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Cross sections for radiative recombination of electrons with ground-state atomic oxygen ions to
form oxygen atoms in the O[(~S)nl] "L states are calculated for nl up to (15,14) at 19 electron ener-

gies from 0.0345 to 2.585 eV based on Hartree-Fock wave functions of the bound and continuum
states. By extrapolating the cross sections beyond n = 15, the radiative-recombination rate
coefficients are determined. The present cross sections are virtually identical to those obtained by
using the hydrogenic approximation for I 3, but entirely different for the ns and np series. For the
nd series the agreement is good at low energies, but the discrepancy becomes larger at higher ener-

gies. The present calculation agrees with a calculation based on the quantum-defect method to
within 10% for the nd series, but some discrepancy is found for the np series. In the case of the ns

series these two sets of calculations disagree entirely.

I. INTRODUCTION

Radiative recombination (RR) is a fundamental pro-
cess of importance in the studies of aeronomy, astrophy-
sics, and plasma physics. Theoretical calculations of the
RR rate coefficients have been reviewed recently in the
literature. ' In most cases theroretical calculations of
rate coefficients are made with some recourse to a
hydrogen-type approximation. For electron capture into
the ground state the principle of detailed balancing along
with photoionization cross sections is used. For excited
states, Seaton's work on the hydrogen atom and the
quantum-defect method (QDM) of Burgess and Seaton
are often quoted.

The process of e +O+~O was studied as early as
1939 by Bates et al. as a possible mechanism for the de-
cay of electron density in the upper atmosphere during
the night time. This process has been of continued in-
terest particularly in connection with emission of radia-
tion by atomic oxygen. For instance it was used to ex-
plain the observation of OI lines in the tropical night-
glow, and Julienne et aI. computed recombination
coefficents by the QDM. The RR of the oxygen atom
also has an astrophysical interest, ' and Gould com-
puted the rate coefficents by the hydrogenic formula with
certain correction factors. However, as far as we know,
there have not appeared in the literature any calculations
of oxygen rate coefficients based on accurate ab initio
wave functions.

In this paper we calculate the RR cross sections for
e +0+( S)—+0[( S)nil L for nl up to (15,14) at 19
electron energies from 0.0345 to 2.585 eV (400—30000
K). The wave functions used are computed by the
Hartree-Fock (HF) method for both the bound and con-
tinuum states. The cross sections for (nl) ) (15,14) are ex-
trapolated, and the rate coefficients are obtained by
averaging over the electron speed with the Maxwell-

Boltzmann distribution. Comparisons are made with the
previous works. ' ' The RR cross sections are also com-
pared with the corresponding ones calculated by using
the hydrogenic approximation.

II. METHOD OF CALCULATION

X r 0';(r), . . . , r~ )dr). . .dr~
The one-electron orbitals for the atomic electrons are

P„t (r)=R„t(r)&( (r),
and the wave function for the incident electron is'

PFk(r) =4n. g i'exp[i (crt +qI ) jRF&(r)
I, m

X &t~(r

(3)

(4)

(5)

We consider the process in which electrons with initial
energy E and momentum trtk incident on 0+( S) target
ions form oxygen atoms in the 0[( S)nl] ' L states with
emission of photons of energy A~. The RR cross section
o is related to the probability of the transition per unit
time from the initial state i to the final state f, Wf, , as"

o. =8~;/J .

Here J, the incident particle current density, is the num-
ber of electrons crossing a unit area per unit time and is
taken as A'k /mac where m is the electron mass and ao is
the Bohr radius. The standard theory for radiative tran-
sitions gives

Wf, =(4aco /3c ) ~ (f ~R~ i ) ( (2)

where ct is the fine-structure constant and (f R~i ) is the
transition matrix element between the initial- and final-
state wave functions 4; and 4f for the entire ¹ lectron
systems, i.e.,

N

(f ~R~i) = g J 4'f*(r„. . . , r~)
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ili =argI ( l + 1 i /—k),
and o.

l is the additional phase shift due to the core elec-
trons.

