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Two-Coulomb-exchange potential in the presence of open channels
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We use the techniques of dispersion theory to study the long-range behavior of the two-
Coulomb-exchange potential acting between two atoms, or between an atom and a charged system
such as an ion or electron, in the presence of open channels. In contrast to earlier work, we avoid
the use of a multipole expansion. We focus on the case of atoms in initial S states. When one of the
systems is in an excited state or the relative kinetic energy is large enough to allow excitation, the
potential has an imaginary part that falls off exponentially with distance in the absence of degenera-
cy and as an inverse power in the presence of degeneracy of the initial state. The asymptotic form
of the real part is unchanged from that found in the closed-channel case.

I. INTRODUCTION

The simplest approximation to the effective potential
describing the low-energy interaction of two neutral spin-
less atoms A and B, each in an S-wave ground state, is
the London potential VL. This potential, valid for sepa-
rations R which are large compared to atomic sizes but
small compared to distances at which retardation is im-
portant, has the form

V~ = —CL/R

where CL is the London constant. The London potential
arises from the use, in second-order perturbation theory,
of the dipole approximation to the electrostatic potential
U, defined as the sum of the Coulomb interactions be-
tween the constituents of the two atoms. In the language
of (Coulomb-gauge) quantum electrodynamics VL can be
thought of as arising from the exchange of two "Coulomb
photons"; the exchange of a single photon only gives rise
to a short-range force. The derivation of VL is discussed
in many texts and the problem of the evaluation of CL, as
well as the study of corrections to VL, are the subject of a
large literature. '

Now suppose that, say, atom A is in an excited state.
Then, in the absence of accidental degeneracy, the famil-
iar expression for Cl as a sum of squares of dipolelike
matrix elements divided by an energy difference remains
well defined. It is therefore reasonable to suppose that (1)
still represents a good starting point for describing the
low-energy scattering of this excited state of A and the
ground state of B. However, now the effective potential
must also have an imaginary part, to accommodate the
open channel A +B~A +B, where A' denotes the
atom A in an excited state. Similarly, if both atoms are
in the ground state but the relative kinetic energy is

su%cient to allow excitation of one of the atoms, such an
imaginary part must appear.

While there has been some discussion of the question
of the modifications needed when there are open chan-
nels, at least for the case when one of the initial states has
LAO, a systematic study has not been carried out.
Moreover, the existence and precise nature of the imagi-
nary part do not seem to have been addressed. The aim
of this paper is to treat some aspects of these topics
within a framework based on the techniques of dispersion
theory. Most of the basic mathematical results needed
for this purpose have already been presented and used in
closely related work. These studies included the case
of atom-atom scattering with each of the atoms in an ini-
tial 5 state almost degenerate with a state of opposite par-
ity and electron-atom scattering with an S-state target
atom having a nearby P-state partner. In the absence of
such degeneracy the effective potential for electron-atom
scattering is of course the polarization potential

V„„=—a~e /2R (2)

where ez is the static polarizability of the atom. In both
these studies use was made of the dipole approximation,
which in the ordinary case (no open channels and no de-
generacy) leads to (1) or (2). A generalization in which all
multipoles are included has been described recently. In
the present paper we avoid a multipole expansion alto-
gether. Section II gives our analysis, Sec. III contains a
discussion, and Sec. IV has concluding remarks. The
connection with the multipole expansion is illustrated in
the Appendix.

II. ANALYSIS

A. Preliminaries

Consider the elastic scattering of atoms A and B, with
initial momenta p and —p and final rnomenta p' and
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—p', respectively. I.et U denote the total electrostatic in-
teraction between the constituents of A and those of B.
Then the part of the amplitude for the transition

~ p;a, b )~ ~
p', a, b ) which arises from U in second-order

perturbation theory is given by

T=gT „,
m, n

where

T „=(2m.) f dk(p', a, b~U~k;m, n )

with c and d ratios of the masses of the constituents to
the total mass of each atom. ' The precise form of the
I"s does not matter for the purpose at hand. What is im-
portant is that they are manifestly analytic functions of
the components of q and q' in the neighborhood of zero
values for these components.

