10,
(c) gt = 20, (d) gt = 30, (e) gt = 50, (f) gt = 100. The
parameters are /g = 0.005, A = 0,ny, = 0,03 = Iy = 10.
The circle |a| = ao is also dotted in.

In contrast to the case without damping, the structure
becomes smooth and nearly independent of ¢ for larger
times, see Fig. 4(f). Near the origin the distribution still
has a minimum for this time. Finally this minimum be-
comes a maximum in the course of time and the distri-
bution shrinks to the stationary distribution (3.11).

The Wigner distribution is shown in Fig. 5 for the same
parameters as in Fig. 4. The main differences between
the Wigner and the @ functions are that the Wigner
function is smaller than the @ function and that rapid
variations with negative values appear near the real axis.
They are similar to those found for the superposition of
two coherent states.?®

In Fig. 6 the inversion and the mean intensity are
shown as a function of time. For vanishing damping

It)+D®)/2=Io+1/2 (5.1)

is a constant of motion, i.e., oscillations of the mean
intensity always lead to oscillations of the inversion.
Though for finite damping (5.1) no longer holds exactly,

o ) 'R-'(a) 0 'Ro'(u)

FIG. 5. The contour lines of the Wigner function
Wi(a,s = 0,t) in the complex a plane for the times and
the same parameters as in Fig. 4. Negative values are shown
by dashed lines. The circle |a| = ap is also dotted in.

oscillations of the mean intensity still lead to oscillations
of the inversion. The main feature of the mean intensity
is, of course, the decay of the intensity. Disregarding the
small rapid oscillations this decay is approximately given
by

I(t) = (Io + 1/2) exp(—2k«t) . (5.2)

It is worth noticing that the inversion D remains nearly
zero up to those times, where the light intensity is of
the order 1. Then the inversion approaches its station-
ary value (2.15). The mean complex amplitude is shown
in Fig. 7. The real part of the complex field shows a
damped oscillation as a function of gt. As seen for finite
ngy, the damping increases. The minimal eigenvalue of
the variance matrix V,.., Vi, ... of the quadrature phases
a, = (a+a')/2 and a; = (a — a')/(2i) is shown in Fig. 8.
As already said in Ref. 22 each peak of the @ function
already shows squeezing, see Appendix A. Usually the
quadrature phase is calculated from the density opera-
tor. This is equivalent to calculating the matrix of the
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quadrature phase from the total @) function. Then we can
get squeezing only for those times, where the two peaks
collide. As seen in Fig. 8 this squeezing ceases to exist
already for a larger number of thermal photons as well as
for a larger cavity damping. It should be noted that these
averaged quantities do not depend on the parameter s
used for representing the density operators. As already
remarked by Kuklinski and Madajczyk,'® by choosing an
appreciable detuning, squeezing is increased. This effect
is easily seen by comparing Fig. 8(a) with Fig. 8(b).

In the figures of the quasiprobability distributions dis-
cussed so far we have not included detuning. In Fig. 9 the
@ function is shown for an appreciable detuning. As is

D i) (@
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4 (iii) L
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0 100 200 gt

FIG. 6. (a) Theinversion D(t) and (b) the mean intensity
I(t) as a function of gt for the damping constants (i) /g =
0.002, (ii) k/g = 0.005, (iii) k/g = 0.01 and for A = 0, ny, =
0, af = Io = 10. The dotted line in (b) is the approximation
(5.2).
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FIG. 7. The real part of the average complex amplitude

a(t) = (a) as a function of gt for the parameters (i) /g
= 0.002, nn = 0, (i) x/g = 0.005, nen = 0, (iii) /g = 0.005,
ngp = 1.5 and for A = 0, &} = Ipb = 10. [For vanishing
detuning the imaginary part is identical to zero for the initial
conditions (2.11) with real ao.]
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FIG. 8. (a) The minimal eigenvalue of the variance ma-
trix of the quadrature phases as a function of gt for (i) /g
= 0.005, ny = 0.1, (ii) k/g = 0.005, nw = 1.5, (iii)
k/g = 0.05, nen = 0.1, and for @f = Ip = 10 without detuning
A = 0. (b) The minimal eigenvalue for the same parameters,
but with the detuning A/g = 5.
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FIG. 9. Contour lines of Q(a,t) = Wi(a,—1,t) in the

complex o plane with the detuning A/g = 5. The other

parameters are the same as in Fig. 4.