Conforming to the atomic states of 0[( S)nl] ' L, we
construct 4f by taking linear combinations of antisym-
metrized products of the Hartree-Fock one-electron spin
orbitals to form eigenfunctions of S and Mz. This yields
five quintet functions (S =2 and Ms =0, +1,+2) and
three triplet functions (S = 1 and Ms =0,+1) for each nl
Likewise 4, is an eigenfunction of S and M& with S = 1

or 2 constructed from the one-electron orbitals of the
0+( S) ion and of the incident electron. Let us for the
moment consider the initial state as an 0+( S) ion plus
an incident electron characterized by E and k, and the
final state as an oxygen atom in the 0[( S)nl] state with a
given total spin S . For this transition we sum the transi-
tion probability of Eq. (2) over the (2S'+ 1) different Ms
substate of the final state corresponding to S =S' and
average the transition probability over all eight M& sub-
states of the initial state corresponding to S =1 or 2. We
use the same set of one-electron orbitals for the 0 ( S)
core to construct 4'; and 4f because the 2p orbitals of
0[( S)nl] 'L obtained from our Hartree-Fock calcula-
tion are virtually identical to the 2p orbital of the initial
channel, with overlap integral larger than 0.99. The use
of a single set of core orbitals leads to the simplification
that (f~R~i ) in Eq. (3) reduced to an integral involving
only the active electron, i.e.,

(f~R~i) =(nlm~r~Ek) = f P„*i (r)rPzk(r)dr . (8)

The RR process of our interest is electron capture into an
nl level rather than into an individual nlm state. Thus we
perform a further summation over m. When this is done,
the cross section becomes independent of the direction of
k. Our results for the RR cross section for capturing an
electron of energy E into the nl level of 0 with a total
spin S, denoted by o„&&(E),is.

(E) f (2s+ 1)(E)

o'„i +"(E)=(16'/3V2cc )(fico/mc ) (mc /E)'

g [l (R F 1 —1)2+(l + 1 )(R E 1+1)2]

E l' oo

R i
= R„i(r)rRE, i,(r)r dr,

0

(10)

where fs= —', and —', for S =1 and 2, respectively, corre-
sponding to the (normalized) statistical weights. The

I

The continuum radia1 function is normalized so that it
has the asymptotic form, as r ~ oo, of

Rzi(r) —(kr) 'sin(kr —
—,
'm. —k 'ln2kr +ri&+o 1 ),

where

cross section for capture into the nl level of the triplet or
quintet series is therefore equal to the appropriate spin
weighting factor times the quantity 0'„l +" which ac-
cording to Eq. (10) has the same algebraic form for both
the triplet and quintet series but depends on S because in
our Hartree-Pock calculations the radial wave functions
for the triplet (S = 1) and quintet (S =2) series are
difFerent. For this reason we include the (2S+1) super-
script in cr'„i "(E) to underscore the implicit spin
depedence through the one-electron orbitals. Aside from
this spin dependence, Eq. (10) has the same form as the
cross section for RR of an electron with H+, and may be
considered as the cross section for an equivalent one-
electron system.

Of special interest in this paper is the RR cross section
for the formation of oxygen atoms in the nl level with no
specific reference to the spin multiplicity. This cross sec-
tion, which we refer to as o.„l, is

0 —3 ~(3)+ 5 ~(5)
nl 8 nl 8 nl (12)

where o'„i' and o'„i' are given by Eq. (10).
The wave functions of the ls 2s 2p ( S)nl ' L states

are computed by the Hartree-Fock self-consistent-field
(SCF) method. The 2p and nl orbitals are determined
variationally whereas the 1s and 2s orbitals are fixed. The
Coulomb and exchange potentials are included without
approximation. The ns and np orbitals are orthogonal-
ized to the 1s, 2s, and 2p orbitals as appropriate via
Lagrange's multipliers. These wave functions have been
used to calculate the bound —to —bound-state transition
probabilities' and the computational details described in
Ref. 14.

