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Relativistic all-order calculations of energies and matrix elements in cesium
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All-order methods recently developed for high-accuracy calculation of energies and matrix ele-
ments in Li are extended and applied to cesium. We employ a relativistic, linearized, coupled-
cluster formalism, incorporating single, double, and an important subset of triple excitations. A
coupled-cluster formulation of the matrix element of a one-body operator, incorporating the
random-phase approximation exactly, is used to calculate hyperfine constants and transition-matrix
elements. We find agreement with experiment at the 0.5% level or better for ionization energies and
dipole-matrix elements, and at the 1% level for hyperfine constants. Modifications of the method
that have the potential of higher accuracy are discussed.

I. INTRODUCTION

Many-body perturbation theory (MBPT) provides a
powerful and systematic method of calculating the prop-
erties of many-electron systems. ' However, while con-
sideration of the first few orders of MBPT is known to
suffice for accurate calculations of the properties of high-
ly charged ions, the method is less highly convergent for
neutral atoms. For this reason, it is of interest to consid-
er methods that sum infinite classes of MBPT diagrams,
which we refer to as "all-order" methods. One of the
best known of these methods is the coupled-cluster for-
malism (reviewed by, e.g. , Bishop and Kummel ). The
majority of applications of this formalism have been
made to closed-shell systems in a nonrelativistic frame-
work. Interest in the accurate calculation ' of parity
nonconservation in cesium, however, requires a relativis-
tic method because of the high nuclear charge and the
short-distance origin of the effect, and in addition a
method that deals with an open-shell system, here the
simplest possible case of a single electron outside closed
shells.

Before carrying out any calculation of parity noncon-
servation, the strength of which effect depends on an un-
known quantity, the so-called weak nuclear charge Q~,
it is necessary to calculate known properties of the atom
to provide a gauge of the accuracy of the calculation.
The accuracy required for extraction of useful informa-
tion about unified theories of the weak and electromag-
netic interactions is on the order of 1%. What we wish
to do in this paper is to describe in detail a relativistic,
open-shell, all-order method that is powerful enough to
predict experimentally known energy levels and matrix
elements of cesium to this accuracy. We have already ap-
plied the method to the calculation of parity nonconser-
vation in cesium.

Previously we used a relativistic, all-order method to
calculate energies and matrix elements for Li and Be
However, the all-order method implemented in Ref. 7

was noted to miss certain terms that contribute to remo-
val energies already at the level of third-order MBPT. In
the case of lithium, the missed terms were extremely
small, and did not significantly affect the accuracy of the
calculations. We have shown, ' however, that when the
same methods are applied to cesium the missed terms are
much more significant, and must be dealt with in some
manner. One way of doing this is the introduction of a
"Hermitian conjugate" method. ' Here we propose a
slightly different approach to the problem, building into
the formalism a set of triple excitations. The new terms
are, however, in many cases similar to terms in the Her-
mitian formulation.

Both our original all-order scheme employed in Ref. 7
and our new technique are closely related to coupled-
cluster methods. Specifically, the former is a linearized
version of a coupled-cluster method including single and
double excitations. The latter is the extension of this
method to include the effect of triple excitations on the
single-excitation coefficients. Our new technique is a
well-defined calculational scheme that predicts energies
and allowed electric dipole (El) matrix elements of cesi-
um accurate to a few tenths of a percent, and hyperfine
constants accurate at the 1% level. In addition, we will
identify extensions of the method that have the promise
of improving the predictions, at the cost of significantly
greater computer time, to the one-tenth of a percent lev-
el.

The paper is organized as follows. In Sec. II we recapi-
tulate the original all-order method applied to lithium,
and introduce a modification to the wave function (in-
volving a triple excitation) that leads to the new all-order
equations. In Sec. III a formulation of matrix elements
that includes the random-phase approximation (RPA) ex-
actly along with the eA'ect of triple excitations is present-
ed. In Sec. IV computational issues are addressed and
numerical results for cesium presented. The concluding
section, Sec. V, discusses the further modifications of the
method that must be made to reach the next level of ac-
curacy.
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II. ALL-ORDER EQUATIONS

A. Relativistic, linearixed coupled-cluster formalism

The starting point for our relativistic many-body treat-
ment of the cesium atom is the no-virtual-pair Dirac-
Coulomb Hamiltonian discussed by Sucher. " We write
this Hamiltonian as H =Ho+ V, where (in atomic units
A'=m =e =4rreo= 1)

N

Ho= g A,+[ca; p;+(P; —l)c + V„„,(r; )+ U(r;)]A,+
i=1

N l N
V= y A+A+ A+A+ yA,+ U(—r, )A+ .

i&j &J i=1
(2)

& i
I VDF Ij &

=&(g;...—g;...), (4)

&abed

where the sum over a in (4) is over all N —1 core states.
In second-quantized form, Ho and V become for this po-
tential

