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Improved accuracy in adiabatic cross sections for low-energy rotational and vibrational excitation
of molecules by electron impact
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We have developed a first-order adiabatic scattering theory for the calculation of low-energy rovi-
brational cross sections. This theory is more efficient computationally than a full coupled-state
method because it transforms coupling of intermediate states into a parametric dependence on nu-
clear coordinates, and it is more accurate than the conventional adiabatic nuclei method because it
correctly conserves energy in the entrance and exit channels. As formulated, this theory can easily
be implemented using available computer programs that solve fixed-nuclei scattering equations. We
derive this theory for rotational and vibrational excitation with both local and nonlocal potentials
and assess it by application to e-H2 collisions.

I. INTRODUCTION

The problem of accurately calculating near-threshold
inelastic electron-molecule cross sections has been vexa-
tious for years. Near-threshold cross sections are impor-
tant for applied research in such areas as gas-discharge
devices and pollution control. ' These cross sections also
provide fundamental insight into a uniquely sensitive,
purely quantum-mechanical collision process. Yet, data
on near-threshold electron-molecule scattering remains
fragmentary, discordant with existing experimental re-
sults, and subject to a variety of theoretical concerns.

At present, two approaches to calculating low-energy
electron-molecule cross sections predominate. In the
most rigorous, laboratory-frame close-coupling (LFCC)
theory, ' the electron-molecule wave function is ex-
panded in complete sets of rotational and vibrational
eigenfunctions of the target and angular momentum
eigenfunctions of the projectile. In the most widely used
approach, the adiabatic-nuclei (AN) theory, " ' one
simplifies the LFCC equations via two approximations.
First, one separates target and projectile variables in the
system wave function, ' which allows independent treat-
ment of the collision dynamics and purely kinematic
effects and greatly reduces the computational effort re-
quired to solve the scattering equations. Second, one
equates the energy of the projectile in the exit channel to
its energy in the entrance channel. This "target-state de-
generacy" approximation ignores the energy lost by the
electron in exciting the target and enables one to calcu-
late the transition matrix on the energy-momentum shell.
The comparative simplicity of AN calculations have
made possible studies of rotational and vibrational excita-
tion on systems far more complicated than those to
which one can apply LFCC theory. '

But for collisions near threshold neither approach is
satisfactory. Qn the one hand, extensive coupling of rota-
tional, vibrational, and angular momentum eigenfunc-
tions by the nonspherical, nonlocal electron-molecule po-
tential makes converging LFCC cross sections computa-

tionally impossible (to date) for systems except e-H2. On
the other, a breakdown of the assumptions of AN theory
at low scattering energies' introduces significant errors
in near-threshold cross sections, ' ' errors that for vibra-
tional excitation are enormous. ' These problems are il-
lustrated in Fig. 1, which compares LFCC and AN cross
sections for pure vibrational and rovibrational excitations
of H2.

The alternative method presented in this paper pro-
duces low-energy cross sections that are significantly
more accurate than those of AN theory but does so
without incurring the computational demands of LFCC
calculations. Figure 1 shows the rationale for our ap-
proach: if in the LFCC equations all channel energies are
artificially set equal to the entrance-channel energy, then
the resulting "degenerate LFCC" cross sections are near-
ly identical to those obtained in an AN calculation. The
AN and degenerate-LFCC calculations share the approx-
imation of target-state degeneracy, but the latter does not
make the additional assumption of separation of vari-
ables. In the present method we retain the assumption of
separation of variables but use the correct energies for
the entrance and exit channels. Figure 1 shows that the
resulting formalism, which is almost as simple computa-
tionally as the AN method, is almost as accurate as the
far more CPU-intensive LFCC method.

The mathematical structure of this formalism, which
we call the first-order nondegenerate adiabatic (FONDA)
theory, differs little from that of the AN method. Both
are based on the solution of fixed-nuclei (FN) scattering
equations in a body-fixed (BF) reference frame, followed
by transformation of an approximate scattering matrix
into the (space-fixed) laboratory frame (LF) where cross
sections are calculated. Consequently, the FONDA
method should be easily applicable to a variety of
electron-molecule systems. Moreover, its implementation
requires very little code development, because most of the
necessary machinery is available from sources such as the
CPC Program Library. The latter includes, for exam-
ple, thoroughly tested programs for calculating various
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FIG. 1. The effect of various approximations to the nuclear dynamics on the accuracy of pure vibrational excitation (0,0~1,0) and
rovibrational excitation (0,0~1,2) e-H2 cross sections: rigorous treatment via the LFCC method (solid curves), "degenerate LFCC"
calculations in which channel energies are artificially set equal to one another (crosses), the AN approximation (long-dashed curve),
and the FONDA method (dots).

components of the interaction potential and coupling
matrix elements, solving differential scattering equa-
tions, evaluating cross sections from scattering ma-
trices, and other tasks.

In two earlier brief papers ' we introduced the
FONDA approach and presented a few results for e-H2
scattering in a local-potential approximation. Here we
derive the equations of the FONDA method for rotation-
al and vibrational excitation for local and nonlocal poten-
tials (Sec. II). Then, following a brief summary of the
necessary numerical procedures (Sec. III), we present a
study of rotational and vibrational excitation of H2 (Sec.
IV). We have chosen this system for the first application
of the FONDA method because it is sufficiently simple
for us to calculate benchmark LFCC cross sections with
which to assess the accuracy of approximate theories.
Unless otherwise stated, atomic units are used
throughout this paper.

II. THEORY

To clarify our derivation of the FONDA theory and to
situate the method in a context of other formulations, we
begin with a brief overview that does not explicitly en-

gage the major complications of the electron-molecule
system. Then, in Sec. IIC, we introduce these features
and derive the FONDA reactance matrix for a local po-
tential. In Sec. IID we extend the theory to potentials
that contain nonlocal terms.

project out of the time-independent Schrodinger equation
the ground X 'Xs (Born-Oppenheimer) electronic wave
function of the (homonuclear diatomic) target. The re-
sulting "reduced" Schrodinger equation depends on the
coordinates of the projectile (r) and of the nuclei of the
target, which are the coordinates of the internuclear axis
in the LF (R), i.e.,

(T, +&'"'+ V —E)go(r, R) =0,
where T, is the projectile's kinetic energy and E is the to-
tal energy.

An essential complicating feature of the scattering
equation is that go(r, R) cannot (rigorously) be separated
as a product of a function of r and a function of R, be-
cause the interaction potential V "couples" these vari-
ables. This potential includes (i) a static term, which is
the average of the bound-free Coulomb interactions over
the ground-state molecular electronic function, (ii) a non-
local exchange term which incorporates the antisymmetr-
ization requirement, and (iii) a correlation/polarization
term which approximates induced polarization and
bound-free correlation eFects.

The molecular dynamics are represented in Eq. (I) by
the nuclear Hamiltonian, which is the sum of the rota-
tional Hamiltonian, the vibrational Hamiltonian, the
nucleus-nucleus Coulomb potential, and the ground-state
electronic energy:

&'"'=&'"'+IV"+ V'"'+ G '(R ) . (2)

A. Preliminaries

Since we are interested in scattering energies well
below the first electronically inelastic threshold, we first

This Hamiltonian defines the energies of the target states
via its eigenvalue equation, letting the index v denote ro-
tational (j,m ) and vibrational (v) quantum numbers, we
can write this equation as
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For a diatomic molecule with rotational constant 8, and
vibrational constants co„x„and D„ the eigenvalues are
given approximately by '

E = tv, (v+ —,')—co,x, (v+ —,')

does it preserve this correspondence.
To solve (7) exactly one could expand Po in the com-

plete set of target states Ig,(R)I. In terms of channel
scattering functions g (r'), the resulting coupled in-

0

tegral equation, which we shall need in Sec. II 8, is

+Bj (j + I ) Dj—(j +1) (4)

Conservation of energy in the inelastic collision
v o jo ~v,j requires that

E=—'k +E =—'k +c

Nonseparability of the electron-molecule scattering func-
tion $0 appears as coupling of intermediate target states

y ~ to the final-state y via the matrix elements

go(r, R) — (2~) ~ e ' y, (R)

(open) vj

+ g

The assumption of target-state degeneracy in the AN
method violates this requirement, and Fig. 1 shows that
this violation is primarily responsible for the breakdown
of that method near threshold.