We shaH restrict our attention to the case where both
~a ) and ~b ) are S states. We then collect together all
contributions from states of total energy E +E„,i.e., de-
generate in total energy with a given intermediate state
~m, n ), by defining

X(k;m, n~U~p;a, b)l(D „+ie) . (4) N „(q',q)= g F,t, „(q'.)F „.,b(q) .
deg.

(9a)

Here ~a ) and ~b ) denote arbitrary bound states of the
atoms and the sum is over both bound and continuum
states

~
m ) and

~
n ), with energies W and W„. The en-

ergy denominator D „ is given by

D „=(W,+Wb —W —W„)+(p' k')—/2m„s,

where m„s =mzms/(m„+ms) is the reduced mass of
the atom-atom system; note that D „may be either posi-
tive or negative. As discussed in Ref. 4, for fixed p the
amplitude T will be an analytic function of t = —Q,
where Q=p' —p is the three-momentum transfer, with a
nearest singularity at t =0. This singularity arises from
the long-range character of the Coulomb potentials that
enter the definition of U. Apart from an additive polyno-
mial in t, the amplitude T can therefore be written in the
form

Then by rotational invariance N „ is a function only of
q, q', and q q'. It follows that N „ is an analytic func-
tion of these variables or, equivalently, of the variables
q, q', and t = —(q +q' —2q q') in the neighborhood
of zero:

N „(q',q)=N „(t;q,q' ) . (9b)

The corresponding contribution to T from such states,
denoted by S „,is then seen to be given, on use of (4), (8),
and (9), by

S„=gT„
deg.

=(4ire ) (2m) f dkN „(t;q,q' )/D „q q'

(10)

Analysis shows that the singularity of S „at t =0
arises from the region of the integrand where both q and
q' are near zero. We therefore write, in (10),

(6a)

where the spectral function o. is defined by

T =T(p2, t)=(1 ~/) f dt'o(p2, t')l(t' t), —
0

o(p, t)=(1/2i)[T(p, t+ie) T(p, t —ie)]j, (—6b)

with the limit a~0 understood. The long-range part of
the corresponding effective potential, defined as the
Fourier transform of T with respect to Q, is then given by

V(R;p )=(1/4nR) f dt o(p. , t)exp( —t'~ R ) . (7)
0

The behavior of V at large distances is determined by that
of the spectral function in the neighborhood of t =0. We
now show how this can be studied without use of a mul-
tipole expansion of the matrix elements of U or commit-
ment to a particular atomic model.

B. Reorganization of terms

(k;m, n~ U~p;a, b) =(4me /q )F „,b(q), .

(, p', a, b~ U~k;m, n ) =(4me/q' )F,b „(q'), . .

(8a)

(8b)

where q=k —p, q'=p' —k. The F's in (8a) and (8b) are
transition form factors, sums of products of terms of the
form

(m ~exp(icq. r) ~a ) X (n~exp( idq r~b ), —

Our approach is based on a simple generalization of
that used in Ref. 4. The factors in the numerator of the
integrand of (4) may be written in the form

N „(t;q , q' ) =N „(t)+[N „(t;q , q' ) N „(t)j, —

where N „(t) is defined by

N „(t):—N „(t;0,0) .

Then S „assumes the form

Sm~ Smn+Smn ~

(1 la)

(1 lb)

(12)

where S' „represents the contribution of the first term in
(1 la) and S"„that of the second term (in square brackets)
in (1 la). Note that in the dipole approximation N „ is

simply proportional to q.q', so that the second term in
(1 la) becomes proportional to q +q' . This leads to a
divergence in the integral defining S"„and thus to the in-
troduction of a high-energy cutoff. In the present ap-
proach no such artifice is needed: the separation intro-
duced by (1 la) isolates the part S' „ofS „ that contrib-
utes to the long-range part of the potential without intro-
ducing a spurious divergence in the part S"„,which con-
tributes only to the short-range part. On defining a quan-
tity 5 „by

„=2m~~(W + W„—W, —Wb),

we may write S' „ in the form
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S' „=(4e m „ii /vr )N „(t)K (p, 5 „;t),
with

K(p, b, ;t)= f dk(p b,—k—+ie) '(q q' )

C. Spectral function near t =0

(14)