Ho=+ E, +g E, Iata, ],

a, b
b b g bb )+ g g jkl [a 'a aiak]''

Here we have added an arbitrary potential U(r) to the
model Hamiltonian IIo and subtracted it again from the
perturbation V; the potential U(r) is chosen to approxi-
mate the effect of the electron-electron interaction. The
nuclear potential V„„,(r) includes the effect of finite nu-
clear size. The A+ are projection operators on to the
positive-energy states of the Dirac Hamiltonian in the po-
tential V„„,+ U(r). As discussed by Sucher, their pres-
ence avoids the so-called continuum dissolution problem,
and gives the Hamiltonian normalizable, bound-state
solutions. Furthermore, the no-virtual-pair Hamiltonian
corresponds to a well-defined subset of the full QED
atomic perturbation series. Omitted relativistic and
field-theoretic effects can be identified and added later in
a perturbative manner if desired; these include transverse
photon exchange (the Breit interaction), retardation and
negative-energy state effects, and radiative corrections.
We include Breit-interaction corrections to the hyperfine
constants perturbatively, but we omit the remaining
corrections, a11 of which are small for the properties of
interest here. The hardest task in neutral cesium is to
overcome the many-body problem associated with the
dominant Coulomb interaction, which can be approached
by means of the no-virtual-pair Hamiltonian. We have
still not controlled the many-body problem to sufficient
accuracy that the smaller, field-theoretic effects are ob-
servable.

In lowest order we choose to work with a V
Dirac-Fock (DF) potential, U(r)= VD„, which is the DF
potential of the X —l closed-shell core electrons. A
single-particle valence state

I
U ) then satisfies

[ca p+(I3—1)c + V„„,(r)+ VD„]IV)=E, Iv), (3)

where braces [ ] indicate normal ordering with respect to
the core. ' Here and later we shall adopt the convention
that a, b, c, . . . , denote core states, n, m, r, . . . excited
states (including the valence states), U and ic valence
states, and i and j general states. The positive-energy
projection operators in (1) and (2) restrict all excited
states n and m to positive-energy states.

The V ' DF ground state is an eigenfunction of Ho,
and —c., is the lowest-order approximation to the valence
removal energy. The effect of the perturbation V can be
taken into account systematically using the techniques of
many-body theory. In earlier work on Cs, ' ' we inves-
tigated order-by-order perturbation theory and conclud-
ed that, to obtain matrix elements and energies below the
1% level, a scheme that summed certain important sub-
sets of diagrams to all orders is desirable. Dzuba, Flam-
baum, and Sushkow' have recently considered several
infinite subsets of diagrams using the time-dependent for-
mulation of many-body theory, and obtained an accuracy
below the l%%uo level. We propose here to use a
modification of the coupled-cluster (CC) technique, in a
form which contains most of the effects considered by
Dzuba, Flaumbaum, and Sushkov, and several other
infinite sequences as well.

Our present technique is an extension of the linearized
CC formalism with single and double excitations that we
used in our earlier work on Li and Be+. The linearized
CC formalism is obtained from the complete, open-shell
CC formalism (see, e.g. , Lindgren and Morrison') by
dropping terms which are nonlinear in the cluster opera-
tor. This procedure may be outlined as follows. One in-
troduces the exponential ansatz,

p(») I+.& (8)

where I+o) is the zeroth-order solution, and Iql) is the
exact wave function in intermediate normalization
(qlI%'o) =1. The cluster operator S can be shown to
have a perturbation expansion in terms of purely con-
nected Goldstone diagrams, and to satisfy a generalized
Bloch equation, "

[S,HO]P =(QVAP yPVQP)„„„, —

where P is a projection operator on to the state I'Ilo), Q is
its complement Q =1 P, A=[exp(S)—], y=Q —1, and
"conn" indicates that only connected terms are to be re-
tained on the right-hand side. In the CC method, one
solves (9) as a hierarchy of equations for the one-, two-,
three-, . . . , body parts of S =S, +S2+S3+. . . , where
the n-body part S, is defined to excite n electrons from
the state I%'0). In the linearized CC used here, we drop
the nonlinear terms in the expansion of the exponential
A=[exp(S)]=[S+(I/2!)S +(1/3!)S + ] occur-
ring on the right-hand side of (9). With this assumption,
a rather simpler ansatz than (8) would suffice to derive
the same equations, but introduction of the full exponen-
tial form here is useful for later discussion.

To incorporate single and double excitations to all or-
ders, we truncate S to S =S1+S2, where
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m, n, a, b m, n, a

g Pma m a+Qpmvam u

m, a m

S2= —, Z p „,ba a„aba, + g p „,„a a„a,a, .

