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general formulas for matrix elements of the pth-order spin-adapted reduced Hamiltonian (p-
SRH) are derived based on the theory of generalized reduced density operators. The method is il-

lustrated by a diagrammatic technique developed in detail for p=4. The p-SRH is a matrix
representing a p-particle operator in a finite-dimensional p-particle Hilbert space. It is related to the
N-particle (N~p) Hamiltonian defined in an N-particle spin-adapted, finite-dimensional Hilbert
space. The p-SRH's, apart from their importance in theory of atomic and molecular structure, may
find applications in statistical theories of spectra and in nuclear shell theory.

I. INTRODUCTION

A reduction of the ¹electron problem to a p-electron
(p ~1V) one attracted much attention many years ago.
The pioneering works by Lowdin, ' Coleman, Kummer,
McWeeny, and others concentrated on studying proper-
ties of the reduced density matrices (or the reduced densi-
ty operators). Eff'orts aimed at formulating an X-electron
theory based on the reduced density matrix formalism
and on the variational principle' have been frustrated
by mathematical difficulties associated with the well-
known ¹representability problem. The present status of
the theory is reported in the proceedings of a recent sym-
po SluIIl.

An approach to the reduction problem, in a sense com-
plementary to the previous one, originates from the Bopp
idea of the reduced Hamiltonian. It is assumed that the
electrons forming the ¹electron system may be
effectively described by a reduced Hamiltonian which
acts in a p-particle (in practical terms in a two-particle)
space. The reduced Hamiltonian is assumed to be in-
dependent of the finite-dimensional Hilbert space in
which the X-electron problem is defined. This nonvaria-
tional approach has been applied in several contribu-
tions however, it did not fulfill the high expectations
which were originally associated with it.

Another method of dealing with the reduction problem
has been formulated by Valdemoro. ' ' In this ap-
proach the ¹ lectron Hamiltonian H is determined in an
antisyrnmetric and spin-adapted Hilbert space defined as
a proper subspace of the ¹fold tensorial product of a
one-electron space V2~. The one-electron space is a
product of the K-dimensional orbital space

I'x=l@uN=i

spanned by a set of K orthonormal orbitals and the two-
dimensional spin space. The finite-dimensional Hilbert
space is also referred to as the full configuration
interaction (full CI) space. Then, the X-electron Hamil-
tonian is here represented as a matrix, known as the full
CI matrix. ' Taking trace of a product of the full CI ma-
trix and the pth order (p ~ X) reduced density-transition
matrix we obtain a contraction of the Hamiltonian ma-
trix from the ¹particle spin-adapted space to a p-particle
one. The resulting matrix is referred to as the p-particle
(pth order) spin-adapted reduced Hamiltonian (p-
SRH). ' ' The p-SRH's possess many interesting
mathematical properties. For p =X their spectra are
identical to the spectra of the corresponding full CI ma-
trices. The eigenvalues of the p-SRH are only statistical-
ly related with the full CI spectrum since a given eigen-
value co~ can exactly be expressed as

'~t = X Kai's (&)
X

where D~~ is the diagonal element of the pth-order re-
duced density matrix (p-RDM) corresponding to the X-
electron full CI eigenstate of energy @J. Although the
p-ROM's cannot be derived in closed form from the p-
SRH matrices, we have proposed a plausible model
which permits the direct approximation of the p-RDM
corresponding to a given eigenstate ~L). In this model
the eigenvectors of the p-SRH matrix are assumed to de-
scribe sets of p electrons which on average can be con-
sidered to be independent. This approach has been suc-
cessfully applied in the study of a series of atoms and
ions' ' as well as to the study of the potential curves of
the BeH and H3 molecules. ' These calculations were
performed for p=2 and in the case of the beryllium
isoelectronic series also p=3 was considered. ' Another

43 3392 1991 The American Physical Society



MATRIX ELEMENTS GF SPIN-ADAPTED REDUCED HAMILTGNIANS 3393

area of application of the p-SRH s is the statistical theory
of spectra. It appears that the SRH's are most useful in
deriving expressions for moments of the spectral density
distributions of the original N-electron Hamiltonian. ' '
Also some links between the SRH theory and the spectral
distribution method of nuclear physics have been ex-
posed