the case without detuning a splitting of the initial distri-
bution into two peaks, which counterrotate in the com-
plex a plane, is also observed. In contrast to the case
without detuning the peaks have different heights. As
was already discussed in Ref. 2 for the occurrence of the
revivals of the inversion, the motion is slower with de-
tuning.

It seems to be of some interest to compare the atom-
light mode interaction of the JC model with the interac-
tion of two coupled harmonic oscillators with the same
frequencies. If only the first oscillator is excited initially,
all the energy goes first into the second oscillator. Then
it goes back again into the first oscillator and so on. Af-
ter the energy has moved back to the first oscillator the
first time, the amplitude shows a phase shift of . Such
a phase shift is also observed for the JC model, see the @
function in Fig. 1 and the averaged amplitude in Fig. 7.
In the JC model the atom can absorb only one photon.
Thus a large initial photon energy must stay in the oscil-
lator. The phase shift is achieved by splitting the large
initial distribution. For large initial photon energies the

atom needs a long time to reverse the amplitude of the
oscillator.

VI. SPECIAL DISTRIBUTIONS

In this section we show how to obtain some special
distributions of interest from the quasiprobability distri-
bution. Because the density operators p can be expressed
by the quasiprobability distributions according to'3

= l/W(oz,s)e[f'(““"‘)—5("'—Of')—-'lfl’/2] d% d2¢
™

(6.1)

any distribution, which is defined in terms of the density
operator, can be expressed in terms of the quasiproba-
bility distribution. In particular, we discuss the photon
distribution, the distribution of the quadrature phases,
and the phase distribution.

A. Photon distribution
The photon distribution p,, is defined by

Pa = Tx(|n)(n|p1) = (nlp1|n) . (6.2)

By inserting (6.1) into (6.2) and by using the matrix el-
ements of the exponential operator in (6.1) listed in Ap-
pendix B one can express p, by the parametrized distri-
bution W according to3° (s > —1)

®= 2 (s~1 "/ooex U
Pl =1 \5+1 o PAT5+1
47
xL,,(—-—-l_sz)

xw (I,s;t) dI,

(6.3)

where L, are the Laguerre functions and wy(Z, s) is the ¢-
averaged distribution (with respect to I, w; is normalized
to unity)

2

wl(Iys;t) = % Wl(I)d’a S;t) dé . (64)

For s — 1 (6.3) specializes to the well-known result3!

pa(t) = /0 (1 fnt) exp(=I) wi(I, ;1) dI . (6.5)

Insertion of the expansion (4.1) into (6.4), which in turn
is inserted in (6.3), finally leads to3°

© n 21‘: m+1
i)=m c(l) 4 —_—_
(0= 33220 (77727
<)) )
v v 2l +s+1 )
(6.6)
For squeezed states W; and therefore also w; does not

exist for s = 1. In the numerics the final result (6.6)
works, however, also for s — 1. As already remarked
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FIG. 10. The photon distribution for the times (a) gt = 0, (b) gt = 10, (c) gt = 20, (d) gt = 150. The parameters are

I =10, k/g = 0.05, ny, = 1.0, A = 0.

in Sec. II, (2.8) takes also a simple form in the Fock
representation. This representation leads immediately to
a tridiagonally coupled system of differential equations
for ps,') = (n|p;|n}), which can be solved similarly as (4.2).

A typical result of the evolution of the photon distri-
bution is shown in Fig. 10. In the course of time the
initial Poisson distribution finally reaches the thermal
Bose-Einstein distribution. As it should be, it is inde-
pendent of the parameter s.