After substituting these into (9), dropping the nonlinear
terms, normally ordering each side with respect to the
core, and identifying coefficients of equivalent excitations
on each side, one obtains for the valence single excita-
tions and core-valence double excitations

( Su +~Ev em )Pmu g gmbnrpnrub g gbcunPmnbc +g gmbunpnb (12)
b, n, r b, c, n b, n

(Su +~ev +Ea em en )Pmnav gmnav + g gmnrupra X gcnavpmc + X(gncurPrmca gcnvrprmca gncraprmuc ) +
c, r

+X&cdvapnmcd +X gnmrsprsva (13)
c,d

~Eu X gubnr Pnrvb X gbcvnpvnbc X gvbvnpnb

r, s

(14)
b, n, r b, c, n b, n

where the tilde notation denotes the inclusion of ex-
change, p,b«=p, b«

—pb«d, and —5c., is the correlation
correction to the valence removal energy. A similar set
of equations holds for core excitations, but with no 5c., in
the energy factor on the left, and with U replaced by a for
core single excitations, and by b for core-core double ex-
citations. The core equations are independent of' the
valence state U, and give the solution for the closed-shell
N —1 particle core, while the valence equations give the
effect of adding the Nth electron. We solve the core
equations first, store the coefficients, and then solve the
valence equations for each valence state of interest.

By inspection one can show that while terms missed in
this formalism occur first in fourth order for the total
core energy, they occur already in third order for the
more interesting valence removal energy. To pick up the
set of missed third-order diagrams in the standard CC ap-
proach would require the introduction of triple excita-
tions, as shown in Fig. 1. These missed terms are large
for Cs: they contribute about —1.8% to the 6s valence
removal energy, ' and about —4% to the 6s hyperfine
constant. They are numerically the next most important

modification to the linearized singles and doubles ap-
proach outlined above, and must be included to obtain
reasonable agreement for Cs.

B. Inclusion of a subset of triple excitations

As shown in Sec. IV, the basis set we use is sufficiently
large that it is not possible to store triple-excitation
coefficients p, „,b, . We thus avoid the explicit introduc-
tion of such coefficients, and instead derive terms which
give their contribution to the single and double
coefficients. Our scheme is as follows. The leading con-
tribution to the S3 operator arises from the second-order
terms in Fig. 2, which are the triple-excitation part of
VS2. Schematically, S3 in this approximation is given by

D3S3= t VSz

This shorthand notation indicates that VS2 is normally
ordered, retaining only connected, triple excitations; each
excitation is identified with the corresponding one on the
left-hand side, and D3 signifies a triple-excitation energy
factor, given by (E, +sb+E, —E„—s —E„) for an excita-
tion abc ~nmr, for example. We can now determine the
effect of S3 in this approximation on the single- and
double-excitation coefficients,

1
D S, = + V IVS2I3„„„.

D3
1,conn

(16)

FIG. 1. Example of a third-order contribution to the valence
removal energy arising from triple excitations in the standard
CC approach. Removal of the uppermost Coulomb interaction
leaves the underlying term from S3.

FIG. 2. Leading contribution to S, (for a core-core-core exci-
tation). The solid line indicates a double-excitation coe%cient
from S2.
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i W

i( V
i4

FIG. 4. Two contributions to the matrix element of a one-
body operator associated with the term in Fig. 3.

FICs. 3. A sample term from I V(l/D3}I VSp jg j] ~ It
is topologically similar to Fig. 1, except that the lowest
Coulomb interaction is replaced by an all-order double-
excitation coefficient.

motivate it, we consider the two contributions of (18) to
the matrix element of a one-body operator shown in Fig.
4. Upon adding these two terms, the triple-excitation en-

ergy denominator simplifies to a double excitation,

1Dm ~hers mrnb P nsuc

„„,(E, +Eb+ E, —e„—E —E, )

1
D2S2 — . + V I VS2j3„„„

D3
2, conn

(17)
l 1

(E, —e ) (Eb+E, —c.„—E, )

~ ~ ~ + hers ~m rnb P nsvc

b C +Kb+6 C E, E.
+ ~ ~ ~

(18)

This term is topologically similar to the missed third-
order energy diagram in Fig. 1; in fact, the effect of (16) is
to reproduce the entire set of missed third-order terms,
with the lower Coulomb matrix element replaced by a
double-excitation coefficient. Before coding these terms,
however, we make one further manipulation. To

We have implemented only the modification to the
single-excitation equation in the present work, and shall
confine our subsequent discussion to this term.