(15)

function Kd;, a more elaborate analysis is needed. For
6 & 0 and k0 & 0, Kd;,„ is analytic in the t plane cut from
t =0 to t = t0, with a discontinuity across that cut given
by

[K„„],= —2i(~'/ik,
i )[t (t, —t) ]

(b, &O, k,' & 0), (21a)

Since S"„is analytic near t =0, we may focus on S' „
and because N „(t ) is also analytic at t =0, the discon-
tinuity [S' „], of S' „across the branch cut starting at
t =0 is determined by that of the function K. Let o. ' „
denote the contribution to the spectral function arising
from S' „.Then

whereas if 5 &0 and k0 &0 one finds that Kd;, is analytic
in the t plane cut from t =0 to t =+ ~, with discontinui-
ty

[K„„],= 2i(—~'/ik, i)[t(t, +t)]
(6&O, k,' &0) . (2lb)

o' „=[S'„],/2i

and from (14) we have

(16a) If b & 0, then necessarily k0 )0 and Kd;sp is analytic in
the t plane cut from t =0 to t = t0 with discontinuity

with

F =t, —(1—u')t, t, =(p' —k')'/k' . (17b)

[S'„],=(4e m~ti/n. )N „(t)[K(p,b, „;t)], . (16b)

On combining the factors 1/q and 1/q' in (15) with a
Feynman parameter and carrying out the angular in-
tegration one obtains '

K(p, h;t)=4~ f dk(p —6—k2+ie) ' f du F
0 0

(17a)

[K„„),=2i(~'/ik, i)[t(t, —t)]

(b, &O, ko &0) . (2lc)

In summary, if b, is negative, as is the case when
i a, b ) is

an excited state and the intermediate states im, n ) lie
below ia, b ) in energy, then (20a) and (21c) apply. If 6 is
positive, as is the case when ia, b ) is the ground state,
and also p (b„ then (20b) and (21b) apply, whereas if
p & b, then (20a) and (2la) apply.

The spectral function cr' „(p,t) is thus determined by
(16), (18), (20), and (21) to have the form

The function defined by (17) has been studied and eval-
uated previously. ' One first separates K into an absorp-
tive and a dispersive part, K,b, and Kd;, , corresponding
to the contribution of the 5 function and principal value
parts of the integral over k, respectively:

o' „(p,t)= —(4m. e m )[N „(t)/ik it' ]

X [0(ko)[8(to—t)(to t) ' e—(h „)
+i 0(t —t, )(t —t, ) '"]

+0( —ko)(to+t) (22)
K =Kd;, +iK,b, ,

where

K,b,
= —4m. f dk 5(ko —k )f du F

Kd;, =4vrP f dk(ko —k') ' f du F

with

(18a)

(18b)

(18c)

where now ko =p —b, „and to =(6 „) /Ip
The corresponding contribution V' „ to the long-range
part of the potential is, according to (7), given by

V' „(R;p ) =(1/4' R)f dt cr'(p, t)exp( —t ~ R ) .
0

(23)

k0=P —6 . (18d) III. DISCUSSION

From (18b) one sees that for ko &0, K,b, is nonvanishing
and one finds that K,b, is itself an analytic function of t
with a branch point at t = t0, where t0 is the value of t

&
at

A. Behavior of V'„ for large R

It is convenient to consider separately the case where

„ is nonvanishing and the case where it is zero or close
to zero.

[K,b, ],=0 (ko (0) . (20b)

These equations hold for either sign of A. For the

The discontinuity of K,b, across the cut extending from
tp to infinity is given by

[K,b, ],= 2i(rr /ik—oi)[t(t —to)] ' (ko &0), (20a)

and of course

1. 5 „%0

We see from Eq. (22) that whatever the sign of b, „and
k o, the real part of the spectral function o. ' „(p,t )

behaves as the product N „(t)t '~ near t =0. Now, as
shown in Ref. 4, in the dipole approximation N „(t)
varies as t near t =0 and it is easy to see that this is true
more generally: in an expansion in powers of t, for two
neutral atoms in S states, we have
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N „(r)=a „r'+b „r'+ (24)

Note that for the leading term, exhibited in (25), the vari-
ous I9 and e functions have disappeared, along with the
absolute value sign on 6 „. Substitution of (25) into (23)
yields, on neglect of terms that fall off exponentially and
use of the relation

dt r exp( t ' R) =—(2)4!R
0

the result

ReV'„(R;p )= —C'„/R +
where

(26a)

C'„=4!(e m„s)(2a „/b, „) . (26b)

Each extra power of t in (24) will produce two more in-
verse powers of R in the corresponding contribution to
the potential, so that (24) effectively generates a multipole
expansion for the real part of the potential. An explicit
illustration of this expansion is given in the Appendix, for
the case of the scattering of two two-body composites.