The continuum electron wave function of the
(e +0+) system are obtained as the solutions of the
diA'erential equation

d2

dr
—V()+E P ()

= g IV„,(, ~1(r)P„,1.(r)+ g C„)P„ i(r), (13)
n 'I' n" (2

where we have used notations P~ l
= rR~ l and P, l

= rR„l,
and V(r) is the Coulomb potential due to the electrons in
the 0+(ls 2s 2p S) ion, W(r) is the exchange poten-
tial, and the C„-lP„-l terms ensure orthogonality with
respect to the 1s and 2s or 2p orbitals as appropriate. In
solving Eq. (13) we do not vary any of the ls, 2s, 2p orbit-
als, we use the 1s, 2s orbitals of Clementi and Roetti, '

and we take the 2p orbital as the one obtained for the
1s 2s 2p ( S)(nl) state in our bound-state calculation
with (n, l)=(15,14). In the exchange term of Eq. (13),
the summation over (n'l') covers only (n'l') = ls, 2s, and
2p. A typical member has the form of

p k k~ 'i', El( ) g '(', El, k r 'i'(X)PEl(x)x d r P 'i'(x El(X)X
k 0 0

+r P„.l. x Pzl x x 'dx (14)
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where k covers ~l
—1'~, ~l

—1'~+2, . . . , 1+1', and the
coefticients a are numerical constants. To handle the ex-
change and orthogonality terms in solving Eq. (13), we
adopt a procedure similar to the one used by Marriott'
in his calculation of the 1s ~2s electron excitation cross
section of the hydrogen atom and subsequently used by
other workers for calculating electron excitation cross
sections.

The computational procedures are checked by comput-
ing RR cross sections of the hydrogen atom for n = 1,2, 3
and l =0, 1,2, and comparing them with the correspond-
ing values of Bates et al. at four different electron ener-
gies (Table I of Ref. 5). Our values differ from theirs by
less than 1% at E =0.28 eV (3222 K) and 0.13 eV (1579
K), and by about l%%uo at 0.069 eV (805 K), and by 2% at
0.034 eV (395 K). As another check we have calculated
the photoionization cross section for the 2p P ground
state of the oxygen atom for incident wavelengths of 500,
600, 700, and 800 A. The results agree with those of
Dalgrano et al. ' to within 5%.

III. RESULTS AND COMPARISONS

1=0
onl- (15)

In Table I we list the values of o'„', o'„', and o.„. for
n =2—15 at 0.431 eV (5000 K). For n =2 the only con-
tribution to o.„comes from the triplet case since there is
no quintet state with 0[( S)2p]. Ii is interesting to com-
pare o'„' with o'„' since their difference arises from the

We have computed RR cross sections of
e +0+( S)~O[( S)nl] ' L for (n, 1) through (15,14) as
well as the cross sections for forming the 0( P) ground
state at 19 electron energies from 0.0345 (400 K) to 2.585
eV (30000 K). The RR cross section for a given n shell is
defined as the sum of the (n, l) cross section over all the l
levels, i.e.,

n —1

I I I I I I I

10 21

8

CQ

C)
Pg 10 22
C3
W

C)

I I I

5 10
PRINCIPAL QUANTUM NUMBER n

FIG. 1. Curve fit of our calculation RR cross sections for
electron energy 0.431 eV (5000 K) to o.„=qn ~ based on n =14
and 15 (solid line), and based on n = 10—15 (dashed line).

spin dependence of the one-electron orbitals (spin polar-
ization). We note that for low n quintet cross sections are
substantially larger than their triplet counterparts (15%
for n =3, 10% for n =4), but the difference becomes
smaller for larger n. The closer agreement for large n is
expected since the nl orbitals in the triplet and quintet
series are nearly identical as the effect of electron ex-
change diminishes at larger n.

For small n the major contribution to o.„comes from
I =1, 2, and 3. As n increases the distribution of major
contributions is shifted somewhat to higher l. For exam-
ple, at an electron energy of 0.431 eV (5000 K), the frac-
tional contributions cr'„&ilcr'„ i for n =6 are 0.152, 0.374,
0.303, 0.142, and 0.029 for l = 1, 2, 3, 4, and 5, respective-
ly, whereas the corresponding values for n = 15 are 0.090,
0.249, 0.265, 0.203, and 0.118. A similar pattern is found
for the triplet cross sections.