Let us consider the sample term from Eq. (16) shown in
Fig. 3, and given explicitly by

(c,, +6e, —e )p

IDm &hers ~mrnbPnsvc

hem nrs u m b c r s
(19)

and the expression now contains the factor
gb, „,/(eb+E, —E, —e, ) which is just the lowest-order ap-
proximation to (p„,b, )*. It can be shown similarly that
energy denominator simplifications occur when the new
terms in S, contribute to the right-hand side of the
double-excitation equation, and that furthermore the
combination gb, „,I( Eb +E, —E„—E, ) can be generalized to
the all-order doubles coefficient (p„,b, )*. We thus modify
the term in Eq. (18) to

(e, +BE„—E )P, = +(P„b, )*g „„bP„„,+
(20)

We obtain the complete set of terms from (16) in this
way,

( Ev + ~Ev Em )Pmu + g (Prsbc ) gmrnbPnsvc X Psncd ) gsbcuPmnbd + X (Pstbc ) gmdbcPstvd
b, c, n, r, s b, c, d, n, s b, c, d, s, t

(Pstbd ) gtsnvPmnbd X (Pntbc ) gmnvsPstbc X (Pstbd ) gmcubPstcd
b, d, n, s, t b, c, n, s, t b, c, d, s, t

+ g (Pntcb ) gntsbPmsvc X (Pstbd ) gctbdPmsvc (21)
b, c, n, s, t b, c, d, s, t

These terms are to be added to the right-hand side of the
valence single-excitation equation (12). The modification
to the core single-excitation equation is obtained by re-
placing v by a in the right-hand side of the above. The
formula for 5c, is modified by adding terms obtained by

replacing m by v in the above. The complete set of all-
order equations is shown graphically in Figs. 5 and 6.

The terms derived here are similar to terms occurring
in the Hermitian formulation of the CC method discussed
by Lindgren and others, ' except that here we have not
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the matrix element of a sum of one-body operators
z =y~, z, ,

&e. izie„)M, =
Q&+.I+. ) &+.I+„)

(22)

Before substituting our approximation to the exact wave
functions ~%„) and ~% ) into this expression, we note
that the eAect of the denominator is to cancel disconnect-
ed terms from the numerator. While this cancellation is
well known to be complete for closed-shell states, we
showed previously that for one-valence-electron states
there is a residual normalization factor,

+

M„»

Q(1+N )(1+N, )

M,.„=s.„&o, ~n'. zn, ~0, ),.„„,
M„„=&0 ~a„(n Zn, )a, ~o )„„„,
N, = &O, ~a„(n', n, )a,'(0, ),.„„,

(23)

(24)

(25)

(26)

FIG. 5. All-order equations for single excitations used in the
present work. The solid line indicates a double-excitation
coefficient, while the solid line terminated by a circle indicates a
single-excitation coefficient.

changed the normalization as discussed by these authors,
but retained intermediate normalization. The new terms
are also similar to terms discussed by Bartlett. '

III. MATRIX-ELEMENT FORMALISM

We next discuss our approach for using the single- and
double-excitation coeKcients derived above to calculate

(b)

+

where
~ oc ) is the core determinant, and

~%', ) =n„at~oc). The bar notation in (25) and (26)
signifies that a (or a„) and a„contract into the interven-
ing parentheses. The Goldstone diagrams for M,» and

N, thus involve one ingoing and one outgoing valence
line, while those for M„„are closed. M„„vanishes for
nonscalar operators Z, with which we are concerned
here, and we shall not discuss it further.

Substitution of the approximate wave function into (23)
rather than (22) explicitly removes spurious disconnected
terms from the expression. We showed previously that
this substitution gives in the linearized CC approximation
an expression involving 21 terms for M,» and five terms
for N, . The explicit expressions are given in Ref. 7; three
sample diagrams are shown in Fig. 7. However, as was
noted in Ref. 7, this formalism does not include the RPA
exactly, but misses certain RPA terms from fourth-order
onwards. We have found special sensitivity of excited-
state dipole-matrix elements, e.g. , &9p, &z~D~6s), to the
omitted RPA terms, and have therefore modified the for-
malism to incorporate the RPA exactly.

Our first step is to calculate the RPA vertex (with ex-
change) for a one-body operator, given by

RPA RPA

z) (co)=z, +g +Rp~ gimja am (~) gi ajm ma'
~a ~ ~m ~a+~ ~m

(27)

(d)

+ I I I-+
W&s W ri

(g)
FIG. 6. All-order equations for double excitations used in the

present work. The solid line indicates a double-excitation
coefficient, while the solid line terminated by a circle indicates a
single-excitation-coefficient.

FIG. 7. Three sample terms from the expression derived in
Ref. 7 for the matrix element of a one-body operator. The one-
body operator is denoted by a solid line terminated by a cross.
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and shown graphically in Fig. 8. This vertex is to be eval-
uated at a frequency co which we set equal to the experi-
mental frequency for the transition, co=(E„E—, )'"P', or
equal to zero for diagonal-matrix elements; we have
found a negligible sensitivity to small variations of co

about these values. To construct z (co), we first solve
(27) iteratively for the core-excited matrix elements,
z, (co) and z, (co); these are stored and used later to
calculate a general matrix element z;. (co).