In contrast, the imaginary part of o' „(p,t), associat-
ed with the i (t —to) ' term in (22), contributes only for
t ) to. The corresponding potential ImV' „ then falls off
exponentially with R, with a (p-dependent) range equal to
to '~ . To be specific, from (22) and (23) we obtain

ImV'„(R;p )= —(e m„s/~ko )R 'I „(R;p ), (27a)

where

XN „(t)exp( —t'~ R ) . (27b)

For large R we have

with a „not equal to zero for states ~m ) and ~n ) which
are dipole-connected to a ) and !b ), respectively. It fol-
lows that the real part of the spectral function behaves as
t ~ for t near 0 and this implies, via Eq. (23), that the
large-R behavior of the real part of the corresponding
effective potential will in all cases have the Wang-London
R form. To be precise, since b, „WO implies to&0, we
can expand the right-hand side of (22) in powers of t for
t « to. From the expansion (24) we obtain

Reo' „(p,t)= —(4ir e m~~)(a „/b, „)t ~ +
(25)

2. 6, „=0
The situation is dift'erent if 6 „can be very small.

This is obviously possible if either (i) both the initial
states

~
a ) and

~
b ) are almost degenerate, so that there ex-

ist states ~m) and !n) for which both W —W, and
W„—Wb are nearly zero, or (ii) there exist states ~m )
and !n ) such that W„—W„= —(W —W, ). An exam-
ple of the first type is provided by the scattering of posi-
tronium and a hydrogen atom, both in 2s states. An ex-
ample of the second type is provided by the scattering of
two atoms that happen to have two spectral lines that al-
most coincide in wavelength and are in appropriate initial
states. Whatever the reason, from (22) we see that, on the
one hand, there is in this case no contribution to the real
part of V' (in the limit of vanishing b „) because to=0
and the domain over which the relevant step functions in
(22) do not vanish shrinks to zero. Thus the leading term
in ReV' always behaves as R for large R, with a
coefficient determined by the transitions for which EWO.
On the other hand, there still is a contribution Im V' „ to
the imaginary part of V; however, in the limit 6 „~0it
now falls off' only as an inverse power, rather than ex-
ponentially. To be more explicit, for states

~
m ) and

~
n )

that are dipole-connected to ~a ) and ~b ) we now have
Imo. ' „-tfor t )0 and, correspondingly,

ImV „—m&ze a "/pR (29)

where a is a length of the order of atomic dimensions; if
the states

~
m, n ) are only connected to

~
a, b ) by a

higher-order multipole transition, the power of R in (29)
will of course increase. In this context one should how-
ever note the caveat raised in Ref. 4 concerning the use of
potentials in situations in which the scattering amplitude
is strongly momentum dependent.

The result (29) is essentially the same as that obtained
in Ref. 7 for the scattering of doubly degenerate S-state
systems, i.e., each of which has a nearby P-state partner;
the consequences for the phase shifts were explored there.
However, it is perhaps easier to carry out an experiment
in which one scatters an excited atom from a ground-
state atom of the same type than one which requires two
ground-state atoms with the necessary degeneracy.

ImV'„(R;p )= —(2m)' (e "mgii/l&ol)

X[N „(t,)/t,'"]
Xexp( —to R)R

Of course, the discontinuity of the function S"„,which
contributes only short-range terms to the real part of the
potential, will also contribute such terms to the imagi-
nary part of the potential.