Recently general expressions for elements of 2-SRH
(Ref. 21) and 3-SRH (Ref. 22) have been derived. The
formalism used is based on the symmetric group ap-
proach (SGA) to the theory of many-electron sys-
tems. ' " In this formalism the N-electron Hilbert space
is constructed as a direct product of two N-particle
spaces: the spin space and the orbital space. The spin
and the orbital spaces are then handeled separately. ' '

The basic quantities of the theory, i.e., the Hamiltonian
operator and the density operators, are expressed in
terms of the replacement operators also referred to as the
shift operators or the unitary group generators. The
replacement operators act in the orbital space only. Most
of the theoretical considerations were concerned with the
first-order replacement operators (Refs. 19, 20, and 24—26
and references therein). Properties of the higher-order
replacement operators were studied rather scarcely.

Since p-SRH is obtained through a linear transforma-
tion of the full CI matrix, its matrix elements are com-
binations of one- and two-electron integrals calculated in
the orbital basis t &0k I k, . The coefficients in these com-
binations may be expressed as traces of products of the
pth and the second-order density operators. ' A re-
cently reported method of calculating these traces al-
lows us to derive a simple and efficient algorithm for eval-
uation of the p-SRH matrix elements for an arbitrary p.
The main advantage of the new approach is a substantial
simplification of the formulation resulting from using the
generalized (pth order) replacement operators rather than
the familiar first-order ones. In effect the pth-order re-
duced density operators (p-RDO) (and their traces) may
be expressed in a compact way and using some rather
simple algebra.

The aim of this paper is to present a general method
for evaluating p-SRH matrix elements. Though each sin-
gle p-SRH matrix element may be, in principle, obtained
using results of Ref. 28, relations between different ele-
ments and a general structure of the matrix were un-
known. Exploring these relations and, in consequence,
presenting a general and efficient algorithm for building
up the p-SRH matrices is the aim of this paper. It is
rather surprising that the number of different coefficients
in a p-SRH matrix is very small. For @=2,3,4 there are,
respectively, only 10,18,34 different coefficients. The
present report terminates a series of papers concerned
with the evaluation of p-SRH matrix elements.
The formalism developed in this paper contains our pre-
vious results for p=2, 3 as special cases. It should be
mentioned that the cases of p ~4 are of some special
practical importance —the Schrodinger equation con-
tracted to the two-electron space may be expressed in
terms of the pth order density matrices with
2 ~p ~ 4. ' ' ' Therefore, the case of p =4 is discussed
here in more detail.

The p-SRH's, apart from the already-mentioned appli-
cations in theory of atomic and molecular structure, may
be used in deriving expressions for higher moments of the
spectral density distribution. ' Their usefulness in devel-
oping new approximate methods in many-particle
theories and, in particular, in nuclear shell theory' ' still
has to be explored. Finally, using N-SRH instead of the
corresponding CI matrix may lead to interesting compu-
tational approaches.

The paper is organized as follows. In Sec. II we give
the basic formalism of the p-SRH and several theorems
concerning relations between the coefficients met in the
matrix element expressions. Some properties of the
traces of the p-RDO's are discussed in Sec. III. In Sec.
IV the general structure of the p-SRH matrix elements is
explored in detail. Finally, in Sec. V a graphical repre-
sentation of the formalism is given and applied to the
case ofp=4.

II. DEFINITIONS AND BASIC FORMULAS

The pth-order reduced transition matrix is defined as

= '
&A~ E"" 'In&, .

1 2 p'Jp J2J1 p I J1J2 '' 'Jp (3)

where ~A) and ~n) are X-electron eigenfunctions of the
total spin operators S and S„p N, and

PE'1'2 'P

J1J2 ' ' '
Jp

F1 cT2, . . . , cT

b; ~ b; ~
. b

1 1 2 2 p p

Xbj . . b b
p p J2 2 J1 I

(4)

The contraction procedure"' applied to Hzz leads to
the following expression for the p-SRH:

@IIqrs
abc I ij~kl I g D;„, pD „,

is the p-RDO with b; (b, ) being the creation (annihila-
tion) fermion operator associated with the orbital 4&; and
spin o.. In the case of A=A the quantity defined in Eq.
(3) is referred to as the pth-order reduced density matrix
corresponding to state A in the orbital representation.
Equation (3) implies that

tr~D = (5).p.
Please note that different normalizations are used by
different authors and in different papers. ' '"' '

In the following, in order to simplify the notation, we
shall write D „, . . . . . . . ,b, and E,b', . . . avoiding the multi-
ple indices and assuming that the superscript p deter-
mines the number of indices in each case.