To develop the FONDA alternative, we begin with the
exact integral equation for the scattering amplitude

f (r) which appears in the asymptotic (plane-wave)

boundary conditions

The FONDA approximation eliminates this significant
computational complication.

B. The FONDA philosophy

The essential assumption underlying the FONDA ap-
proximation is separability of the electron-molecule wave
function in the entrance channel: i.e., we replace t/io in (7)
by the product of the wave function for the initial rovi-
brational state of the target (vo) and an adiabatic elec-
tronic function which we denote coo..

go(r, R) =coo(r; R)y (R) .

For an electron which induces the excitation vo~v and
scatters in the direction k, =k, r, the (post) form of this
equation is

f, (r)= (2~)—' fe " g,*(R)V(r', R)go(r', R)dr'dR.

Note that in (7) the exit-channel corresponds (properly)
to a product of wave functions for the final target state v
and for an outgoing plane wave of energy k, /2. Just as
the FONDA theory preserves energy conservation (5), so

I

The scattering function coo is adiabatic in that it depends
pararnetrically on the molecular coordinates; it is in this
important sense that (10) resembles the Born-
Oppenheimer approximation of molecular structure
theory. Because this replacement is uniquely associ-
ated with the entrance channel, coo corresponds unambi-
guously to the incident energy ko/2. In particular, this
function satisfies the single-particle scattering equation

(T, + V —
—,'ko)coo(r;R) =0 .

Substitution of Eq. (10) into the exact inelastic ampli-
tude (7) leads to an approximate amplitude that is correct
to first order in the interaction potential, "viz. ,

f'„"(r)= fy*(R) —(2m. )'~ f e " V(r', R)cvo(r';R)dr' y, (R)dR . (12a)

The quantity in large parentheses in (12a) is an adiabatic
scattering amplitude; denoting this quantity fo(r;R), we
can write this equation as a matrix element with respect
to the initial and final target states, i.e. ,

(12b)

Structurally Eq. (12b) resembles the inelastic amplitude
of canonical AN theory, but it differs from its AN coun-
terpart in one crucial respect: fo(r;R) is an off-shell am-
plitude and therefore correctly incorporates the ener-
gies of the exit channel (in the wave vector k„) and the

entrance channel (in the function coo).
Comparison of the exact amplitude (8) with its

FONDA approximate (12a) reveals that the separability
approximation (10) has transformed the coupling of the
intermediate states v' to the final state v into a parametric
dependence of the scattering function mo on the coordi-
nates of the nuclear geometry.

Were we to further approximate Eqs. (12) by evaluat-
ing the adiabatic amplitude fo on the energy shell (i.e., by
setting k„.=ko), we would reduce the inelastic amplitude
(12) to the AN amplitude, which is second order in the in-
teraction potential. " Because the AN amplitude treats
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the initial and final target states as degenerate, it violates
the conservation of energy requirement (5).

The impact of this violation on the accuracy of the AN
cross section depends on the proximity of the incident en-
ergy to the threshold and on the energy loss E —c0 ex-
perienced by the electron as a consequence of the excita-
tion. For example, the threshold for the v0=0 —+v =1
excitation in e-H2 scattering is about 0.5 eV, while that
for the pure rotational excitation 0~2 is about 0.04 eV;
correspondingly, the errors due to the AN approximation
for vibration are far more severe and encompass a much
wider range of energy than those for rotation. ' ' Be-
cause the FONDA theory is based on an off-shell ampli-
tude, it eliminates this source of error at the modest cost
of requiring integration over the adiabatic electronic
function in Eq. (12b).

C. Implementation for electron-molecule scattering

In practice, implementation of the FONDA formalism
is complicated by the fact that the nonspherical potential
V couples the rotational angular momentum of the target
j and the orbital angular momentum of the projectile I so
that neither is a constant of the motion. However, the
square of the total angular momentum J=j+I and its
projection on the (LF) quantization axis e, are constants
of the motion, and it is extremely important in any prac-
tical collision theory to exploit the resulting invariance
properties of the scattering matrix.

To do so we require a basis of eigenfunctions ofJ, i.e.,
the coupled-angular-momentum (CAM) representation of
LFCC theory. Specificall, the CAM basis consists
of eigenfunctions of J,J„l,j, and &~'~. If we approx-
imate the target eigenfunctions as products of spherical
harmonics (to represent the rotational motion) and vibra-
tional functions, i.e.,

y, (R)=P, (R)Y (R), (13)

$0(r, R)=g g C(joloJ;m m& M)
J lp, m&

p

X c( (ko)%'„( (r, R) . (15)

Here C(joloJ;m~ m& M) is the Clebsch-GordanJo o

coefficient appropriate to the entrance channel and

c( (ko)=(ko, lo, mr ~ko) =ko 'i YI* (ko) (16)

effects the necessary change of basis from plane-wave to
angular momentum eigenstates. The (exact) integral
equation for the K matrix corresponding to 4, I is'oJo o

then these basis functions are products of vibrational
eigenfunctions P, and the coupled angular functions '

P& (rR)= g C(jlJm mM)Y (R)YI (r) . (14)
m. , mI

These angular functions are not separable in r and R, so
in the CAM formulation, projectile and target variables
are inextricably mixed. This feature makes implementing
a Born-Oppenheimer separation of those variables much
less straightforward than in Eq. (10) of Sec. II B.

To recast the FONDA equations in the CAM repre-
sentation we must introduce a wave function whose
boundary conditions identify the entrance channel with
energy ko/2 and with initial quantum numbers lo, mi,

0
and J. We cannot use the wave function $0(r, R) because
its boundary conditions, Eq. (6), identify the entrance
channel with the wave vector k0. But the desired func-
tion +, &

is simply related to fo, i.e.,'oJo o

K.
vJI» vp Jp Ip jj&(k, r)p,"(R)%JIM (r, R)f'(r, R)%', I (r, R)drdR,

Vj 0

(17)

where j~(k,~r) is the Riccati-Bessel function evaluated
at wave number k, .

1. The BFFN radial functions

In order to effect a parametrized separation of vari-
ables in the CAM representation, we call upon the solu-
tion of the electron-molecule Schrodinger equation in the
fixed-nuclear-orientation approximation, which amounts
to neglecting molecular rotations for the duration of the
collision. "' ' To facilitate the solution of this equation,
one usually writes it in a body-fixed coordinate frame
defined so that the polar axis is coincident with the inter-
nuclear axis. The axes of the BF are related to those of
the LF via a simple Euler-angle rotation.

We begin by defining a LF adiabatic electronic func-
tion coI (r;R) that obeys appropriate angular momen-

p lp

turn boundary conditions [cf. Eq. (15)]. This function is
related to the adiabatic function coo(r;R) of Eq. (10) by
the transformation matrix (16), i.e.,

coo(r;R)= g c, (ko)co, (r;R) .
lp, mi

0

We now expand co& (r;R) in partial waves so as to in-
pmI

troduce LF radial scattering functions, viz. ,

1
o»( (r;R)= —g u( I (r;R)Y( (r) .

l, mI

We can relate these LF radial functions to their BF
counterparts via the Wigner rotation matrices,

u& &
(r;R) =+2)' A(R)uii (r;R)2) z(R) .