X exp( t ' R)—
and the asymptotic form of the integral is given by

(2~)'"r,'"exp( —r,'"R )/R '"
It follows that

(27c)

(27d)

B. Ion-atom scattering

Our general analysis is basically unchanged if one of
the systems, say B, is charged, e.g. , an ion or an electron.
For B an ion, the function N „(t) will vary as t rather
than t near t =0, for dipole-connected states, so that the
real part of the effective potential will vary as R for
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large R and the imaginary part will again be short range,
unless the exceptional circumstances described above ob-
tain. For 8 a "point" particle, such as an electron, the
double sum (3) is replaced by a single sum, g T, where
T is obtained by deleting the symbols b and n in (4) and
the symbols Eb and E„ in (5). The corresponding
numerator function X (t) then has properties similar to
the atom-ion case and therefore so do the associated
effective potentials. If both systems are charged, as in the
case of ion-ion or electron-ion scattering, the numerator
function has a nonzero limit as t —+0, but the spectral
function, although still well defined, now has a part that
behaves as t ' near t =0; the logarithmic divergence that
then arises in (7) is canceled when the iteration of the
lowest-order effective potential is subtracted, as discussed
in Ref. 7 in the context of field theory.

IV. CONCLUDING REMARKS

We have seen in the study of the elastic scattering
problem for S states, on which we have focused here, that
on the one hand the real part of the long-range effective
potential arising from two-Coulomb exchange is found
not to undergo any change from the London form,
whether or not there is near degeneracy, as already found
in Ref. 4 in the context of the dipole approximation, and
whether or not there are open channels. On the other
hand, in the presence of near degeneracy there is an
imaginary part that can be substantial; under such cir-
cumstances it is not permissible to neglect the relative ki-
netic energy of the two atoms.

However, one may raise a question about the first-
order effect of U, in the presence of degeneracy, often
considered in the context of molecule formation. Sup-
pose we consider the interaction of a H atom and deuteri-
um, both in the 2s state. (We take the nuclei to be
different to avoid complications from exchange effects. )

In the limit of exact 2s-2p degeneracy, application of the
Born-Oppenheimer approximation to the computation of
the second-order level shift arising from the electrostatic
potential U, with the nuclei a fixed distance R apart, re-
quires that one first diagonalize the matrix of U taken be-
tween the complex of product l2s ) and l2p ) states. Di-
agonalization of this matrix will yield a first-order shift
for the

l
2s, 2s ) state (now modified by mixing with

l2p, 2s ) states) that has a term decreasing as R . There
is no counterpart of this in the potential we have calculat-
ed, which is relevant for the purely elastic scattering of
two atoms, because we are doing perturbation theory in
the continuum. Diagonalization is both unnecessary and
inappropriate: the boundary condition at large separa-
tions between the atoms is that each of them be in an S
state, not in a linear combination of an S state and a P
state; such a linear combination does not have a definite
energy as long as the degeneracy is not exact.

Even for the calculation of energy shifts in the context
of the adiabatic approximation, an energy shift of first or-
der in U only occurs when the matrix elements of U, sym-
bolized by ( U ), are much larger than the energy
differences between the complex of states linked by U,
symbolized by 5. Formally this occurs because the level
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APPENDIX: TWO-COULOMB-EXCHANGE
POTENTIAL FOR TWO-BODY COMPOSITES

1. Preliminaries

In this appendix we make the results of Sec. II more
explicit, by considering the simple case where A is a two-
body composite, with constituents 1 and 2, and B is a
similar system with constituents 3 and 4. Let m, and Q;
denote the masses and charge numbers of these constitu-
ents (i =1,2, 3,4). The functions defined by Eqs. (8a) and
(8b) of the text then have the form

+ „.b(q)=G .(q)G„b(q),

Fob'mn (q') =G..(q')Gb. (q'»

where the G's are transition form factors defined by

G, (q)=(mlZ„(q r)la),
G„,(q)=(nlZ, (

—q r')lb &,

with

Z~(q r)=Q, exp(iczq r)+Q2exp( —ic, q r),

(A2a)

(A2b)

(A2c)

Zii( —q r')=Q3exp( —ic4q r')+Q4exp(ic3q r') . (A2d)

Here r and r' are the relative coordinates of the constitu-
ents of A and B, respectively, and the c's are mass ratios
defined by

c ]
=m ] /m g, cp

=m p /m g,

c3=m3/mz, c4=m4/mz .