B. Distribution of the rotated quadrature phases

According to Refs. 32 and 33 a homodyne detector
measures the following linear combinations of the cre-
ation and annihilation operators:

#(0) = [2(0)]' = (a'e'® + ae™**)/2 = a, cosb — a;sin b,
(6.7)

J

) _ 1 oo 27 oo ' ) )
w(x,ﬁ,t)_z-;[) A [oo Wi(I, ¢ + 6, s;t) exp[—sn /8+zr](\/1:cos¢—a:)] dI d¢ dn .

where the a, and a; are the two quadrature phases

ar = (a+a')/2, a; =i(a' —a)/2. (6.8)

Though a measurement of the rotated quadrature phase
inside the cavity seems to be out of the question in the ex-
periments of Refs. 10 and 11, it is nevertheless worthwhile
to discuss the distribution of this quadrature phase. Be-
cause £(6) is a Hermitian operator, it has a positive dis-
tribution function w(z, ;t). This distribution can be ob-
tained from the quasiprobability distribution. As shown
recently by Vogel and one of us3? the reverse is also true,
i.e., if the probability distribution for the rotated quadra-
ture phase is known for every € in the interval 0 < 6 < ,
then the quasiprobability can be obtained.

The explicit expression for w(z, 8;t) takes the form3
[instead of the real and imaginary part of the integration
variable we use the intensity, and the phase variable (3.4)]

4

(6.9)
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After some intermediate steps, the insertion of the ex-
pansion (4.2) leads to°

w(z,0;t) = Z Z Anm c,(f)n(t)e"”g

m=0n=-oc0
2
x H = z
2mtnl ( 21+ s )
2 2
X exp (— -z ) ,  (6.10)
21+ s

where H,, are the Hermite polynomials and where A,
is an abbreviation for

C(=ymevAl (T
- I+5/2

Figure 11 shows a typical example of the distribution of
the rotated quadrature phase for various angles 6. In
Fig. 11(a) the two peaks of the @ function are very well
separated. For zero 6§ we see pronounced oscillations
whereas for § = 7/2 we see a two-peak structure. In
Fig. 11(b) the two peaks of the @ function have collided.
Here we have one small peak for zero # and a broader
one for § = 7 /2.

An,m

m+(Inl+1)/2
) (6.11)

m!y/|n|!

C. Phase distribution

A prescription for a Hermitian phase operator, which
has the required properties of a phase operator (see

(a)

W(x,8)

1
1
1
4

W(x,8)

4
4
91

FIG.11. The distribution w(z, 8;t) of the rotated quadra-
ture for the angles § = 0 (lowest curve), 17w /16, 2x /16, ...,
87 /16 (upper-most curve) and for (a) gt = 10 and (b) gt = 20.
The other parameters are the same as in Fig. 4.

for instance Ref. 35), was recently given by Pegg and
Barnett.36:37 In the Fock representation for the states
|#m) their discrete distribution for the phase [see (6.9) in
Ref. 37] leads in the limit of a very large number of states
to the continuous phase distribution
1 (o]
P(¢,t) = 5 m%;o(mlm(t)ln) expli(n — m)g] .

(6.12)

Here the phase distribution is normalized to one for ¢ in
the interval (0,27). For the pure state p; = |1hsq)(¥sql,
(6.12) reduces to the phase distribution (4) and (6) of
Ref. 38 or (3.4) and (3.5) of Ref. 39. By inserting the
density operator (6.1), by using the matrix elements (B1)
and Ref. 26 we can express the phase distribution by the
quasiprobability distribution according to (s > —1)

oo p27
P(¢,t)=§/0/0 K(I,6—¢,8)Wi(I, ¢, ;1) dI d .