A
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The summation index A is the quantum number for the
projection of I on the BF polar axis (the internuclear
axis). It is important to note that, contrary to appear-
ances, this rotation does not eliminate the crucial para-
metric dependence of the LF adiabatic scattering func-
tions on R. This dependence does not, however, ap-
pear explicitly in the BF radial functions uII (r;R) be-

cause the rotation (20) has transformed it into the sum
over A.

2. The FONDA CAM X matrix

To develop the FONDA approximation to the LF
CAM K matrix (17) we first factor out of 'P, i I (r, R) the'oJolo
initial vibrational state function P, (R ), viz. ,0

%. . . (r, R)=AJ. , (r, R;R)P, (R), (21)

where the multiplicative factor 0 I depends parametri-Joo
cally on R. To separate the angular variables of rotation-
al motion, we introduce CAM LF radial scattering func-
tions by expanding the vibrationally adiabatic function
Q I in the angular basis of Eq. (14),Joo

Q, &
(r, R;R)=—g uJ, i (r;R)P;I (r, R) . (22)

j', I'

We approximate the rotational dynamics by replacing

jlp
u I 1 I (r;R)=g Alt', uII (r;R) AJ('~ .

A

(23)

For a diatomic target the elements of this transformation
are

1/2
Jl 2j+1 c(j lJ.OAA)2J+1 (24)

The LF CAM equivalent of the FONDA separation (10)
is simultaneous application of (21) and (23). Introducing
these separability approximations and the expansion (22)
into the exact integral equation (17) for the LF CAM K
matrix, we obtain an expression for the first-order ap-
proximation:

the LF function by appropriately transformed BF func-
tions in the fixed nu-clear ori-entation approximation
These are just the functions u&1 of Eq. (20). But since the

angular momenta are coupled in (22), we must relate
these functions to the LF radial functions by a rotational
frame transformation which simultaneously rotates the
BF FN scattering function into the LF through Eq. (20)
and transforms the rotated FN function into the CAM
representation. ' Like the simple rotation of Eq. (20),
this transformation changes the parametric dependence
of the LF CAM scattering function on R into a sum over
A:

~J(1)
UJI, vp Jp Ip fj&(k, r)P,*(R)P.

& (r, R)V(r, R)—g g 2'~u& I (r;R)A ~ P'i (r, R)P, (R)drdR . (25)

Fortunately, this expression is amenable to considerable simplification. The integration over angular variables r and
R introduces the rotational coupling matrix elements of conventional LF CAM theory,

&~.~J'1 (r,R)= fP,.& (r, k)V(r, R)P'. i, (r, k)drdk .

But, like the radial functions in (23), these matrix elements are related to their BF counterparts by the rotational frame
transformation (24),

VJ.I 1'( (r)=g AJ~. VI (, (r) A,~, .J Jl A' Jl'

A'
(27)

If we insert Eqs. (26) and (27) into Eq. (25), we can use the orthogonality of the rotational frame transformation to
evaluate the sum over j ' in (25) and then execute the sum over A' in (27). We obtain an equation for the K matrix that
involves only radial integrals,

KJ(1) y y gJ!
UJI, uOJOlp f j I(k, r) g VI, , (r, R)utI (r;R) dr

Uj 0
(28)

=2 g VI (. ( r, R )u (~i ( r; R ),
I'

(29)

This form shows how the FONDA approximation
transforms coupling of (all) intermediate rotational states
j' to the final state j into a sum over A. The BF radial
functions in the integrand in (28), which depend parame-
trically on R and, through g~, on R, solve the BF FN
coupled radial integrodifferential equations for the "body
energy kb /2

2

+k ( 'R)
dr r 0

subject to the K-matrix boundary conditions

uII — 5u j( (kbr) KII (R)R((kbr), — ' (30)

where 8'&(kbr) is the Riccati-Neumann function evaluated
at the body wave number kb.

Just as in the derivation of Sec. IIA we wrote the
FONDA scattering amplitude in terms of an off-shell am-
plitude in Eqs. (12), here we can write the FONDA CAM
K matrix (28) in terms of the off-shell (FN) K matrix
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Kg (k„j,ko, R) —= f j,(k„r) g V, , (r, R)ui i, (r;R) dr
Qk„,ko

(31)

as

(32)

3. The (local) FONDA equations in a convenient form

We can write the FONDA K matrix for a local poten-
tial ' in a form convenient for computation by intro-
ducing the Legendre projections vz(r, R) of the (axially
symmetric) potential,

V(r, R)=g v~(r, R)P~(cos8) . (33)
Because the energy of the BF radial functions is unambi-
guously identified with the entrance channel, i.e.,
k&/2=ko/2 in Eqs. (29), the FONDA approximation
does not suffer from the ambiguity of definition of the BF
energy that plagues AN theory. More importantly,
since the adiabatic K matrix in (31) is evaluated off the
energy shell, the FONDA K matrix properly conserves
energy according to Eq. (5).

Although the FONDA K matrix (28) depends only on
the initial and final target wave functions, it is not merely
an approximation to the reactance matrix of two-state
close-coupling equations. Because it is based on a Born-
Oppenheimer separation via Eqs. (21) and (23), this K
matrix incorporates coupling to all intermediate states
through its parametric dependencies on R and (in the
sum over A) on R.

In terms of these projections, the BF coupling matrix ele-
ments in (28) are simply

V& & (r, R)=g gz(ll', A)vz(r, R) (34)

with coupling coefficients
1/2

g~(ll'; A) = 2l'+ 1

2l +1 C(l'l, /;AO)C(l'A, l;00) . (35)

With these definitions we can write the radial integrals in
Eq. (28) as

Ii~(k, 11O,R):— j~(k, r)v~(r, R)ui I (r;R)dr (36)
p 0

and the FONDA approximation (28) to the LF CAM K
matrix as

~J(1)
ujl, u0j010 gg (il', A)(Q„~I, (k„ il;R)~P, )

V kvjko A I', A,

(37)

This form shows the steps one must carry out to evalu-
ate the FONDA E matrix for a particular rovibrational
excitation.

(i) Evaluate the frame transformation and coupling
coefficients of Eqs. (35) and (24) in terms of Clebsch-
G ordan coefficients.

(ii) Calculate the Legendre projections vz of the poten-
tial V, here assumed to be local.

(iii) Solve the BF FN coupled equations (29) for the
electron-molecule symmetries required to converge the
sums over A and I' in the K matrix (37); this step is
simplified by the fact that except for very-low-order sym-
metries (e.g. , A ~ 1 for e-H2) one can trivially calculate
the contributions to these sums using the unitarized Born
approximation.

(iv) Evaluate the FONDA radial integrals (36) via sim-
ple radial quadratures over r and R.

Because it completely eliminates coupling to intermediate
target states, this method, although not quite as simple
computationally as the AN approximation, requires far
less computer time than a fully converged rovibrational
close-coupling calculation.

4. Reduction ofFONDA to AN theory

If we impose on the FONDA K matrix (32) the further
approximation of target-state degeneracy (see Sec. IIB)

K„(R)=— f j,(k, r) g V, , (r, R)uI'I (r;R)dr,
0 kp P

(38)

evaluated at the incident wave number k&=kp. Corre-
spondingly, the FONDA K matrix becomes the (second-
order) K matrix of conventional AN theory,

K ' ' =g A ' (p, ~Kii (R)~p, ) A. Aupi, u0g010
(39)

This reduction shows that in the hierarchy of electron-
molecule collision theories, the FONDA K matrix (37)
sits between the exact LF CAM K matrix of Eq. (17) and
the AN approximation to this matrix, Eq. (39).