The ¹electron Hamiltonian may be expressed in terms
of the second-order density operators and the generalized
two-electron integrals Iij ~klI as '

H= —,
' g E'("Iij~kl] . (6)

i,j,k, I

Its matrix'representation in our Hilbert space is

H = g D,„",)Iij~klI . .
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(2EQ[ik] PEP[qrs ] ) (2Eik PEqrs )
Q[jl] p[ abc . ] jl abc (10)

(2) Since a trace is invariant with respect to a Hermi-
tian conjugation of the operator, we have

( 2Eik pEqrs
jl abc

(3) The trace

) ( 2E jl pEabc )ik qrs .

( 2Eik pEqrs )jl abc .

unless the sets of numbers [i,k, q, r, s, . . . j and

[j,l, a, b, c, . . . j are the same.
(4) A trace is invariant with respect to the numbering

of the orbitals. Therefore, coefficients of the integrals in
Eq. (9) depend on mutual relations between the indices
involved rather than on their specific values. Moreover it
holds that

(2Eik pEqrs .
) (pEqrs

jl abc - . abc
2Eik )jl

(5) Since more than two creation or annihilation opera-
tors acting on the same orbital must produce zero,

pII qrs
abc .

if in either [q, r, s, . . . j or in [a, b, c, . . . j there are more
than two identical values. We distinguish indices that ap-
pear once in a sequence and those that appear twice.

Let us denote by p the number of indices by which the
sets [q, r, s, . . . j and [a,b, c, . . . j differ. Relations (3)—(9)
imply that

if p & 2, then ~Hqbc =0. (12)

Ifp ~ 2 we may distinguish three cases.
(i) If p =2 and, say, [q, r j W [a, b j then the only nonzero

terms in Eq. (9) are the ones for which {i, k j
=

[ a, b j and

[j,lj = [q, rj. Thus,

pH qrst
abed . .

where

=PHqbp[, , ]=A [aqlbr j +'A'[arlbq j,

(2Eab pEqrs )
1

qr abc

('E'b pEq"'1
rq abc. -.

(13)

(14)

(15)

and abP [st . . ] mean that the .first and second subscripts

Using the resolution of identity in the spin-adapted Hil-
bert space we may express Eq. (8) in an equivalent form

pHqrs . — y [
~

~l l j
(2Eik pEqrs ) (9)

~ = 1

i, j,k, l

where (0) stands for gA (A~0 ~A).
Equation (9) may be further simplified if we note that

the coefficients of the generalized two-electron integrals
(i.e., the traces of products of the RDO's) fulfill several
simple and general relations. Some of them have already
been used in difFerent context by other authors. Let
us first consider the relations which are straightforward
consequences of Eq. (4).

(1) If P and Q are arbitrary permutations of the indices,
then

are, respectively, a and b while the remaining ones are a
permutation of s, t, . . . .

(ii) If p = 1 and say qua, then

pII qrs .
abc ='H.'p'[,, ]

= &(0k [kklW j+rk [«lqk j ),
k

(16)

p (2Eka pEqrs1
k

~
kq abc

(2Eka pEqrs .
)

1
k

l qk abc

(17)

(18)

(iii) Ifp=0, i.e., [q, r, s, . . . j = [a, b, c. . . j, then

PH qb', '. . . ="H&"' = g (l2kl [ kk
~
ll j + vkl [ kl

~
lk j ),

k, l

(2Ekl pEqrs1
I kl

~
kl abc

(2Ekl PEqrs .
)=1

+kl
~

lk abc. . .
P.

(19)

(20)

(21)

As one can see, the general structure of a p-SRH is
very similar to that of a CI matrix. Another important
conclusion from Eqs. (12)—(21) is that p-SRH is a matrix
representation of an operator containing at most two-
body interactions. The explicit form of this operator has
recently been derived for p= 2 (Ref. 31).