(6.13)
Here the kernel K has the form
N T , /
K(I¢=¢'8) = 5- ,,:.::oexp[z(" = m)(é~¢)Bmn ,
(6.14)

where the coefficients By, , for (m > n) are given by

n! s—1\"(s+1\" "}
_,/___ m-n)/2 (2" ~
Bum,n = m! I ( 2 ) < 2 >
41 21
(m-n) —
x Ly (l_sz>exp< 1+S),

see also (6.51) of Ref. 40 (here one has to replace s by
—s). The coefficients By, n for m < n follow from

Bm,n = Bn,m .

(6.15)

(6.16)
In the limit s — 1 the B coeflicients specialize to

B = IM+M/2=1 1 /il

Then the corresponding kernel is the phase distribution
(6.12) for the coherent state |v/T exp(i¢’)).

By inserting in (6.13) the sum (4.1), the phase distri-
bution can thus be obtained. The lengthy expression con-
tains four sums*! and will not be given here. In Fig. 12
some typical phase distributions are shown. As time
increases the one-peak structure splits into a two-peak
structure. For large times it reaches a constant distribu-
tion.

Sometimes it is said that the phase distribution P(¢)
cannot be measured and is therefore only of theoretical
interest. As was shown recently by Vogel and one of
us® the quasiprobability can be expressed in terms of
the rotated quadrature phase, which can be measured.
Because of (6.13), the phase distribution can thus also
be measured in principle.

(6.17)
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FIG. 12.

same as in Fig. 4.

VII. SUMMARY

The quasiprobability distributions for the Jaynes-
Cummings model with cavity damping have been ob-
tained. The first main step of our procedure has been the
introduction of six suitable combinations of the four den-
sity operators, i.e., of the four atomic matrix elements.
By introducing quasiprobability distributions for each of
the six combinations the equation of motion has been
transformed into a system of partial-differential equa-
tions. By expanding the distributions into two complete
sets, a system of ordinary differential equations has been
obtained for the expansion coefficients. This system is
tridiagonally coupled in only one index, which simplifies
the numerical procedure considerably. For the final in-
tegration a Runge-Kutta method was used, which was
specially adapted to the tridiagonal form. In this way
various quasiprobability functions (Q and Wigner func-
tion), mean intensity and inversion, as well as the photon
distribution, the distribution of the rotated quadrature
phase, and the phase distribution have been obtained.

The main result of our investigation is the splitting of
the quasiprobabilities. If we start with a coherent state,
i.e.,, with a shifted Gaussian quasiprobability distribu-
tion, this distribution splits into two peaks counterrotat-

2 g v v T T v ¥ 2 g T v

-2 0 2 ¢

The phase distribution P(¢,t) for (a) gt =0, (b) gt = 10, (c) gt = 30, (d) gt = 50. The other parameters are the

ing in the complex plane. Rabi oscillations of the inver-
sion are observed initially and when the two peaks collide,
during the splitting the Rabi oscillations disappear.
The present investigation can be extended into several
directions. We may use, for instance, different initial con-
ditions. One may start with a thermal light field or with a
shifted squeezed field instead of the coherent field always
assumed in this paper. For the last initial condition ring-
ing revivals of the Rabi oscillations have been found by
Satyanarayana et al.%? Preliminary investigations show
that in this case also a splitting occurs, each of the two
peaks having, however, a more complicated structure.
We may also treat the case of the micromaser, in which a
new excited atom is injected into the cavity and the pre-
vious one is removed. An approximate theory has been
developed by Krause et al.,*3 where cavity damping was
neglected during the time, in which the atom is in the
cavity. With the present method this problem can be
treated without switching off the cavity damping. Here
we have to start the system (4.2) again every time a new
atom is injected in the cavity. The previous density op-
erator of the light field operator is then used as the light
operator for the new initial condition. In this way the
buildup of the light inside the cavity and its dependence
on the damping constant and the thermal photon number
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can be investigated.

So far we have assumed that initially the atom is in its
upper state. If we take as initial conditions those which
correspond to only one of the split peaks, nondiagonal
elements of the atom density operators have to be taken
into account. In this case only one peak is moving around
and revivals of the Rabi oscillations do not occur.