It follows that the function X, defined by Eq. (9a) has
the form

X „(q,q') = g [G, (q')G, (q)][G„„(q')G„„(q)]. (A3)
deg.

where the sum is over all states degenerate with a given
product state lm, n ).

shifts have the form, in obvious symbolic notation,

( U)'/(&'+ ( U)')'"
Since ( U) decreases with R (as R for the case con-
sidered above), for sufficiently large R and 5%0 the cri-
terion for a first-order level shift is never satisfied.

In further study, it would be interesting to extend the
approach used here to the scattering of systems with
nonzero angular momentum.
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We restrict our attention to systems A and 8 bound by
spherically symmetric interactions with initial states ~a &

and
~

b & of zero angular momentum and write the inter-
mediate states

~
m & and !n & more explicitly in the form

where the x's denote the Cartesian components of r, we
may write (A9c) in the form

;kl =g(q, .
q „)(q,, q, , )

E,J

m&=~m;L, mL&, ~n&= n;L', mL ~ &, (A4a) XTE ~l jJ J1 k 1 1
(A 10)

with m a radial quantum number, L and mL internal an-

gular momentum quantum numbers, etc. In this notation
the initial states have the form

where the summation is over repeated indices. It can be
shown that the right-hand side of (A10) vanishes for
q =q' =0, unless k = I =L. Thus

ia&=ia;O, O&, ib&=~b;0, 0&. (A4b)
N =(Cz.L/L!) ( —1) I .LL+0(q )+O(q' ) . (All)

N „(q,q', L,L') =N (q, q', L)N„( —q, —q', ),
where

(q, q', L)=g ( a ~Z„(q r)!m;L, mL &

mL

(A5)

We now focus on the contribution to the right-hand
side of (A3) which arises from the summation over the az-
imuthal quantum numbers mL and ml. , for fixed values
of m, n, L, and L'; we denote this quantity by
N „(q,q', L,L'). Then from (A3) we obtain

Next, we use the symmetry of T under separate permuta-
tions of the i or j indices to write

T . ' . =G (m)&6 . . 5 +l1 EL ~ J1 JL L ~ E1J~(1) EL J~(L&

(A12a)

where the sum is over permutations ~ of 1,2, . . . , L and
the dots denote terms involving at least one Kronecker 6
with two i indices or two j indices. The factor GL(m) in
(A12) has the form

X ( m; I., m, I
Z„(q' r) I

a &, (A6) G, (m) =c,
/ (a [!r']m & [', (A12b)

and N„(q, q', L') is similarly defined. Because of the sum-
mation over mI, K is a function only of the rotational
invariants q, q', and t:

cL =47r 2 L!/( 2L + I )! . (A12c)

with (a!r ~m & a reduced matrix element that depends
only on radial wave functions and cL defined by

N =N (t, q', q';L, ) . (A7) On substituting the form (A12) into (AIO) with k =l =L
we obtain

2. Study of N
I Lt =GL(m)(q q.') L!+O(q )+O(q' ) . (A13)

We only need the value of % at q =q' =0 and there-
fore define

N (t;L)=N (t, 0,0;L) . (A8)

One way to get a fairly explicit expression for N (t;L) is
to follow a procedure used previously in a closely related
context. On expanding the exponentials in (A6) in
power series one obtains

Substitution of (A13) into (All) together with use of the
fact that q' q = t /2 when q =q

' =0, we find that

N (t;L)=(C„.L /L!) (
—I) G ( L)mL!(t/2)

Similarly we obtain

(A14a)

3. Fona of the potential

N„(t;L')=(Cz L./L'!) ( —1) .Gt (n)L'!(t/2) . (A14b)

N =g g( „C.„C„.lki!E!)(i) +'I .„,(q, q';L),
k 1

where

C~;k =&i(c2)"+Qz( —ci)"

(A9a)

(A9b)

From (A5), (A7), and (A8) we see that for q =q' =0,
the contribution to N „ from intermediate states

~
m & of

A and ~n & of B, with angular momentum L and L', re-
spectively, is given by

On defining a tensor T by

(A9c)

l
1 lk J1 J l1 Ek & & 1

mL

I .ki=g(a~(q' r)"~m;L, mL &(m;L, mz~(q r) ~a & .

N „(t;L,L')=N (t;L)N„(t;L') .