Applying relations (3)—(7) to Eqs. (12)—(21) allows us to
reduce the number of different coefficients A, P, y, p, and
v in a very substantial way. For example, if p=2 then
there are only two different coefFicients of each kind, ' if
p=3 then there are four different coefficients 2, P, and y
and three different coefficients p and v. Then, 2-SRH is
defined by 10 different coefficients and 3-SRH by 18. As
we show later in this paper, in the case of p=4 the num-
ber of different coefficients is 34. Determining the num-
ber of different coefficients for an arbitrary p is certainly
an interesting exercise on group theory, however, we do
not discuss it in detail in this paper.

III. REI.ATIONS BET%'EEN TRACES
OF DENSITY OPERATORS

The traces of products of the RDO's, which appear in

the expressions for p-SRH matrix elements [Eqs. (13),
(16), and (19)] may, in principle, be calculated using a re-
cently formulated method. However, in order to reveal
some links between different coefficients and to reduce
the number of cases to be considered we present here
several relations between the traces of density operators.
Proofs of these relations are based on rather involved
algebra and, in some cases, are far from being trivial.
They extensively exploit the general formalism described
in our previous paper. In the following relations the in-
dices 1,2,3,4, . . . refer to different orbitals, and symbols
X, Y; 8' and Z represent sequences of indices which are
different from those explicitly specified. The sequences X,
Y; 8' and Z do not have to be necessarily different and
may have common elements.

The relations may be divided into two groups.
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(1) Relations that replace a doubly occurring index by
two singly occurring indices in traces of RDO's:

(pEIIX ) (pE12X ) + (pE12X )
P[11Y] P[12Y] P[21 Y)

(22)

where I' is an arbitrary permutation of the indices. In or-
der to prove this identity, we first demonstrate by adding
the two terms in the right-hand side of the equations that
the orbitals 1 and 2 form a singlet-coupled pair. Then us-
ing the "freezing theorem" we obtain an obvious identi-
ty in the space of X —2 electrons and K —1 orbitals.

(2) Relations concerning products of RDO's.

(pEXI 2E IVI ) ( pEXI 2E W2 )
P[ Y1] Q[Z1] P f Y1] Q[Z2]

+ (pEXI 2E W2 )
P[ Y2] Q[Z1]

(pExl 2E 1 1 ) (pEXI (2E32+2E32 ) )
P[ Yl 7 P f Y1]

(23)

+2(pEXI (2E32+2E32 ) )
P[ Y2) 31 13

(24)

(b) The orbital involved in the p-RDO is the doubly
occurring one

(a) The orbitals involved in the p-RDO are singly
occurring ones

(pEXII 2E IVI ) ( (pEX12 +pEX12 ) 2E W3 ) +2( (pEX12 +pEX12 ) 2E W3 )
P[ Y11] Q[Z1 j P[ Y12 7 P[ Y21] Q[Z3] P[ Y32] P f Y23] Q[Z1]

(PEX11 2E11 ) ( (pEX12 +pEX12 )(2E34 +2E34 ) ) +4( (pEX12 +pEX12 )(2E34+ 2E34 ) )
P[ Y11] P[ Y12] P[ Y21] P[ Y137 P[ Y317

+ ( (pEX12 +pEX12 )(2E34+2E34 ) )
P[ Y34] P[ Y43)

(25)

(26)

In the proof, the traces of products of RDO's are first
transformed into traces of single RDO's. Then, rela-
tions (22) as well as the general properties of the traces
[as Eqs. (10) and (11)]are applied to demonstrate the va-
lidity of the identities (23)—(26).

IV. P-SRH MATRIX ELENIKNTS

As was mentioned before, the general properties of the
traces of the RDO's discussed in Sec. II and in a recent
paper, as well as the relations between different kinds of
products of these operators [Eqs. (22)—(26)], lead to some
significant simplification of the p-SRH expressions [Eqs.
(13), (16), and (19)]. It is convenient to consider first the
case when only singly occurring indices appear in either
Iq, r, s, . . . ] or [a,b, c . . ] sets a.nd then to reduce the
cases with occurrence of doubly occurring indices to the
previously considered one.