The bare vertex is now replaced everywhere by the
RPA vertex in the expressions derived in Ref. 7 for the
linearized CC. Clearly, however, this leads to a double-
counting of effects, one example of which is shown in Fig.
9. Furthermore, simply deleting the diagrams containing
doubly counted effects in general also removes effects that
are singly counted and numerically important. Our stra-
tegy is to remove the diagrams containing doubly count-
ed effects, and add back the singly counted effects by ex-
plicit construction; this is explained in Figs. 9 and 10.

Our final set of matrix-element terms is shown graphi-
cally in Fig. 11. We present the matrix element as a sum
f six terms M M(1)+MRPA+ Mao+ MsR+ Mother
+M"",where M'" is the lowest-order matrix element,
M the RPA correction, M is a correction associat-
ed with Brueckner or natural orbitals, M is a structural
radiation correction, and M"" accounts for the normali-
zation denominator in (23). Some remaining terms are
given by M""". The explicit analytical expressions are

+

y i( y I&

FIG. 9. The three diagrams in Fig. 7 generalized the replace-
ment of the bare one-body operator by the RPA vertex given in

Fig. 8. Diagram (b) contains implicitly RPA terms already
present in diagram (a), and therefore represents a double count-
ing.

FIG. 8. Graphical definition of the RPA vertex for a one-
body operator.

M")=z
wu (28)

MRPA RPA
wv wu

M =M'"'+M" + +M' '

M' '= —gz p, +c.c. ,

M(c) —y RPA + C.

(29)

y )f4

W

{d) RPA-
Pnmwa bv Pmnab

a, b, m, n
W Wis

(e) RPA-
PmnbaZmv Pnwab +C. C.

a, b, m, n

(f) 4 RPA-
PmaZbv Pwmba +C. C.

a, b, m

(g) —e RPA
P mnwazmv Pna

a, m, n

(30)

ik y

M(h) ~ e RPA~ I nw nm Pmu
m, n

I I+

a, m

(J)= y + ZRPA +C.c.
a, m

M(k) ~ e RPA~ Pub~ah Pwa
a, b

FIG. 10. Substitution made to remove doubly counted RPA
eff'ects. The substitution is obtained by replacing the double ex-
citation coefficient by all terms on the right-hand side of the
double-excitation equation, Fig. 7, and removing those terms
which are included elsewhere in the matrix-element expression.



43 RELATIVISTIC ALL-ORDER CALCULATIONS OF ENERGIES. . . 3413

(I) RPA
w, ,

SR

BO

"W Wy' )I W

(b)
yli

(c)
V ill,

W ii

ilaw

yti

(e)
y iii Vil

W" I i W

y xiii y Sii

&)& W

y ii (s}

other

8( y iiV

)ii W

'&V

(w}

V jL

xiii y

ii V

FICx. 11. Complete expression for the matrix element used in present work.
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M =M'"+M' + . +M",
g~ (1) ~ e RPA-

PnmNb~ab Pnmva
a, b, m, n

g~(m) ~ +
Z

RPA
P vmbc~ac PNmba

a, b, c, m

ax(n)—
P rnNa~rm Pmnva

a, m, n, r

g~(o) ~ e
Z

RPA-
Pvmba Zmn PnNab

a, b, m, n

(p) RPA
bm gcabvPmwca +

a, b, c, rn

(q)— RPA—
am gbwanPmnbu +

a, b, m, n

(r)— RPA—
am gmbnuPnwab +

a, b, m, n

(s) RPA
am gmwnrPnrav +

a, rh&, n, r

Mother M(t)+M(u)+. . . +M(N)

(t) e RPA-M ——g Pmbzab Pwmua+C. C.
a, b, m

(u)— RPA-M —g Pm, zm„Pw„„+c.c. ,
a, m, n

(v) RPA-M = g Zam gwbvapmb +C.C.
a, b, m

(N) RPA—
am gwmvrnPna +

a, m, n

M norm [M 1 1)+M RPA+ M BO+M SR+Mother
I

(31)

(32)

+v =XPmvPmu XPuaPva

X PumabPmuab X PmnvaPmnva
a, b, m a, m, n

FIG. 12. A diagram neglected in the present work which
contains only single or double excitations.

X (PvmuaPma +P vmvaPma )

m, a

Here "c.c." denotes complex conjugation and inter-
change of U and w.

We have not added back all possible singly counted
effects here; some small terms, such as the one shown in
Fig. 12, have been neglected.