A more complicated model than the JC model may also
be treated by the method presented in this paper. We
may, for instance, consider more eigenstates of the atom
or we may even treat the case of two or more atoms. A
multiphoton JC model may also be treated. Hilsenbeck
and one of us** have applied the method to a two-photon
JC model with cavity damping. In this system a splitting
of the quasiprobability is also observed.
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APPENDIX A: Q FUNCTION
WITHOUT DAMPING

Starting with an initially coherent state |ag) (o
= /Ty ) in the upper state of the atom, the solution
of the Schrodinger equation with the Hamilton operator
(2.5) takes the form"?3

[$(0) = exp(~10/2) > "ﬁ [An(®)In)] 1)

+ Ba()In+1)[ 1)]

(A1)
where the functions A,(t) and B, (t) read
A, (t) =cos(A,t) — l?% sin(Ant) ,
(A2)
B,(t) = _i_n_\/—)‘?_g sin(Ant) ,
with A, given by
A = VA2/A 4 (n 4 1)g2 . (A3)
The @ function of the light field is defined by
Q(a,t) = Wi(a, —15¢) = Tra[(alp(t) )]/, (A4)

where the density operator is expressed by the wave func-
tion according to p(t) = |¥(t)){(¥(t)|. Insertion of (Al)
leads to

Q(a,t) = (IVal® + |VB[*) /= (A5)
with V4 and Vp given by
_ Lo |ol*) 5~ (Vo o)
Va4 =exp (—— 2 " ';) o An(t) ,
(A6)
_ Lo o\~ (o) o
Ve =exp ( 2 2 ';) n! \/n+an(t) '

By approximating the sums by integrals similarly as done
for the inversion in Ref. 2, analytical expressions for the
Q@ function can also be derived. Without detuning one
thus obtains in a first approximation!®

Qe t) = Q4 (a,t) + Q-(a,t) (A7)
with
Qi+ = N exp(—az® £ 2bzyy — cys?) ;
z=la|—ar, yr=ao(é¢LT1). (A8)

The quantities N, a, b, ¢ are expressed in terms of the nor-
malized time

T = gt/(2a0) (A9)
according to
4 T 1
=2 b=— N = ——— .
c il a=2-—c, 2c , AT
(A10)

The contour lines of (A8) are ellipses. They fit quite well
with those of Fig. 1(a). The angle v between the major
axis of the ellipses and the tangent to the circle |a| = ag
is given by tan(2y) = 2/7. The width of each of the Q.
functions can easily be obtained from the eigenvalues /\;

of the quadratic form in (A8). They are given by

/\; =1x7/V/4+712.

(A11)

If 7 is not too large, each of the Q4 functions in (A8) de-
scribes the @ function of a squeezed state. For a proper
rotated coordinate system the squeezing parameter C
(IC] £ 1/2), as defined in Ref. 45, is given by

C=1/2V4+72).

Thus for 7 > 0 one obtains an appreciable amount of
squeezing for each of the @4 functions.

The approximate expressions (A7) and (A8) do not
show the fluctuations of the peaks as seen in Fig. 2. A

(A12)
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more accurate approximation analysis,*6 however, also
reveals these fluctuations. The analysis explains that the
fluctuations of the peaks and the Rabi oscillations of the
inversion disappear if the two peaks do not overlap. In
Ref. 46 the long-time behavior is also investigated.

|

(m|exp(€*a — €at)|n) = exp(—|€|2/2) x {

Vnl/m! (—{)"‘“”L%m_n)(lflz) form>n
v/ m!/n! (f*)”—ngﬁl_m)(]ﬂz) forn>m.

APPENDIX B: MATRIX ELEMENTS
OF THE EXPONENTIAL OPERATOR

The matrix elements of the exponential operator oc-
curring in (6.1) with respect to the Fock states are given
by40

(B1)

If we use generalized Laguerre polynomials with a negative upper index as defined on p. 240 of Ref. 25, we do not

need to distinguish between the case m > n and m < n.
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