A (Q) (pE 123. . .p —2, qr 2Eab)1

p & Q[123. . .p —2, ab) q»

A ~(Q) — (pE123. . .p —2, qr 2Eab)1

p 1 Q[123. . .p —2, ba] qr
(28)

A. Only singly occurring indices appear in the p-RDO

(i) p=2.
Let us note that, due to properties (1) [Eq. (10)] and (4)

of Sec. II, as well as Eqs. (13)—(15), we have

A (I),
A((12)),
A ((13)) = A ((23) ) = A ((14)) = A ((24)),
A ((13)(12)) = A ((23)(12)) = A ((14)(12))

= A((24)(12)),

A (( 13)(24)) = A ((14)(23 ) ) .

All distinct A and A' coefficients are collected in Table

(ii) p= l.
Ifp= 1 [Eq. (16)), we have to distinguish three cases.
Case I. k 6 I a, q, r, s . . I. In .this case we have

g (Q) —f3 = (PE123 P —I q 2EPo)
1

p! Q [123. . .p —1,a] pq

C ( Q ) (pE 123. . .p —I, q 2Epa )
1

p 1 Q[123. . .p —l, a] qp

(30)

where a, q )p. Also here 8 (Q) =8 (Q') and
C(Q) =C(Q') if Q and Q

' have the same cyclic structure
and if both permutations affect index a in an equivalent
way (i.e., if it appears in a cycle of the same length in
both cases).

For example,

where a, b, q, r )p —2. Then,

A '(Q) = A (Q (p —l,p) ),
&((12))=&((13))= . . =&((p —2,p —1)),

(29) 8(( lp) )=&((2p) ) = . =&((p —1 p) ),
where (p —l,p) stands for the transposition.

As one can see, A (Q) = A (Q') if Q and Q
' have the

same cyclic structure and if both permutations affect in-
dices a and b in an equivalent way (i.e., if they appear in
cycles of the same length in both cases). For example, in
the case of p=4 we have only five different values of A
and five different values of 2 ':

B((12)(2p))=8((13)(3p))

=&((p —2,p —1)(p —l,p) ),
etc. Let us note that B and C are k independent due to
the invariance of a trace with respect to the numbering of
orbitals. All distinct B and C coefBcients for p=4 are
collected in Table II.
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Graph Coefficients

(~1234E56 ) A (E1234E56 )

A =&E""E") A'=&&""&")

TABLE I. Diagrams corresponding to 4-SRH matrix ele-

ments with all superscripts and all subscripts different in the
case of p=2 and expressions for the corresponding 3 and A'

coefficients. For simplicity the right-hand-side (rhs) expressions
for all coefficients have been multipied by p!=24.

Case. 2. k E [ r, s, . . . j. In this case

p — (pE12. . . k. . .p —I, q 2~ka)=1
p t Q[12. . .k. . .p —1,a] kq

(p~ 12. . .k. . .p —I, q 2E ka )
1

p 1 Q[12. . .k. . .p —),g] qk

Eqs. (32) may be rewritten in an equivalent form

p( Q )
—p — ( 2E12. . .p —I, q 2gp —l, a )

1

p & Q [12. . .p —l, a] p —
&, q

y(Q )=y = (PE». P —I, q 2/P —»a)1

pl Q [I2

(32)

(33)

where Qk = (k,p —1)Q(k,p —1). Using Eq. (23) we get

—(E1234E56 ) A
& (E1234~56 )

I3(Qk) = A (Q. )+B(Q.),
y(Qk ) A (Qk )+C(Qk )

(34)

—(~1234E56 ) A
' (E1234E56 )

where B(Qk)=B(Q) and C(Qk)=C(Q) for all k,
because Q and Qk have the same cyclic structure and
transposition (k,p —1) does not change the position of a.
Then, we finally have

—(~1234g56 ) A
' (g1234g56 ) P(Qk ) = A (Qk )+B(Q),

y(Qk)=A'(Qk)+C(Q) .
(35)

Case 3. k =q or k =a or k =q =a. In this case
It3k =yk. Using the formulas for traces of products of the
RDO's (Ref. 28) and applying Eqs. (23) and (24) we get

l3k =yk =B(Q)+«Q) . (36)

TABLE II. Diagrams corresponding to 4-SRH matrix ele-
ments with all superscripts and all subscripts different in the
case of p=1 and expressions for the corresponding 8 and C
coefficients. For simplicity the rhs expressions for all
coefficients have been multiplied by p!=24.