IV. NUMERICAL PROCEDURE AND RESULTS

We solve the equations presented in Secs. II and III by
means of a relativistic finite basis set constructed from
piecewise polynomials or 8 splines. ' In this approach,
the infinite sum over excited states n, m, . . . , etc. (strict-
ly, a sum over an infinite set of bound states plus an in-
tegral over positive-energy continuum states) is replaced
by a finite sum over a set of pseudostates. Because the
separation of positive- and negative-energy states in the
pseudospectrum is clean, the projection operators in the
no-virtual-pair Hamiltonian [(1) and (2)] can be imple-
mented directly by summing over only the positive-
energy half of the pseudospectrum. For s and p states, we
use a basis set consisting of 25 positive-energy states; for
higher angular momenta, we use 20 positive-energy
states. We include all angular momenta up to l =7 (i.e.,
k states); since in a relativistic formalism there are two j
values for each nonzero orbital angular momentum (e.g. ,

p, ~2 and p3/2), we thus include 15 diff'erent angular
momentum values in all. This basis set is sufficiently
complete as to reduce the basis-set truncation error in the
second-order valence removal energy to below 1.0% of
the correlation energy.

The number of channels that we include for the single
and double excitations is determined by the following
considerations. For the parity nonconservation problem,
and for s-state hyperfine constants, the physically impor-
tant region is near the origin, and the contribution of the
deep core states is quite important. For example, there
are many-body effects associated with excitation of the 1s
and 2s states that contribute about 0.8% each to the 6s
hyperfine constant. We have thus excited all core states,
and include all possible single- and double-excitation
channels consistent with our basis set. The total number
of coefficients is kept to a manageable size by working
with radial excitation coefficients, ' and by performing the
sum over magnetic quantum numbers analytically. We
shall define a double-excitation "channel" to be specified
by the quantum numbers ah~le„A (L), where a and b

are core states, ~„ is the angular-quantum number for ex-
cited states n, and L is the multipolarity of the radial
doubles coefficient (similar to the multipolarity of the ra-
dial Slater integral which occurs in Coulomb matrix ele-
ments). For each channel, there are n„n double-
excitation coefficients, where n„ is the number of states in
the basis set for angular momentum K„. For the calcula-
tions presented in this section, we include in all about
16000 channels, requiring about 10 megawords of com-
puter storage; the calculation was performed in core
memory on a Cray-2 supercomputer. It is easy to appre-
ciate, however, that for a basis set of this size it would be
impossible to store triple-excitation coefficients, unless
gross restrictions were made on the number of channels
included.

It should be emphasized that the number of channels
required is greatly increased by the use of a relativistic
formalism: in a fully nonrelativistic approach, there is no
need to distinguish between the two different j values for
a given l.

The computationally expensive step in the calculation
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State DHF

TABLE I. Valence removal energies (a.u. ).

Sum Experiment'

6s
7$

0.127 37
0.055 19

0.015 21
0.003 26

0.142 57
0.058 45

0.143 10
0.058 65

—0.37
—0.33

6P 1/2

7p]/2
Sp]/2

0.085 62
0.042 02
0.025 12

0.006 36
0.001 83
0.000 80

0.091 98
0.043 85
0.025 92

0.092 17
0.043 93
0.025 96

—0.21
—0.17
—0.14

6P 3/2

7p3/2

Sp3/2

0.083 79
0.041 37
0.024 81

0.005 72
0.001 66
0.000 74

0.089 51
0.043 03
0.025 55

0.089 64
0.043 10
0.025 58

—0.15
—0.16
—0.13

'C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser. , Natl. Bur. Stand. (U.S.) Circ. No.
35 (U.S. GPO, Washington, D.C., 1971),Vol. I.

is the convergence of the all-order equations. The most
expensive term to evaluate is the particle-particle ladder
[Fig. 6(h)], which involves summation over four excited
states, and which is individually an important contribu-
tion (about —3% for the 6s ionization energy). However,
as is discussed in Refs. 13 and 9, there is a partial cancel-
lation between the particle-particle (p -p) and the
particle-hole (p-h) ladders [Figs. 6(h) and 6(f)]. We make
use of this cancellation to accelerate the convergence of
the solution. As a first step, we solve the coupled single-
and double-excitation equations omitting (i) the p-p and
p-h ladders, and (ii) the triple-excitation terms in the sin-
gles equation. Then, we perform three full iterations in-
cluding all terms. For the p-p and p-h ladder diagrams
only, we restrict the maximum orbital angular momen-
tum of included states to four for core-core double excita-
tions, and to five for core-valence double excitations; this
approximation introduces negligible error.

We present results for valence removal energies in
Table I, for hyperfine constants in Table II, and for elec-
tric dipole transition amplitudes in Table III. Note that
for magnetic dipole hyperfine constants we include the

effect of finite nuclear magnetization distribution by as-
suming a uniformly magnetized sphere of radius 5.7 fm.
The effect is significant: for 6s, the hyperfine constant is
reduced by 0.6% relative to that arising from a point
magnetic dipole.