On use of (A14), this takes the form

N „(t;L,L')=a „(L,L')tL+

where

a „(L,L')=(C„.t. )'(Cg. L )'( —
—,')

X Gt (m)GL. (n)/L!L'! .

(A15)

(A16b)

X(m;L, mL~x, . x, ~a &,

(A9d)

Note that if there is no accidental degeneracy, the values
of L and L ' are determined by the energies E and E„.

On replacing N „ in (22) by (A16a) and substituting
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the result into Eq. (23), one obtains a potential
V' „(R;p;L,L ') defined by z= 0 (A21)
V' „(R;p;L,L') = —e mziia „(L,L')/~!ko~!R

X [8(6 n p )Xt +t

+8(p —b, „)e(b, „)Y

+'~(p ~ma )Zt. +t. ]

where

(Alga)

With t =tox, Eqs. (A18b) —(A18d) take the form
2k —1—d

Xk =2
dR

X(z),

2k —1

(A19a)

X = f dt exp( t'/ R)—t" '/2(t +t) '/z

Yk = dt exp( t &/2R )t k i/2(t t)
——1/2

0
0

Zk =f dt exp( —t' R)t" ' (t —to) '/ . (Algc)
to

X (z) = (vr/2) [H, (z) —X, (z) ]—1,
Y(z) =(vr/2)[L, (z) I, (z—)]+1,
Z(z)=Ki(z) .

(A22a)

(A22b)

(A22c)

Equation (17), together with the definitions and relations
(A18)—(A22), is the main result of this appendix. We
now use it to obtain the behavior of V' „ for large and
small values of z.

For large values of z, one has the asymptotic expan-
sions

The integrals on the right-hand side of Eqs.
(A20a) —(A20c) can be expressed as linear combinations
of various cylinder functions, viz. , the modified Bessel
functions X&, I&, and K&, and the Struve functions H,
and L&, '

—d
dR

d
ZI 2

dR

where

Y(z),

2k —1

Z(z),

(A19b)

(A19c)

X(z)-,' y [r(k+-,')/I (
—k+-,')](z/2)-'"

k =1

Y(z)- —,
' g ( —1)"+'[I(k + —,

' )/I"( —k + —,
' )](z/2)

I& =1

(A23a)

X(z)= f dx exp( —zx)x(1+x )
0

1Y(z)= dx exp( —zx)x (1—x )

Z (z) = f dx exp( —zx )x (x —1 )
1

(A20a)

(A20b)

(A20c)

(A23b)

so that, on carrying out the indicated differentiations in
(A19), one obtains a multipole expansion for the real part
of V'„:

I (k+ —,
' )2 "[2(k +L +L' —1)]!

(R ~ L L') — e'im a (L L ) y (g 2)k —1R —2(L+L'+k)
„=, r( —k+-')(2k —1)~(a Pk-' (A24)

Note that the form of the right-hand side of (A24) is independent of the signs of 6 „and p —6 „. For L =L'=1, the
k =1 term yields the usual contribution to the London potential, associated with intermediate I' states, while the terms
with k ) 1 give the nonadiabatic and energy-dependent corrections.

If the quantity z is not large compared to unity, (A24) is not valid and the form of the associated potential does de-
pend on the sign of p —6 „. This is relevant if one of the possible values of 6 „ is very small. For small values of z,
the functions Hi(z), Ii(z), and L i(z) all vary as non-negative integral powers of z, whereas Ni(z) and Ei(z) vary as
z . In this case the leading terms come from differentiation of these latter functions. For small z one has

(vr/2)Xi(z)-—z ' and Ki(z)-z ', so that one obtains

V' „(R;p,L,L')= —2e mz~a „(L,L')(2L +2L' —1)!R ' + ' '[g(h, „—p )(b, „—p )

+i 0(p b„)(p ——b „) '
] . (A25)

If only dipole interactions are taken into account, the contribution to the atom-electron potential (L =1,L'=0) of the
states for which 6 „ is very small varies as R and is real for 6 „)p whereas it is purely imaginary, with the same
power behavior, for p ) b, „. For the atom-atom potential (L =L'=1) the behavior is similar, but with R replaced
by R . This is consistent with earlier findings. ' The present result, Eq. (A17), .has the advantage of being in closed
form, valid for all values of R.
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