D. FONDA Theory with nonlocal potentials

A rigorous representation of the electron-molecule in-
teraction includes two kinds of nonlocal terms: exchange
potentials and bound-free correlation potentials. (The
latter arise because certain two-particle Coulomb interac-
tions are neglected in a one-electron treatment. ) Strictly

I

by setting k, =kp in the exit-channel wave function
j&(k,jr), then the off-shell adiabatic K matrix (31) col-
lapses onto the energy shell, where it becomes the K ma-
trix of conventional BF FN theory,
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speaking, then, the potential V in the reduced
Schrodinger equation (1) is the sum of local electrostatic
and polarization terms and nonlocal exchange and corre-
lation terms. The nonlocal potentials are integral opera-
tors that, like the local terms, couple both partial waves
and target states.

Much of the development in Sec. IIB leading to the
FONDA LF CAM K matrix (37) applies whether or not
the potential V contains nonlocal terms. But if present,
nonlocal terms give rise to an additional K matrix that
must be added to the local matrix (37). In this section we
show how to modify the FONDA method if nonlocal po-
tentials are present by using as a specific case the ex-
change operator V,„. As in previous subsections, we first
modify the simple scattering amplitude of Eqs. (7) and
(8), then the LF CAM E matrix (17).

1. The FONDA nonlocal scattering amplitude

If V contains a nonlocal term V,„, then the coupling
matrix element in the exact scattering amplitude (8) con-

V,,(r')g, „(r')=fJY„,(r', r")g, (r")dr" . (40)

The function A, is the matrix element between target
states g and y of the exchange kernel%'(r', r"), which,
in turn, is defined in terms of the X „Born-Oppenheimer
occupied molecular orbitals g,. of the target as

(41)

The exact exchange amplitude for an electron with outgo-
ing wave vector k, =k, r has the form

sists of two terms: a local element, which simply multi-
plies the channel functions g,. (r'), and a nonlocal ele-

0

ment, which acts on these functions as an integral opera-
tor, i.e.,

(42)

where to avoid clutter we have suppressed the dependence of the exchange kernel and its matrix elements on R.
To develop the FONDA approximation to this amplitude, we insert the exchange matrix elements into (42) and apply

the FONDA separation (10), obtaining

f"' (r) f,„=fy,*(R) —(2~)'~~ f f e "' R(r', r")coo(r";R)dr'dr" g (R)dR . (43)

The full FONDA scattering amplitude is just the sum of
Eqs. (12a) for the direct potential and (43) for the ex-
change term.

In practice, evaluation of the exchange amplitude is
complicated by the sixfold integral over the projectile
coordinates. By expanding the adiabatic scattering func-
tion coo(r";R) in partial waves we can reduce this to a
twofold integral over r' and r"—but evaluating even this
integral is quite time consuming.

We can greatly simplify this calculation by represent-
ing the kernel on a basis of orthogonal X functions g(r)
which diagonalize it. In practice, we choose these basis
functions from the bound and virtual molecular orbitals
of the molecule, which we construct as symmetry-
adapted linear combinations of multicenter Cartesian

I

I

Gaussians (see Sec. III).
We write the resulting separable representation of the

exchange kernel in terms of these basis functions and the
kernel eigenvalues ~ as

%'(r', r")=g g*(r';R)ic (R)rl~(r";R) .
y

(44)

All of the quantities in Eq. (44) depend on the internu-
clear separation and thus participate in the integral over
R in the matrix element (43).

Introducing this separable representation into the
first-order amplitude (43) transforms the off-shell ampli-
tude (the quantity in square brackets) into the product of
two single-variable integrals, viz. ,

f,"„' (r) f,„=fy„*(R) —(2')' ps. (R) f e
' "' 'g*(r';R)dr'

y

r";R coo r";R dr" y R dR . (45)

Subsequent expansion of ~o in partial waves reduces each
integral in (45) to a single radial integral. Because the ex-
change basis I g~ ] consists of X functions, these in-
tegrals are short range and can be evaluated with a sim-
ple radial quadrature. Alternatively, the first integral in
large parentheses in (45) can be evaluated in closed form
provided the exchange basis functions are expressed as a
linear combination of Cartesian Gaussians.

2. The FONDA nonlocal K matrix in the CAM representation

The derivation of FONDA LF CAM exchange K ma-
trix begins with Eq. (17) for the exact integral equation,
with V replaced by the exchange potential V,„, and
proceeds as in Sec. II C2 until Eq. (25). In the next step,
which relates the LF CAM matrix elements to BF cou-
pling matrix elements via the rotational frame transfor-
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~jt j t (r, r»j'I j I ( r;R)dr

where the (fixed-R) LF CAM exchange kernel is'

~m(r', r")
~ W,'~&

(46)

(47)

and the matrix element in (47) implies integration over r',
r", and R.

mation, we must allow for the nonlocal effect of the LF
matrix elements on the (fixed-R) radial scattering func-
tions, i.e.,

V t'.t.(r)u,'t t (r;R)

The LF CAM exchange matrix element in (46) trans-
forms under the rotational frame transformation (24) just
like its local counterpart in Eq. (27). This transformation
introduces the BF FN kernel %'&&., which is just the ma-
trix representation of A(r', r") in an angular momentum
basis with quantization axis R, i.e.,

%'&&(r', r")=—r'r" f f Y&* (r')A(r', r")Y, (r")dr'dr".
I

(48)
The resulting FONDA CAM exchange E matrix
structurally resembles the local form (28) but contains a
double radial integral over the BF FN scattering func-
tions [see Eq. (43)j,

J(1) JIK„t„ t,„= $, g AJ~ g f f jt(k, r)%'tt. (r, r')ut t (r', R)dr dr'
Jp Up

(49)

To simplify the double radial integral in Eq. (49) to a product of two short-range integrals as in Eq. (45), we represent
the kernel on the X exchange basis [y) (r;R )}.If we expand these basis functions in Legendre polynomials, and denote
the resulting projections by yiy&(r; R ), we can write the (fixed-R ) nonlocal BF exchange matrix element (48) as

Att. (r, r')=g y)yt(r;R)tty(R)yiy( (r', R) .
y

(50)

3. The (nonloeal) FONDA equations in a eonuenient form

Inserting Eq. (50) into Eq. (49) leads to a form for the exchange K matrix that is analogous to (37) for the local K ma-
trix. We define radial integrals akin to the local integral (36),

X (k, l;R)—= f J't(k, r)yiyt(r;R)dr,
0

Zyt. (kplp', R)—: yiyt. (r;R)ut ( (r;R)dr,
0 X Q

and write Eq. (49) in the convenient form

(51a)

(51b)

K~Jt,' J / ~,„=— y Aj~p y (y, ~Ky(R)Xy(k„l;R)Z / (kplp, R. )~y„) A
Qk, k

(52)

Our final result, the FONDA approximation to the LF CAM K matrix for a potential that includes local and nonlo-
cal terms, is just the sum of (52) and its local counterpart (37),

K, t", J t
= — . g A~~ g hagi(ll', A)(, $, ~Iti(k,Jllp', R) p, )

2

V'k.,ko

+g (P ~t~y(R)Xy(k lR)Z t (kplp R')~P ) A
y

(53)

In Sec. IV we use this K matrix to calculate differential
and integral cross sections for e-H2 collisions.

III. THE INTERACTION POTENTIAL
AND COMPUTATIONAL DETAILS

In Sec. IV we consider three cases: rotational excita-
tion from a local potential, rotational excitation from a
nonlocal potential (both in the rigid-rotor approxima-
tion), and vibrational excitation from a local potential.
This section describes parameters and potentials used in
these cases.