In order to obtain the total cross sections for capturing
the electron into all possible bound states, we must esti-
mate the contributions from n & 15. For this purpose we
express the former as the sum of two parts, viz. ,

TABLE I. Radiative-recombination cross section (in 10
cm } for forming triplet and quintet states, denoted, respective-
ly, by o'„' and o'„', in each n shell at an electron energy of 0.431
eV (5000 K). The last column gives the weighted sum,
~O 3 ~(3)+ 5 ~(&)

tl 8 n 8 n

~(3)~n

ot=or+oij. ~

15

Irt= g urn ~

n =2

ITtr= X ITn
n =16

(16)

(17)

2
3
4
5
6
7
8
9

10
11
12
13
14
15

67.278
8.977
7.408
5.538
4.087
3.040
2.293
1.758
1.369
1.082
0.868
0.705
0.579
0.481

10.510
8.250
5.997
4.355
3.208
2.405
1.835
1.425
1.124
0.900
0.729
0.599
0.497

25.229
9.935
7.935
5.825
4.255
3.145
2.363
1.806
1.404
1.108
0.888
0.720
0.591
0.491

In Fig. 1 we show the relation between o.„and n in a log-
log plot for n up to 15 for an electron energy of 0.431 eV
(5000 K). The last few points fall rather closely on a
straight line. Thus we use a simple power relation

to estimate the cross sections for n & 15. The values of q
and P are determined from o.„ for n = 14 and 15. We use
only two points to find q and P rather than a straight-line
fit because Eq. (19) is only an approximation in that the
magnitude of the slope in the log-log plot increases slight-
ly with n as seen from Fig. 1. In order to minimize the
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TABLE II. Radiative-recombination cross sections (in 10
cm ) as a function of electron energy E (in eV). o., is the total
cross section (sum of o.„), o.

&
is the partial sum from n =2—15,

o» is the partial sum for all n above 15, q (in 10 ' cm ) and f3
are curve fit parameters defined in Eq. (19).

0.0345
0.0517
0.0862
0.172
0.259
0.345
0.431
0.517
0.689
0.862
1.034
1.206
1.379
1.551
1.723
1.939
2.154
2.370
2.585

216.7
121.6
60.44
23.89
13.88
9.426
6.978
5.461
3.723
2.783
2.210
1.832
1.568
1.375
1.230
1.093
0.990
0.911
0.848

137.9
87.76
48.71
21.10
12.68
8.770
6.569
5.184
3.574
2.692
2.149
1.789
1.536
1.351
1.211
1.078
0.979
0.902
0.841

78.79
33.86
11.73
2.788
1.198
0.655
0.409
0.277
0.149
0.091
0.061
0.043
0.032
0.024
0.019
0.015
0.011
0.009
0.008

282.4
268.9
246.6
182.3
131.6
97.00
73.51
57.16
36.81
25.29
18.25
13.68
10.57
8.38
6.78
5.35
4.32
3.57
3.00

1.633
1.826
2.082
2.401
2.553
2.642
2.700
2.741
2.796
2.831
2.855
2.872
2.886
2.898
2.907
2.917
2.926
2.935
2.943

overestimation of on we chose the largest /3 attainable
from the calculated o.„, n «15. Even so, the estimated
o.„»& are probably larger than the true values. Substitu-
tion of Eq. (19) into (18) yields

o„=q g n ~—=q f n ~dn ,'o.„—»—.
n =16

(20)

In Table II we show o „o&, o &&, q, and g at 19 different
electron energies. We see from Table II that the contri-
bution to o., from o.

&&
is substantial only at low energies;

for example, 36% at 0.0345 eV, 19% at 0.0862 eV, and
8.6% at 0.259 eV. We may get some sense of uncertainty
by assuming that the true values of o.» are, say, as low as
—,
' of what are shown in Table II. Then the total cross
section o., would be decreased by 9% at 0.0345 eV, by
5% at 0.0862 eV, and by 2% at 0.259 eV. At still higher
energies, the uncertainty as well as the contribution from
o.

&&
itself become insignificant as seen from Table II.

B. Comparison with calculations
based on the hydrogenic approximation

We have repeated the calculation of RR cross sections
using hydrogenic wave functions and energies (called the
hydrogenic approximation) and compared in Table III
this set of cross sections (called o 1) with those obtained
in the preceding section using HF wave functions and en-
ergies of the oxygen atom for an electron energy of 0.431
eV. From the ratio of o.„i/o. ,I in Table III it is apparent
that the two sets of cross sections are quite different for
the ns and np series, but are much closer for the nd and
nf series. In fact for l =3 and higher 1's the two sets of
cross sections are virtually identical. We also note that

C)
P 04

0.2

0.0

R —0.2
o

I I I I

I

I I I I

I

I I I I

I

I I I I

—0.4
I I I I I I I I I I I I I I I I I I

0 5 10 15 20
r (bohr)

FIG. 2. Comparison of bound-state wave functions of 0
(solid curve) and H (dashed curve).