Hence, in the case of p=1 one matrix element is ex-
pressed in terms of two coefficients B(Q) and C(Q)
specific for this case, and of several coefficients A (Qk)
and A '(Qk ), which appear also in the case of p =2 matrix
elements. Combining together Eqs. (16)—(18) and
(30)—(36) we get

Graph Coefficients

(~1234E56 ) ( (E1234g56 )

where

p —1

[A (Qk)[rq~kk j+ A'(Qk)[rk~kq j]
k=1

+B (Q) [rq~aa j+C(Q) [ra~aq j, (37)

= (E'23 E56 ) C = (@234/56 )

(g1234g56 ) C (E1234g56 )

k=1
K

[ra~aq j
= g [rk~1kq j

(38)

B =(E1234/'6) C =(@234/56)

(E1234~56 ) C (~1234E56 )

A graphical rule which simplifies determination of
these coe%cients will be described in the next section.

(iii) p=0.
Also here three cases may be distinguished.
Case 1. k, lE [q, r, s, . . . j. If kWl then Eqs. (20) and

(21) read

—(~1234g56 ) ( (g1234E56 )

(~1234E56 ) ( (E1234E56 )

+(Q) (pE123. . .p 2Ep+ I,p+2 )
p t Q[]$3 p] p+1,p+2

G(Q) (p~123. . .p 2@p+I,p+2 )
1

kl
p 1 g[)p3 p] p+2 p+

(39)

From the invariance of traces with respect to the num-
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graph Coefficients

F = (E1234E56) G (E 1234ES6)

TABLE III. Diagrams corresponding to 4-SRH matrix ele-
ments with all superscripts and all subscripts di6'erent in the
case of p=o and expressions for the corresponding I' and G
coefficients. For simplicity the rhs expressions for all
coefficients have been multiplied by pf =24.

then Eqs. (20) and (21) become

+(g )
—+ — (PE 12. . .k. . . /. . .p1

p! Q«[i2. . .k. . I. . .pj

v(g )
—v — (PE12. . .k. . . l. . .p1

p t Qk([12. . .k. . . I. . pl

By using Eq. (23) twice we finally obtain

2Ep —1,p )
p —&p

2Ep 1 p)

F2 (E2134E56 ) G2 (E2134E65 )

1M(gkl ) = ~ (Qkl )+B(gk)+B (Q1 )+

v(gk1)= A'(Qki)+C(gk)+C(gi)+G(g),

with

(43)

F3 (E3124E56 ) G3 (E3124E65 )

F4= (E2143E56 ), G4= (E2143E65 )

F5 —( E 1234E 56 ) G ( E 1234E 56 )

Qki =(k,P —1)(lP)Q(lP)(k, P —1),

Qk =(kP)Q(kP),

Q1 =(lP)Q(lP) .

If k = l, Eq. (24) gives

l2( gk ) =v(Qk ) =2B (Qk )+2C(Qk )+F(Q)+G (Q) .

(44)

Combining Eqs. (39)—(44) we get the following expression
for the p-SRH matrix element:

bering of orbitals it follows again that the values of F ( Q)
and G (Q) are k, l independent. Besides, if Q and Q

' be-
long to the same class then F(Q)=F(Q') and
G(g)=G(Q'). A list of all F(g) and G(g) coefficients
for p=4 is given in Table III. If k =I then one gets a
rather trivial modification of Eq. (39). In this case

p, „k=vkk=F(g)+G(g) .