A. Numerical considerations

To ensure that differences between cross sections from
calculations based on different scattering theories actual-
ly reflect physical features that distinguish those theories,
we must require a level of numerical accuracy of 1% or
better in the solution of the scattering equations, calcula-
tion of integrals, and evaluation of cross sections.

In addition, we independently verify our FONDA cal-
culations in two ways. First, we numerically reduce the
off-shell FN K matrix (31) to its on-shell BF FN counter-
part (38) which we can independently compute by solving
Eqs. (29) subject to the boundary conditions (30). To do
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so we just evaluate the off-shell FN K matrix (31) with
the exit-channel energy k, /2 artificially set equal to the
entrance-channel energy k0/2. (For studies of vibration-
al excitation, we perform this check for several internu-
clear separations. ) We find agreement to three or more
decimal places in all elements of the K matrix that make
significant contributions to differential or integrated cross
sections.

Second, we artificially reproduce AN cross sections in
a FONDA calculation by modifying the FONDA code to
implement the additional approximation of target-state
degeneracy by setting k„=k0 in all integrals in Eq. (28).
The resulting "pseudo-AN" cross sections agree with
those from independent AN calculations to better than
1% at all energies.

B. The e-H2 potentials

In several recent papers we have described in
detail the static, local model exchange, and
correlation/polarization potentials used in this
work. ' ' So here we shall merely summarize salient
features of these potentials. All are based on a Hartree-
Fock representation of the ground electronic state of
Hz. Thus we write the X 'X~+ wave function as a Slater
determinant of symmetry-adapted molecular orbitals.
For the static and model-exchange potentials we calcu-
late these orbitals using a (5s2p/3s2p) basis of contract-
ed nucleus-centered Cartesian Gaussian functions.
The equilibrium (R = 1.402a0) electronic energy for the
ground state of H2 in this basis is —1.132 895E&, which is
quite close to the HF limit ' of —1.133 63E&. The quad-
rupole moment averaged over the ground vibrational
state is 0.4704ea0, which compares favorably to the ex-
perimental value of 0.474+0.034ea 0;

The local model exchange potential is based on a free-
electron-gas approximation for the target represented by
this HF charge density. The mathematical form of this
potential contains a parameter I which is usually equated
to the ionization potential of the target; to improve on
the free-electron-gas approximation for the (two-electron)
H2 molecule, we choose this parameter at each internu-
clear separation so that model-exchange eigenphase sums
in the X„symmetry at 0.54 eV are equal to those from an
exact exchange BF FN calculation; this determination is
carried out at the static-exchange level. ' We use the
resulting l(R) for all symmetries and all energies; no fur-
ther adjustment is performed.

The correlation/polarization potential is based on a
(6s3p/4s3p) basis that is quite similar to the aforemen-
tioned (5s2p/3s2p) basis but that includes additional s-
type and p-type diffuse functions to allow for polarization
distortions of the neutral charge cloud. ' With this
basis we perform variational calculations of the polarized
and unpolarized energies and compute the polarization
potential as the difference of these energies; in evaluating
the two-electron bound-free integrals for this calculation
we further implement a nonpenetrating approximation to
allow for nonadiabatic effects. The resulting potential
includes adiabatic polarization effects exactly.

Asymptotically this potential reduces to a simple ana-

lytic function of the H2 polarizability tensor, which there-
fore can be used to assess the accuracy of at least its
long-range form. Evaluating this tensor at each R and
averaging the result over the ground vibrational state, we
obtain 5.376ao and 1.410ao for the spherical and non-
spherical components of the polarizability tensor, respec-
tively. The experimental values of these quantities
are 5.4265a0 and 1.3567a0.

In calculations where exchange effects are included via
the nonlocal operator V„, we use the separable repreen-
tation described in Sec. IID [see Eq. (44)j. Essential to
this representation is the choice of the symmetry-adapted

functions that will represent the kernel. Figuring out
how to construct this "exchange basis" for inelastic col-
lisions is neither simple nor obvious, for although the ker-
nel is compact, it is not governed by a stationary princi-
ple. To keep our focus here on the FONDA method, we
simply present our exchange basis, deferring further dis-
cussion to a future publication.

The exchange basis functions g~(r) in Eqs. (44) —(52)
diagonalize the kernel. But for an arbitrary exchange
basis [qr(r)] this operator is not diagonal; instead its se-
parable form is

A(r, r')=g g*(r)K &q&(r') .
a, P

(54)

In practice we diagonalize the matrix K & to obtain the
functions gr(r) and the eigenvalues ~(R) which appear in
Eq. (44). All quantities in Eq. (54) depend on the
(suppressed) internuclear separation R.

We construct our e-Hz exchange basis from the set of
normalized multicenter Cartesian Gaussian functions in
Table I. This set includes "compact" functions (centered
on the nuclei) that span the region of the target charge
cloud and "diffuse" functions (centered on the center of
mass of the molecule) that span the fringes of the charge
cloud. (A highly accurate representation of both regions
is essential for separable representations of exchange in
inelastic scattering calculations. ) The basis in Table I
yields 14 2 functions, 14 X„ functions, 9 II functions,
and 11 II„ functions.

C. The local FONDA X matrix

Once the potential is specified and the solution of the
BF FN scattering equations completed, calculation of the
FONDA LF CAM K matrix for a local potential requires
only evaluation of the radial integrals (36). For this pur-
pose we use a simple Numerov integrator with a max-
imum propagation radius of 130a0.

These integrals are then put into sums over A, t', and A,

in the final expression for the FONDA K matrix, Eq.
(37). For e-H2 we achieve the desired 1% convergence by
including A=O, 1, and 2 (i.e., all X, II, and 5 sym-
metries), five partial waves l', and Legendre projections
of the potential for A, =O, 2, 4, and 6. (Only even values
of A, contribute because H2 is homonuclear. )

Having determined the FONDA K matrix, there
remains only calculation of cross sections from the corre-
sponding LF CAM transition matrix T, &

„-
&

. In the to-
UJ, Up Jp p'

tal integrated cross section
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TABLE I. Basis set for separable exchange potential: primitive Cartesian Gaussian functions of the
2

form t)1, (n, l, m, g;r) =N„(g)r" 'e "
YI (r).

g (units of ao ')
Nucleus-centered functions

l g (units of ao '
) g (units of ao '

)

33.6444'
5.057 96'
2.5
1.146 8
0.6
0.321 144
0.101 309
0.04
0.02

0.013"

2.2284
1.1
0.5184
0.25'
0.12
0.04

xy

dxz & dyz

1.6
0.8
0.4
0.2
0.1

0.05

0.4
0.13

g (units of ao ')
"Diffuse" functions (center-of-mass)

l g (units of ao ') g (units of ao ')

0.06
0.024

Px spy

Pz

0.04
0.013
0.06
0.024

xy 0.1

0.04

'Contractions coefficients 0.123 884 24 and 0.926 094 96, respectively.
GTO's of px and py type only.

o, „,= g(27+1)iT, i, t i, (55)
ko(2jo+1) t t

UJ1, Up Jphp

we include J =0, 1, . . . , 8 and five partial waves. In the
differential cross section

do 1
A& (vojo~vj)p& (cos8),0 UpJp~UJ 4ko pl O

(56)

this is not enough partial waves to achieve convergence
at all angles. So we use the first Born approximation to
complete the partial-wave sums to the desired conver-
gence criteria. '

To calculate vibrational excitation cross sections we
must perform the quadrature over R in the FONDA K
matrices (37) and, if the potential contains nonlocal
terms, in (52). For many systems, the vibrational wave
functions P, (R) in these integrals can be approximated
accurately by eigenfunctions of a simple harmonic oscilla-
tor. For H2, however, this approximation does not
represent the ground-state electronic potential to
sufficient accuracy, so we solve the nuclear Schrodinger
equation numerically with the X 'X+ electronic energy
from the aforementioned Hartree-Fock calculations. We
then perform the integral over R using a simple Gauss-
Hermite quadrature.