15

.R(l)= g o.„(
n =3

15
H

n =3
(21)

In Table IV we show these ratios %(l) for l =0, 1,2, 3 as a

I I I I

I

I I I I

I

I I I I

I

I 1 I I

CO

5

ov —5

I I I I I I I I I

0 5 15
I

10
r (bohr)

20

FIG. 3. Comparison of continuum wave functions of 0 (solid
curve) and H (dashed curve) at an electron energy of 0.0862 eV
(1000 K).

there is no clear trend with regard to the principal quan-
tum number n either in agreement (I )3) or in disagree-
ment (l =0, 1). The angular momentum alone seems to
dictate the agreement or disagreement between the two
sets of cross sections. The reason for the agreement or
disagreement can be explained by the graphs of wave
functions of H and 0 in Figs. 2 and 3. The wave func-
tions of H and 0 are quite different for I =0 and 1 but
nearly identical for I ~ 2 for both the bound and continu-
um states. Thus the two sets of cross sections are nearly
identical for l) 3, but totally different for 1 =0 and 1.
For the nd series, the larger of the two contributors,
R +i'+', to cr'„I +" in Eq. (10) is expected to be nearly the
same whether H or 0 wave functions are used. Hence
the hydrogenic approximation closely reproduces the
cross sections for I =2.

We have also examined how o.„&/o.„i varies with elec-
tron energy. To illustrate the trend we show the ratio of
the sum of o.

„& over n, i.e.,
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TABLE III. Comparison of the radiative-recombination cross sections (in 10 cm ) 0.„I with those

calculated by using the hydrogenic approximation (denoted by o.„l) at an electron energy of 0.431 eV

(5000 K).

3
4
5
6
7
8
9

10
11
12
13
14
15

Hns

2.578
1.192
0.653
0.397
0.260
0.179
0.128
0.0951
0.0724
0.0563
0.0447
0.0360
0.0295

0ns
H

0ns

0.041 8
0.010 1

0.003 90
0.002 10
0.001 43
0.001 13
0.000 97
0.000 89
0.000 84
0.000 80
0.000 78
0.000 76
0.000 75

H
0np

7.167
3.412
1.886
1.150
0.753
0.519
0.372
0.276
0.210
0.163
0.130
0.104
0.0854

0
0np

H
0np

0.411
0.486
0.509
0.514
0.512
0.508
0.503
0.497
0.492
0.488
0.484
0.480
0.477

H
0na

6.463
4.049
2.463
1.571
1.053
0.736
0.533
0.398
0.304
0.237
0.189
0.152
0.125

G
~nd

H
~nd

1.064
1.049
1.033
1.020
1.010
1.003
0.997
0.992
0.989
0.986
0.984
0.982
0.980

H0nf

2.010
1.768
1.310
0.949
0.695
0.519
0.395
0.307
0.242
0.194
0.158
0.130

Q
&nf

H
&nf

1.004
1.005
1.006
1.007
1.007
1.007
1.008
1.008
1.008
1.008
1.008
1.008

function of incident-electron energy. For I =2 and 3,
A(l) increases slowly to 1.192 and 1.017, respectively, at
E =2. 585 eV, indicating the increasing discrepancies
with the energy. For I =0 and 1, the ratio is far from
unity.

f (u, T)=4m(m/2vrkT) exp( —mv l2kT) . (24)

The values of o. , are given in Table II for 19 different
electron energies. The recombination rate coefficients are

C. Recombination rate coefFicients

The recombination rate coefficients a relate the num-
ber densities of the positive (n+) and negative (n ) ions
with their time rate of change, ' viz. ,

dn dn = —an+n
dt dt

If we express the cross section o., as a function of the
electron speed u, then the rate coefficient, which is a func-
tion of the electron temperature, is given by

a(T)= j uo. , (v)f (v, T)du, (23)
0

where f (u, T) is the Maxwell-Boltztnan distribution func-
tion for temperature T,

shown in Table V and Fig. 4. They are also fitted to the
form of

a(T)= AT (25)