V. DISCUSSION AND CONCLUSIONS

Because of the large size of our basis set, the discrepan-
cies with experiment noted in Tables I—III should be ex-
plained almost entirely by omitted correlation effects.
For valence removal energies, the formalism is complete
through third order, and we classify the omitted fourth-
order effects into two broad categories: (i) nonlinear
terms, which can be accounted for by including the non-
linear terms in the CC ansatz (8), and (ii) triple excita-
tion s.

We can make a crude estimate of some of these
fourth-order terms as follows. The two dominant effects
in category (i) arise from including the terms S,S2 and
—,'Sz in the expansion of [exp(S)]; the former contributes
directly to the single-excitation equation, and hence to

TABLE II. Magnetic dipole hyperfine constants (MHz) for "Cs, I = —, gi =0.737 720 8 Conversion factor: 1

a.u. =6.579684X10 MHz.

State

6s
7$

1426.81
392.05

MRPA

292.83
79.64

596.85
76.58

MsR

4.66
0.76

Mother

26.23
6.54

M norm

—56.39
—11.49

MBreit

—0.00
—0.05

Sum

2291.00
544.04

Expt. '

2298.16
545.90(9)

—0.31
—0.34

6P 1/2

7p] /2

Sp]/2

161.09
57.68
27.11

39.93
13.68
6.32

84.67
20.54

8.34

9.67
3.15
1.39

3.06
1.01
0.46

—4.49
—1.46
—0.66

—1.25
—0.39
—0.17

292.67
94.21
42.79

291.90(13)
94.35(4)
42.97(10)

0.27
—0.15
—0.43

6P 3/2

7p 3/2

Sp 3/2

23.944
8.650
4.087

18.853
6.700
3 ~ 146

16.226
3.948
1.610

—9.321
—3.083
—1.415

0.890
0.303
0.140

—0.675
—0.220
—0.100

—0.131
—0.043
—0.020

49.785
16.255
7.447

50.275(3)'
16.605(6)
7.58(1)

—0.97
—2.11
—1.75

'E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
S. L. Gilbert, R. N. Watts, and C. E. Wieman, Phys. Rev. A 27, 581 (1983).

'C. Tanner and C. E. Wieman, Phys. Rev. A 38, 1616 (1988).
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the valence removal energy, while the latter contributes
only indirectly through a modification to the double-
excitation coefficients. Two sample fourth-order dia-
grams are given in Fig. 13. We can estimate the effect of
S]S2 by noting that it contributes certain terms to the
chaining of the self-energy, in which the connecting line
is a core state. This core contribution to chaining may
be calculated along the lines discussed in Ref. 8, and we
find that it contributes —0.2% to the valence removal en-
ergy for 6s (about —2% of correlation).

Turning to the omitted fourth-order triples, we give
several examples in Fig. 14. We have discussed these dia-
grams previously, and recently Salomonson and Ynner-
man' have evaluated similar diagrams for Na, finding a
contribution on the order of +5% of correlation. As-
suming a similar situation holds in Cs, we would obtain a
contribution on the order of 0.5% to 1.0% to the 6s
valence removal energy. It is possible that the accuracy
obtained in the present work for the removal energies
arises from a partial cancellation of omitted nonlinear
terms and omitted triple-excitation terms.

The matrix-element calculation is complete through
third order. In fourth order, a few small terms are miss-
ing that could in principle be included at the single- and
double-excitation level, e.g. , Fig. 12. However, we expect
the most serious fourth-order omission to arise from tri-
ple excitations, specifically from those terms in which the
internal lines of RPA diagrams are modified by insertion
of a self-energy, an example of which is shown in Fig. 15.
Indeed, certain effects of this type are associated with sin-
gle and double excitations, and have been evaluated from
Figs. 11(t)—11(w), giving contributions on the order of
1% for the 6s hyperfine constant.

A second important type of error in the matrix element
arises in fifth order and is closely connected with the er-
ror in the valence removal energies. The Brueckner or-
bital contribution M is numerically very important,
and is dominated by the terms involving valence single
excitations. Thus, fourth-order errors in the valence re-
moval energy imply corresponding fifth-order errors in
M . We can estimate the probable size of these omitted
terms by assuming a scaling argument, namely, that the
contribution M scales in approximately the same way
as the correlation correction 5c, to the valence removal
energy as more effects are added. We have observed such
an approximate scaling behavior in lower orders. To im-
plement the scaling, we reevaluate the matrix element
with all valence single-excitation coefficients p „replaced
by Ap „, where A, =(5E„)'"~'/(5E, )""is the ratio of ex-
perimental to calculated correlation energies. This pro-

ik y ]4 y y

ik y ik y i'S y

)iy

FIG. 14. Sample fourth-order terms containing triple excita-
tions.