D. The scattering equations for nonlocal potentials

In FONDA calculations based on a separable represen-
tation of the exchange kernel, one additional technical
matter arises. The BF FN equations (29) which one must
solve for the radial functions in the FONDA integrals
It ~(k,jllo', R) and Z t. (kolo, R) are now integro-
differential equations, because the coupling matrix ele-
ments Vt t. (r, R) contain a nonlocal integral operator like
the one in Eq. (46).

Fortunately a variety of numerical methods for solving
these equations have been implemented and tested.
Because of its stability and suitability for supercomputer
calculations, we use the linear algebraic algorithm of
Schneider and Collins. In this method one first trans-
forms the BF FN equations into integral equations then
imposes quadrature schemes on all integrals to further
transform these equations into a set of simultaneous
linear algebraic equations which can be solved using stan-
dard computer programs for matrix operations. For e-Hz
we require the BF FN radial functions only for r & 50ao;
beyond this radius the potential is local, and we can trivi-
ally solve Eqs. (29) using the Numerov algorithm.

The BF FN radial function appears in the additional
FONDA integrals (51). Both these integrals are short
range, because the exchange basis functions are square in-
tegrable. We evaluate these integrals using Simpson's
rule algorithm to a maximum radius of 30ao.

IV. RESULTS

A. Rotational excitation by a local potential

In this subsection we compare T-matrix elements and
cross sections for rotational excitation of H2 as calculated
using various scattering theories. The context for these
comparisons is the rigid-rotor approximation, with the
internuclear separation of Hz fixed at the equilibrium
value R, =1.402ao, and the local-exchange approxima-
tion described in Sec. III. These simplifications permit
calculation of LFCC quantities which serve as bench-
marks for evaluating approximate theories.

1. Threshold behavior of the transition matrix

Near-threshold inelastic cross sections are determined
by only a few elements of the LF CAM T matrix. For ex-
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ample, very near the 0.044-eV threshold for the pure ro-
tational excitation j0=0~j=2 in hydrogen, 85% of the
integrated cross section comes from the single term in
Eq. (55) with l=O, lo =2, and J=2. Accurate calculation
of near-threshold cross sections is therefore possible only
if these critical T-matrix elements obey the correct
threshold law.

Rigorously, the threshold behavior of each element of
the LF CAM T matrix is controlled by the quantum
number l of the outgoing electron as '

I l + 1/2
Tujl, Uojolo kvj a kvj ~ (57)

For example, the T-matrix element for l=0, lo=2, and
J=2, which is critical to 0-0 2, should approach zero as
k 1/2

UJ

In Fig. 2(a) we examine the threshold behavior of this
matrix element for several scattering theories. Since the
LFCC theory treats the nuclear dynamics exactly, it pro-
duces a T matrix whose elements do obey this law. The

0.000
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I
I

I

(a) Z=2
00 —)02

—0.002

~ —0.003

~ -0,004
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—0.007

-0.008
0.00 0.01 O. OZ

I I

0 03 0 04 0 05 0 06 0 07
wave number (ao —j )
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~ 0.010
G5
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0.000
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wave number (ao —j)

FICx. 2. The imaginary part of key transition matrix elements T„I, , l for the pure rotational excitation 0—+2: (a) total angular'J'ohio o

momentum J=2, entrance-channel angular momentum lo =0, and exit channel angular momentum l=2, (b) J=1, lo =1, and l=1.
Various theories are compared to the threshold laws these matrix elements should obey (short-dashed curves): LFCC (solid curves),
AN (long-dashed curves), and FONDA (dotted curves). The matrix elements in (a) should go to zero as k, and those in (b) as k,'-
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FONDA method also produces the correct threshold
dependence because it is based on an off-shell scattering
matrix and conserves energy. The AN matrix elements,
however, do not exhibit the correct dependence on k .
Their low-energy behavior is controlled not by Eq. (57)
but rather by the threshold law for the BF FN T m.atrix.

This threshold law of BF FN theory mirrors the 1ong-
range form of the interaction potential. If we specify the
LF scattering angle |9 by choosing the LF z axis along the
incident direction ko, then in the asymptotic region this
potential reduces to a sum of terms of the form

r Pz(cos8). For a homonuclear target, the dominant
long-range terms arise from the quadrupole ( A, =2,
sz=3) and (induced) polarization (A, =0,2, so=sz=4) in-

teractions.
Each such term gives rise to the following threshold

behavior in the BF FN T-matrix elements

TA
110

kb, l +lo) s~ —3
(5 &)

Tll ~kb, as kb ~0 .
0

(59)

In AN theory, this wave number is equal to the incident
wave number ko.

The AN T matrix whose elements appear in Fig. 2 is
simply the rotationally frame-transformed BF FN T ma-

where k& is the body wave number k& =+2E&. Since the
BF FN wave function is independent of the state of the
target, this T matrix does not discriminate between the en-
trance and exit channels. This defect is the source of the
incorrect threshold behavior in Fig. 2.

In e-H2, the quadrupole interaction, which is propor-
tional to r, dominates the polarization interaction,
which is proportional to r . Therefore all elements of
the BF FN T matrix are simply proportional to the body
wave number

trix [see Eq. (23)]. Since the factors A A are independent
of energy, the AN T-matrix elements are also proportion-
al to k& and so do not obey the threshold law (57). That
is, in the AN approximation, o.

o 2 is oblivious to the ex-
istence of a threshold and approaches a nonzero constant
at this wave number. (The threshold for the

jo =0—+j =2 excitation in hydrogen occurs at the body
wave number of 0.057ao '.)

In a conventional AN calculation one forces the inelas-
tic cross section to zero at threshold by multiplying it by
the wave-number ratio k /ko. ' This ad hoc
modification alters the threshold behavior of only those
T-matrix elements with l=O; elements with I )0, which
may contribute significantly to the cross section, still
behave incorrectly. For example, at an energy 3 meV
above the threshold for pure rotational excitation of H2,
the terms in Eq. (55) with J= 1 and l = lo = 1 contribute
15% of o.

o 2. As the energy increases from threshold,
T-matrix elements with l )0 rapidly predominate in this
cross section. Thus by 1.0 eV, the l=O element contrib-
utes only 20%; instead, the dominant contributor to this
cross section is the term with J=1, l=1, lo =1, which
produces 65% of its value. So the now-dominant matrix
element should behave as k, as it does in the LFCC
and FONDA theories but not in the AN or modified AN
approximations [see Fig. 2(b)].

2. Dijferentiai and integrated cross sections

The difFering threshold behaviors of elements of the T
matrix in various formulations has a striking efFect on
difFerential cross sections. Figure 3 shows cross sections
for jo =0~j=2 at three energies from calculations based
on the LFCC, modified AN (i.e., multiplied by the
aforementioned wave-number ratio), and FONDA
theories. Very near threshold for this excitation, the
dominance of matrix elements with l=O causes this cross
section to be essentially isotropic —behavior which is
reproduced by all three theories. By 1.0 eV, a pro-
nounced dip appears. This dip, which arises from subtle

TABLE II. e-H2 rotational excitation cross sections (in units of ao) for jo =0~j=2 with local exchange potential {based on a ro-
tational constant of 80 =59.31 cm ').