I'" ' = y [~(g„,)[kklllI+~ (g„,)[kilo ]]
k (I

p
+ g [B(gk)[kklaa]+C(gk)[kalakj]

k=1

+F(g) [aalPPI+ G (Q) [aPIPa]

where

(45)

Case 2. One of the indices k, h belongs to the set

[q, r, s, . . . ] and the other does not. Then

(g ) (PE12. . .k. . . l. . .p 2Ep p+1 )P k Pkl t Q [~2 k l ] pp+]

=1(g )
— (PE12. . .k. . . l. . .p 2EP p+1)

p 1 Q~ [12. . .k. . .l. . .pj p+ &p

Similarly as in the previous case, Eq. (23) gives

[aaIPPI=-,' y {kklll],
k, l = 1

K
[aPIPa]=-,' y [klllk] .

k, l =1

B. At least one doubly occurring index in p-RDO

(46)

P(gk ) =B (Qk )+F(Qk ),
v(g„)=C(g„)+G (Qk ),

(41)

with Qk =(kp)Q(pk). Also now, F(Qk) and G(Qk) are k
independent because in the corresponding expressions re-
sulting from Eq. (23) Qk does not aff'ect the labels in p-
RDO, which also appear in 2-RDO [similarly as in Eq.
(39)] and because the traces are invariant with respect to
the numbering of orbitals. Therefore, in Eq. (41) we can
put F(Qk)=F(g) and G(Qk)=G(Q). However B(gk)
and C(Qk ) depend upon k since in the corresponding ex-
pressions transposition (pk) acts on a label which appears
in both p-RDO and 2-RDO.

Case 3. Both k and l belong to [q, r, s, . . . j. If kWl

As it may be seen from the formalism presented in
Secs. II and III and, in particular, from Eqs. (22)—(26),
the case of a doubly occurring index in the p-RDO may
always be reduced to the cases in which this specific in-
dex has been replaced by several singly occurring indices.
The cases of several doubly occurring indices may be
treated applying the same procedure repeatedly to each
of these indices. In the preceding section we considered
all cases of traces of products of p-RDO's and 2-RDO's,
in which the p-RDO's do not contain any doubly occur-
ring indices. Therefore this procedure can generate only
traces which were already considered. In consequence
the coefficients of the integrals in the resulting p-SRH
matrix elements are always expressible in terms of A, 8,
C, F, and G.

As an example let us consider the coe%cient of the
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{43l1 1 j integral in H24,",. According to Eq. (25) we have

( 4E 2311 2E41 ) —2 ( (4E2315 +4E 2315
) 2E 46 )

+ ( (4E 2315 +4@2315 ) 2~46 )2415 2451 36

Now, according to Eqs. (27)—(31),

T =2[2 (I)+ 3'(I)]+B(I)+B((34)).

Using Tables I and II we get

T=2(A 1+31)+B1+B2.

Let us note, that the indices appearing in a p-RDO are
the same as the indices in the corresponding p-SRH ma-
trix element. Therefore we refer to the matrix elements
in which some of upper and/or lower row indices repeat
as matrix elements that contain doubly occurring indices.

V. DIAGRAMMATIC RULES FOR CALCULATING THE
p-SRH MATRIX ELEMENTS

The equations derived in the preceding section may be
represented in a graphical form. The graphical represen-
tation of the p-SRH matrix elements visualizes the rules
for their construction and is particularly useful in decom-
posing these matrix elements that contain doubly occur-
ring indices into the ones without such indices. For sim-

plicity, we describe in this section the diagrammatic rules
using an example of p=4. A generalization for the case
of an arbitrary p is straightforward.

A. Only singly occurring indices appear in the p-RDO

(i) p=2.
Let us consider a set of 4!=24 matrix elements

H„-'~,z56j. As it was discussed in Sec. IV, the matrix ele-

ments may be divided into five sets so that the elements in
each set are the same. Here is a list of the representatives
of each of the sets, of the corresponding diagrams, and of
the formulas [explicit forms of Eqs. (13), (27), and (28)].

H 1234
1256

= 2 (I)[35 l46 j + 3 ((34) ) [ 36l45 j

H 1234
2156

2
2

5
3

6
4

= ~((»))[35l46]+ W((12)(34)){36l45]

~ 1234
1526

H 1234
5612

5
3 4

6
4

= 2 ((23) ) [35I46] + A ((23)(34)) [36145 j

= A ((13)(24) ) {35 l46 j + A ((13)(24)(34)) [36l45 j

(47)

~ 1234
2516

2
4

6

= 2 ((13)(12))[35l46j + 2 ((13)(12)(34))[36l45 ] .