D. Comparison with previous calculations of rate coefFicients

Calculations of RR coefficients for oxygen atoms have
been reported by Aldrovandi and Pequignot. Their total
coefficients consist of contributions from capture into the
ground state and capture into all the excited states. The
former was based on the photoionization cross sections,
and the latter on the hydrogenic rate coefficients of

TABLE V. Radiative-recombination rate coefFicients a (in
10 ' cm /s) as a function of the absolute temperature T.

as was done by Aldrovandi and Pequignot. From the
log-log plot of 0, versus T in Fig. 4, we find that all the
data points below 10000 K fit very well to a straight line
and those above 10000 K to another straight line of a
slightly different slope. A two-region fit with the parame-
ters A =5.657X10 cm /s, g=0. 8433 for 400—10000
K, and A =1.659 X 10 cm /s, g=0.7099 for
10000—30000 K reproduces the values in Table IV to
within 1.5%%uo.

E (eV)

0.0345
0.0862
0.431
0.862
1.723
2.585

0.0126
0.0117
0.0217
0.0473
0.110
0.177

0.631
0.601
0.460
0.358
0.273
0.290

l=2
1.001
1.009
1.039
1.070
1.129
1.192

l=3
1.004
1.005
1.006
1.008
1.012
1.017

TABLE IV. Ratios of RR cross sections of oxygen to those
of hydrogen as de6ned in Eq. (21) at various energies.

T (K)

400
600
800

1000
2000
3000
4000
5000
6000
8000

3.637
2.577
2.018
1.670
0.927
0.657
0.515
0.427
0.367
0.290

T (K)

10000
12 000
14000
16000
18 000
20 000
22 500
25 000
27 500
30 000

0.243
0.211
0.188
0.171
0.157
0.146
0.134
0.125
0.118
0.111
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105

FIG. 4. A two-region fit of our total RR rate coefficients to
the form of a( T) = A T " for T=400—10 K (solid line), and for
T=10 —3X10 K (dashed line).

Seaton. Their g value of 0.678 is in good agreement
with our value of 0.710 (T~10 K). They also present
the rate coefficient as 3. 1X10 ' cm /s at 10 K. In a
similar manner, but with a certain correction factor,
Gould gives a(10 K) =3.31 X 10 ' cm /s. These
values are substantially larger than our value of
2.43 X 10 ' cm /s. We believe that these discrepancies

(factor of 1.28 —l. 36) are largely due to the hydrogen-type
approximations used in Ref. 2 and 9, although there may
be a small difference because the photoionization cross
sections that were used to determine the RR rate of cap-
ture into the ground state by Aldrovandi and Pequignot
and by Gould may differ slightly from the corresponding
values of our calculations.

Julienne et a/. , in their work to explain the 0 I lines
in the tropical nightglow, calculated rate coefficients o.'„&

of capturing the electron into specific nl states at electron
energy O. 1 eV (1160 K) for n up to 20. The QDM of Bur-
gess and Seaton was used to calculate the rate
coefficients for l =0, 1,2, and the hydrogenic coefficients
of Burgess for l )2 were used in their work. In Table
VI we compare the present results with their direct
(without cascade contribution) recombination coefficients
marked DRC in Table 1 of Ref. 8. For each nl there are
three entries in Table VI; the first rows are the present re-
sults, the second rows are from Ref. 8, and the third rows
are results of our calculations with the hydrogenic ap-
proximation as described in Sec. IIIB. We see that for
l ~3 the rate coeScients are virtually identical in all
three sets of calculations. For the nd series all three sets
agree well (within 10%), although the present results
agree even better with the calculations based on the hy-
drogenic approximation than with the results of the

TABLE VI. Radiative-recombination rate coefficients a„I (in 10 ' cm /s) of electron capture into
an individual nl state in the triplet and quintet series at an electron energy of 0.1 eV (1160 K). There
are three entries for each nl. The first gives the results of the present work, the second is from the pa-
per of Julienne et al. (Ref. 8), and the third is obtained from a calculation with the hydrogenic approxi-
mation but otherwise similar to the one that yields the first entry.