E (eV)

0.047
0.060
0.080
0.100
0.200
0.300
0.400
0.500
1.000
3.000
5.000

10.000

LFCC

0.046
0.126
0.189
0.231
0.378
0.510
0.648
0.794
1.657
4.859
5.540
3.998

FONDA

0.048
0.132
0.192
0.233
0.380
0.512
0.647
0.796
1.652
4.851
5.433
3.985

SANR

0.060
0.137
0.198
0.241
0.394
0.530
0.671
0.821
1.698
4.927
5.473
3.990

EMA

0.065
0.143
0.202
0.243
0.387
0.517
0.654
0.800
1.662
4.858
5.443
3.985

ANR (mod)'

0.074
0.159
0.221
0.263
0.441
0.545
0.685
0.834
1.709
4.891
5.450
3.982

ANR

0.298
0.309
0.330
0.352
0.499
0.590
0.726
0.873
1.748
4.927
5.472
3.990

FBA(q)~

0.056
0.117
0.153
0.170
0.201
0.211
0.215
0.218
0.223
0.226
0.227
0.227

FBA (qp)'

0.062
0.132
0.176
0.201
0.257
0.285
0.305
0.321
0.382
0.538
0.659
0.911

AN cross section modified by multiplication by wave number ratio k, /ko.
First Born approximation with quadrupole interaction only, using q = +0.451 74eao.
First Born approximation with quadrupole and polarization interactions, using a2= 1.305a o.
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FIG. 3. Differential cross sections for the pure e-H2 rotational excitation 0~2 calculated with three scattering theories: LFCC
(solid curve), AN (long-dashed curve), and FONDA (dots). Results are shown for 0.047, 0.1, and 5.0 eV. The scale on the right-hand
axes pertains only to the 5.0-eV cross sections.

interference effects among different T-matrix element,
has recently been verified experimentally. It appears
only in the LFCC and FONDA cross sections. Finally
by 5.0 eV, far from threshold, all three theories produce
nearly identical cross sections.

Table II present values for o.
p 2 from LFCC,

FONDA, AN, and modified AN calculations. We have
also calculated this cross section using four other widely
used theories. The first of these is the energy-modified
approximation (EMA). This method is usually imple-
mented ' ' by solving the BN FN scattering equations
(29) with the body wave number set equal to the
geometric mean for the excitation of interest, i.e., with

kt, =+kjko. Although this strategem does obviate the
need for multiplication of the resulting cross section by
kJ /k p 1t 1ike the AN method, corrects the thresho 1d be-
havior only of T-matrix elements with l=0.

The second additional theory represented in Table II is
the scaled adiabatic-nuclear-rotation (SANR) method. '

This extremely simple procedure uses the first Born ap-
proximation to modify frame-transformed BF FN T ma-
trices so as to ensure that all elements of this matrix obey
the correct threshold law. Like the EMA, the SANR ap-
proximation also eliminates the need for ad hoc multipli-
cation of inelastic cross section. Near threshold, the
SANR procedure markedly improves inelastic integrated
and differential cross sections. But with increasing ener-
gy, this method becomes theoretically dubious (because
of its reliance on the Born approximation). Moreover it
is not extensible to vibrational excitation.

The last two cross sections in Table II result from a
first Born calculation using a potential consisting of ei-
ther just the quadrupole interaction or the sum of the
quadrupole and induced-polarization interactions. This
is by far the simplest and most widely used procedure

B. Rotational excitation via a nonlocal exchange potential

Table III contains e-H2 rotational-excitation cross sec-
tions calculated using the FONDA method with the non-

TABLE III. e-H~ rotational excitation cross sections {in units
of ao) for j0=0~j=2 with nonlocal exchange. (See Table I for
the exchange basis. )

0.047
0.060
0.080
0.100
0.200
0.300
0.400
0.500
1.000
3.000

Rigid
rotor

0.065
0.133
0.194
0.233
0.368
0.488
0.612
0.746
1.562
5.064

Vibrationally
averaged

0.070
0.149
0.212
0.255
0.539
0.678
0.990
1.347
1.743
5.584

represented in this study. Unfortunately its treatment of
both the interaction potential and the scattering dynam-
ics is too crude to yield accurate results even near thresh-
old.

To summarize, we present in Fig. 4 the percent
differences for j&=0—+j=2 as calculated in various ap-
proximate theories using the LFCC cross section as a
standard. %'e find similar errors in the cross section for
pure rotational excitation for other initial rotational
states (e.g. , j= 1), for a potential that contains nonlocal
terms (see Sec. IV B), and for calculations that include the
vibrational dynamics.
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FIG. 4. Percent differences for the pure e-H& rotational excitation cross section F0 & calculated using the LFCC result as a stan-

dard. Five approximate scattering theories are shown: AN (long-dashed curve), AN multiplied by kj/k0 (short-dashed curve),
SANR (dot-dashed curve), EMA (dotted curve), and FONDA (solid curve). The open circles show the energies at which these com-
parisons were made.

local separable potential described in Sec. IIIB. These
results differ little from the model-exchange cross sec-
tions in Table II, because our model potential is opti-
mized for near-threshold rotational excitation.

All cross sections presented so far have been calculated

in the rigid-rotor approximation. But in the energy range
from threshold to 10 eV this approximation introduces
errors as large as 15% in this cross section. By con-
trast, experimental determination of cro 2 (by solution of
the Boltzmann equation for a swarm of electrons drifting
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FIG. 5. Pure rotational excitation e-H2 cross sections o.o 2 calculated using various representations of exchange. Three of these
cross sections are based on the separable representation of exchange described in Sec. III (see Table I): FONDA using a rigid-rotor
potential (dot-dashed curve), FONDA using a vibrationally averaged potential (solid curve), and AN using a vibrationally averaged
potential (long-dashed curve). The other cross section is calculated using the FONDA method with a vibrationally averaged poten-
tial that includes the local model exchange potential described in Sec. III (short-dashed curve). Also shown are experimental cross
sections derived by transport analysis from electron swarm data (solid circles) and the threshold for this excitation (vertical line),
0.044 eV.
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and di8'using through a gas under the inhuence of an ap-
plied external field) yields values accurate to a few per-
cent at and below 1.5 eV. ' So however accurate the
representation of exchange and the rotational dynamics
may be, rigid-rotor cross sections are inadequate for com-
parison to measured values.

To correct the rigid-rotor approximation, we have re-
cently proposed an extremely simple procedure that re-
stores the zero-point motion of the target for vibrational-
ly elastic processes and eliminates almost all of the
aforementioned error. This vibrational averaging pro-
cedure entails simply replacing the equilibrium interac-
tion potential in the BF FN matrix elements in (29) by

the average of this potential over the ground vibrational
state of the target,

V(r;R, )~(P, (R)~V(r, R)~P, (R)) . (60)

Using VIBAV static and polarization potentials and
the (equilibrium) separable exchange potential of Sec.
III C and Table I in a FONDA calculation, we obtain the
rotational-excitation cross section in Table III and Fig. 5.
This cross section agrees extremely well with the swarm-
derived results. (We find comparable agreement for
(7] 3. ) By comparing these cross sections with results
from various other formulations, this figure also
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FIG. 6. Di6'erential e-H2 cross sections for pure vibrational excitation at (a) 0.7 eV and (b) 1.0 and 5.0 eV and for rovibrational ex-
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curves), and FONDA (dotted curves). All AN cross sections have been multiplied by k„j/ko.
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quantifies the error caused by approximatin the k ling e erne

y oca potential, neglecting the zero-poi t t'

e molecule, and assuming target-state degeneracy

C. Vibibrational excitation by a local potential

The mmost severe test of a scatteri th fng eory or inelastic
vi ra ionai excitation. Weelectron-molecule collisions is 'b t l

t ere ore conclude this appraisal of the FONDA method
with cross section for pure vibrational and rovibrational
excitation of H . The