In the diagrams each of the superscripts (subscripts) is
represented by a dot in the upper (lower) row of a two-
row array. The same indices are linked by arcs. Let us
note that the permutations which define the coefficients
of the integrals are the ones which acting on the lower
row indices put the linked dots into coincidence (after
these permutations are executed, all arcs are vertical).
The indices of the integrals are the ones which corre-
spond to the unlinked dots.

(ii) p= l.
There are seven sets of different matrix elements. They

are all shown in Table II. From Eq. (37) we see that each
matrix element consists, in this case, of two parts. The

first part comprises sums [ rq l
aa j and [ ra l aq j of in-

tegrals [Eqs. (38)] multiplied, respectively, by the
coefficients B and C. The coefficients are specific for each
class of the matrix elements. The second part of the for-
mulas contains {rql kk j and [ rkl kq j, k &p, integrals mul-
tiplied, respectively, by coefficients A and 3 . An inspec-
tion of Eqs. (32)—(37) leads us to a conclusion that the
coefficients of the integrals are equal to the sums of the
corresponding coefficients appearing in matrix elements
represented by diagrams that contain one arc less than
the diagrams representing the original matrix element.
To be more specific, let us consider matrix element H1243.
It is represented by a diagram
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TABLE V. Decomposition of a matrix element in which all
superscripts and all subscripts are different.

From Table II we see that it is associated with coefficients
B4 and C4. Removing one arc from it we obtain three di-
agrams with p=2:

and

Matrix element

~1234
2134

Contribution

r, [aalPPj+G, [aplpaj

+B~[111a aj+C 4[lalal j

+~ [221aaj+C [2ala2j

+&2[33laaj+C, f3ala3j

Diagram

According to Table I the pairs of coefficients associated
with these diagrams are, respectively, A3 A3 A3 A3,
and A

&
A

&
~ Then, the rule formulated above says that

H' = A [46111j + A
' [41116j

+&z [44laaj+Cz[4ala4j

+ A, [12121j + A ',
[ 11122j

+ A, [11133j+A', [13131j

+ A q [46122] + A q [42126 j

+ A, [43136j + A ', [46133j

+B [461aa j +C, [4a 1«j . (48)

+ A, {11144j+A', {14141j

+ A3 [22133j + A 3 [23132j

This rule appears to be quite general and it is valid for
all kinds of p-SRH matrix elements. In order to facilitate
a simple use of this rule, in Table IV we give the "hierar- + A, {22144j+A', {24142j

p=0 p=1 p —2

TABLE IV. The hierarchy of diagrams corresponding to 4-
SRH in the case of all superscripts and all subscripts different.
Note that due to Eq. |,'10) more than one diagram corresponds to
the same coefficient because some of the diagrams are
equivalent.

+ A [33144j+Al [34143{

TABLE VI. Decomposition of a matrix element with one
pair of identical superscripts and one pair of identical sub-
scripts.

I I t t

I XX

t I::

IX:

Matrix element

~1134—~ 1153

Contribution

B, [4Slaaj+C& [4alaSj

&4 [4s laa j +c4 [4alas j

A [1114sj+A,'[lsl41j

A. [»14sj+ A,'[lsl41j

A, [114sj+A,'[ls141j

A, [1114sj+A', [ ls141j

A, [3sl43j+ A' [3314sj

Diagram

A, [3sl43{+A', [3314sj
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chy of the diagrams" showing the way they decompose.
(iii) p=0.
Since the permutation group S4 contain five classes,

there are five different values of F and G coefficients and
there are five different diagrams. They are listed in Table
III ~ In Table V the decomposition of a matrix element is
presented. The same rule as the one leading to Eq. (48)
applies, except that here this is a three-step procedure:
from the original diagram we get F and G coefficients;
from the ones obtained by removing one arc—B and C;
finally, from the ones which result from removing two
arcs—A.

B. At least one doubly occurring index in the p-RDO

The same rule of hierarchical decomposition applies to
the case when one or several doubly occurring indices ap-

pear in the p-RDO, i.e., when in the matrix element we
have at least one pair of the same superscripts and/or
subscripts. Rather than giving a description of the
specific variation of the general decomposition rule, we
refer the reader to Table VI where an illustrative example
is given.
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