l=o l=2 1=3 l=4 l=s

n=4

n=5

n=6

1.24[—2]'
1.5[—3]
8.94[ —1]
2.88[ —4]
2.0[ —3 ]
4.18[—1]
8.29[ —4]
3.2[ —3]
2.33[—1]
1.11[—3 j
3.1[—3]
1.45[ —1]

1.05
0.61
2.70
0.641
0.50
1.29
0.401
0.35
0.724
0.264
0.24
0.449

Triplets
2.98
3.00
2.95
1.84
2.00
1.85
1.11
1.18
1.13
0.705
0.74
0.730

1.26
1.25
1.26
1.11
1.10
1.11
0.824
0.82
0.827

0.534
0.53
0.537
0.608
0.61
0.612

0.221
0.23
0.222

n =3

n=4

n=5

3.95[—2]
1.3[—3]
1.49
1.02[ —3]
3.7[ —3]
6.96[—1]
8.85[ —4]
5.9[—3 j
3.88[—1]
1.39[—3]
5.5[ —3]
2.41[—1]

2.53
2.85
4.51
1.49
1.63
2.16
0.900
0.96
1.21
0.578
0.61
0.750

Quintets
5.24
4.90
4.92
3.20
3.49
3.08
1.91
2.02
1 ~ 89
1.20
1.25
1.22

2.10
2.09
2.10
1.85
1 ~ 84
1.85
1.38
1.37
1.38

0.889
0.88
0.894
1.01
1.01
1.02

0.368
0.37
0.371

'Numbers inside brackets indicate the power of 10.
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Inl ~E, I + ] ~+nj
0

r

(26)

+ J R~ t+, (r)rR„t(r)r dr
m

Iabs
nl (27)

where the partition marks rj, r2, . . . are chosen so that
within each interval between r„and r„+&

the integrand is
either completely positive or completely negative. For
example, with nl =3s and E =0.0862 eV, we find 0.427,—0.516, and 0.054 as the partial contributions to Eq. (27)
from the three segments marked by 1.45ao, 6.4ao, 13.6ao,
and 23.0ao, whereas I3, = —0.0336 when the contribu-
tions from all other intervals are included. It is easy to
see that a redistribution of the contributors due to a
slight change in the wave functions may drastically alter
I„I,hence the cross sections.

QDM. For the quintet np series, the QDM results are
somewhat larger ( —10%%uo) than the present results, but
for the triplet np series, the QDM results are as much as
70%%uo smaller than ours. For the ns series, the discrepan-
cies are even larger.

As noted by Julienne et al. , severe cancellations
occur between the postive and negative contributions to
the matrix elements in Eq. (11). We believe that the
discrepancy between the results of our work and those of
Ref. 8 is likely due to the combined effect of severe can-
cellation and the QMD wave functions not being accu-
rate enough. We may illustrate this point by defining two
integrals related to Eq. (11),

IV. SUMMARY AND CONCLUSIONS

We have computed RR cross sections of the process
e +0+( S)~O[( S)nl] L for (nl) up to (15,14) in the
energy range of 0.0345 —2.58 eV using Hartree-Fock wave
functions for the bound and continuum states. By extra-
polating the cross sections to the cases of (nl) ) (15, 14),
the RR rate coefficient cz for capturing electrons into all
bound states as a function of temperature has been ob-
tained.

We have examined the hydrogenic approximation for
calculating the RR cross sections of oxygen. For 3 ~3,
the use of the hydrogenic approximation makes virtually
no difference to the cross sections o.„&, but for the ns and
np cross sections the hydrogenic approximation is found
to be entirely unsatisfactory. For the o.„d series the accu-
racy of the hydrogenic approximation varies from 0.1%
at an electron energy of 0.0345 eV to 19% at 2.585 eV.

The QDM of Burgess and Seaton" is extensively used
in the literature in connection with electron-ion radiative
recombination. By comparing with the QDM calculation
of Julienne et aI. , we find that our results agree closely
with the QDM results for a„d of both the triplet and
quintet final states as well as a„of the quintet states.
However, a much larger difference is found for u„of the
triplet final states. For u„, the two sets of cross sections
are totally differnt. This casts some doubt on the reliabil-
ity of the QDM in some cases. In view of wide usage of
the QDM, more extensive studies should be made to ex-
amine the overall validity of the QDM.
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