'
n o 2. e thresholds for these processes

are ' 0.516 eV for 0,0~1,0 and 0.559 eV for 0,0—+1,2.
Figure 6 shows differential cross sections for these ex

tations at three en
ns or ese exci-

ree energies as calculated using the LFCC,
FONDA, and AN methods. The AN cross sections in

these fiese figures have been multiplied b k /ke y, o to force
em o zero at threshold. The potential used in these

calculations is a generalization of that of Sec. III B which
allows for the variation

''on in internuclear separation that
accompanies the Uo =0 U = 1 excita

'

ences in the differential cross sections in this figure
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Rovibrational excitation: 0,0~ 1,2
E=0.7 eV E=1.0 eV

LFCC AN LFCC AN

90
8
2

99
0
1

98
1

0

99
1

0

The coefficient in this equation includes, in addition to
a host of coupling coefficients, products of T-matrix ele-
ments whose interference significantly affects the shape of
the difFerential cross section. Thus Az (vpjo~uj) is a
double sum over J&, l&, l', and Jz, lz, lz of terms that in-
clude the product

(61)
Uj li Uojohi UJI2 Uojo~z

In this coefficient there is a sum over A, , which identifies
particular Legendre projections of the potential accord-
ing to Eq. (33). This sum is controlled by three triangle
rules that arise from Clebsch-Gordan coefficients:
b (J,J~X ), b ( l„l2, A, ), and b ( 1I, l 2, A. ).

At 0.7 eV, two terms in Eq. (56) dominate the pure vi-
brational cross section; for convenience we refer to them
as the p —+p and s~s terms. In Table IV we list their
identifying quantum numbers and tabulate their percent
contributions to ooo ]o. Because of the aforementioned
triangle rules, the p ~p and s ~s terms introduce
different angular dependencies into the differential cross
section for pure vibrational excitation.

The data in Table IV show that the errors in the AN

TABLE IV. Percent contributions to e-H2 rovibrational cross
sections o. . .j from various partial-waves in the entrance (lo)

Up jp UJ

and exit (l) channels.

Pure vibrational excitation: 0,0~1,0
E=0.7 eV E=1.0 eV

LFCC AN LFCC AN

approximation to this cross section arise in part from
overrepresentation of the p —+p contribution. According
to Eq. (56), this overrepresentation gives excessive weight
to Legendre polynomials with A, )0, which, in turn, gives
the AN result the unrealistically extreme angular depen-
dence seen in Fig. 6(a). No such overrepresentation
occurs in the FONDA or LFCC methods.

At higher energies, the breakdown in the AN approxi-
mation does not introduce so highly spurious an angular
dependence. For example, at 1.0 eV, the percentage con-
tributions in Table IV from the LFCC and AN calcula-
tions are comparable. At still higher energies, as Fig. 6
illustrates, the AN, LFCC, and FONDA methods pro-
duce essentially identical cross sections.

To conclude, we collect in Table V our LFCC, AN,
and FONDA integrated vibrational excitation cross sec-
tions. This table quantifies the demonstrations in Fig. 1

that conservation of energy in the FONDA and LFCC
methods is particularly important at energies from
threshold to several tenths of an eV. In this energy
range, AN cross sections, even when multiplied by
k, /ko, are in error by more than 100%, while the
FONDA results agree with those from LFCC calcula-
tions to better than 15 Jo for Uo, jo =0,0~v, j=1,0 and
better than 45% for Uo, jo~U,j= 1,2. With increasing
energy, the FONDA cross sections become identical to
LFCC (to within 1% numerical accuracy of these calcu-
lations), while the AN results remain in error to a few
percent up to 10 eV.

V. CONCLVSIONS

The final equations of the FONDA method are
(33)—(37) for a local potential and (51)—(53) for a potential
that includes nonlocal terms. If only pure rotational ex-
citation is of interest, then the vibrational matrix ele-
ments in these equations can be replaced with the poten-
tial at equilibrium (the rigid-rotor approximation), or
more accurately, with the average of this potential over
the ground vibrational state (the vibrational averaging ap-
proximation).

However the potential is treated, the computational

TABLE V. e-H2 rovibrational excitation cross sections (in units of ap). Calculations based on a
model exchange potential (see Sec. III).

E (eV)
uo~jo=0~0~u g=10

LFCC FONDA AN
up ui 00~ g 12

LFCC FONDA AN

0.540
0.600
0.620
0.640
0.700
1.000
1.500
2.000
2.500
3.000
5.000
7.000

10.000

0.010
0.024
0.030
0.036
0.055
0.181
0.453
0.675
0.756
0.748
0.527
0.348
0.210

0.008
0.024
0.031
0.038
0.062
0.208
0.494
0.686
0.764
0.767
0.531
0.350
0.209

0.050
0.093
0.107
0.119
0.156
0.331
0.574
0.707
0.743
0.720
0.497
0.332
0.203

0.000
0.006
0.009
0.012
0.026
0.137
0.453
0.778
0.943
0.978
0.745
0.489
0.276

0.000
0.008
0.013
0.018
0.037
0.187
0.523
0.806
0.954
0.989
0.750
0.489
0.277

0.000
0.058
0.073
0.087
0.127
0.325
0.648
0.867
0.962
0.968
0.705
0.464
0.265
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demands of the FONDA method are far less than those
of a fully converged LFCC calculation. Even with the
stringent numerical requirements of the present study,
obtaining the FONDA results in Sec. IV took about one-
third the CPU time required to solve the LFCC equa-
tions.

At the core of the FONDA theory are the BF FN radi-
al functions ulr (r;R) that appear in the FONDA in-

tegrals. The solution of the BF FN equations for these
functions has been thoroughly studied for a number of
electron-molecule systems. These studies provide a
wealth of information about such practical matters as the
requisite number of electron-molecule symmetries and
partial waves, radial meshes for propagation of the
scattering functions, the value of the radial coordinate at
which the K matrix can be extracted, etc. So for many
systems, implementation of the FONDA method, which
as noted in Sec. II C 3 requires little additional code de-
velopment, will also entail only a few numerical studies.

For e-H2 scattering we have shown that because the
FONDA approximation conserves energy, this method
can produce rotational and vibrational excitation cross
sections of much greater accuracy than those from the
other approximate theories tested. There is, however,
room for improvement in the accuracy of the FONDA
vibrational excitation cross sections. The most likely
source of error is the use of a Born-Oppenheimer separa-
tion outside the core of the molecule; in this region the
interaction potential is less dominant than inside the
core, and correct inclusion of the vibrational Hamiltoni-
an may be important. We are currently exploring an
alternative formulation of the FONDA theory which
treats the vibrational dynamics in this region exactly.

Separation of nuclear and projection variables outside
the core is not imposed in theories such as the reformula-

tion by Gao and Greene of the energy-dependent vibra-
tional frame transformation theory of Greene and
Jungen; this theory uses multichannel quantum-defect
theory to allow for nonadiabatic behavior at large radial
distances. Although essentially an on-shell theory, this
formulation can accommodate additional nonadiabatic
eA'ects that are reAected in the dependence of the
quantum-defect function on the body-frame energy. To
date, Gao and Greene have studied the eA'ects of this en-
ergy dependence in resonant and nonresonant scattering
calculations using simplified models (s-wave scattering
from a purely short-range potential) the electron-
molecule system.

Having completed the formal development and evalua-
tion of the FONDA method, we are turning to other
electron-molecule systems, in particular to the important
e-Nz system. ' In addition, we have begun formal and
numerical extensions of the method to systems whose vi-
brational excitations exhibit strong structures very near
threshold.
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