Q( ]4] 'IL

cedure is similar to the fitting of energies discussed by
Dzuba, Flambaum, and Sushkov. ' The results are
presented in Table IV. We conclude that there are omit-
ted terms of this type entering at the 1% level for
hyperfine constants, and at the few tenths of a percent
level for dipole-matrix elements.

Taking all the tests discussed above into account, as
well as the explicit comparison with experiment given in
Tables I—III, we conclude that the method presented in
this paper gives valence removal energies accurate to
about 0.5% or better (5% of correlation), hyperfine con-
stants accurate to about 1%%A, and electric dipole
transition-matrix elements accurate to 0.5% or better
(the level of experimental error).

We now briefly compare the calculation performed
here with the all-order approach of Dzuba, Flaumbaum,
and Sushkov. ' A direct comparison of the two calcula-
tions is difficult, because Dzuba, Flaumbaum, and Sush-
kov use the time-dependent formulation, rather than the
time-independent formulation of many-body theory
which is used here. We have given some comparison of
these two approaches in Ref. 9; there we discussed how
the present approach contains the most important effects
considered by Dzuba, Flaumbaum, and Sushkov, and, ad-

ik y

i& y ia y

FIG. 13. Sample fourth-order contributions to valence remo-
val energy associated with nonlinear terms: (a) S&S&, (b) ~ S2.

FIG. 15. Sample fourth-order contributions to the matrix
element containing a triple excitation.
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TABLE IV. Effect of rescaling of valence single-excitation
coeScients on hyperfine constants (hfs) and electric dipole
transition-matrix elements (E 1)~ The table shows the
discrepancy from experiment with and without rescaling.

State

6s
7$

hfs
hfs

g+gexpt

(No rescaling)

—0.31+0.00
—0.34+0.00

g+ gexpt (y )

(Rescaled)

0.58+0.00
0.34+0.00

6p 1/2

7p i/z
8p )/2

hfs
hfs
hfs

0.27+0.04
—0.15+0.04
—0.43+0.23

1.18+0.04
0.72+0.04
0.38+0.23

6p 3/2

7p 3/z

8p 3/z

hfs
hfs
hfs

—0.97+0.12
—2.11+0.36
—1.75+0. 13

—0.18+0.12
—1.12+0.36
—0.81+0.13

6$ -6p]/2
6$ -7p

& /2

El
El

0.11+0.22
—1.74+0.70

—0.23+0.22
—1.40+0.70

6s -6p3/2
6s -7p3/2

El
El

0.15+0.16
—1.38+1.72

—0.20+0. 16
—1.13+1.72

7s -6p )/~
7$ "7p1/2

El
El

—0.15+0.52
1.19+0.20

0.04+0.52
0.77+0.20

7s -6p3/2
7$ -7p 3/2

El
El

—0.45+0.46
1.25+0. 14

—0.15+0.46
0.80+0. 14

ditionally, ladder diagrams and effects associated with the
interaction between the valence electron and the core. In
the third order, these additional effects amount to
—1.2%%uo for the 6s removal energy; we find that, after
iteration to all orders in the manner described in Sec. II,
the net contribution of these terms is still of order 1%.
On the other hand, the approach of Dzuba, Flaumbaum,
and Sushkov implicitly contains the most important non-
linear contributions, which have been omitted entirely
here. Both calculations neglect effects associated with
triple excitations. Dzuba, Flaumbaum, and Sushkov re-

port accuracies slightly better than those obtained here,
but in view of the terms omitted in their calculation, this
would appear to be fortuitous.

As a next step, we plan to incorporate the most impor-
tant terms missed in the present work, specifically, the
nonlinear terms associated with single and double excita-
tions, and certain classes of triple excitations. The in-
clusion of nonlinear terms is straightforward and well do-
cumented, ' and leads to the full coupled-cluster equations
for single and double (CCSD) excitations. Several nonre-
lativistic numerical implementations of CCSD exist for
molecules, and one has been developed specifically for
atoms by Lindgren and collaborators (see, e.g. , Refs. 1

and 17). Our proposed implementation would be relativ-
istic, an extension of the procedure outlined in Sec. II.
As mentioned in Secs. II and IV, the explicit introduction
of triple excitations leads to excessive requirements on
storage for the basis sets and numbers of channels we
would prefer to use for calculations of parity nonconser-
vation. Thus we propose to handle triple excitations ap-
proximately in terms of the modifications to the single-
and double-excitation equations given in Eqs. (16) and
(17). We have implemented the single-excitation
modification in the present work; in the next stage we
propose to implement also the modification to the
double-excitation equation. This would enable us to pick
up the terms in Fig. 14 and 15. At this stage the valence
removal energy would in fact be complete through fourth
order. We think that CCSD excitations augmented by
the set of triple excitations discussed above offers hope of
a practical relativistic scheme capable of predicting remo-
val energies and matrix elements in cesium at the tenth of
a percent level.
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