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Accurate analytical charge and spin-electron densities for the lithium atom are obtained by using
a systematic and reliable method recently developed and applied to closed-shell atoms. The conver-
gence of the densities is analyzed in terms of well-defined improvements in the corresponding
configuration-interaction wave functions, and mathematical criteria are used to test the stability of
the densities and their derivatives. Fully converged results for one-electron properties and, in par-
ticular, for the Fermi-contact interaction are reported.

I. INTRODUCTION

We have developed!? a systematic and reliable way of
obtaining accurate analytical electron densities. In this
method, which is based on configuration-interaction (CI)
calculations, successive wave functions are optimized by
expanding the significant electron-correlation regions.
The optimization of the orbital basis is guided both by an
energy criterion and by a best density criterion. The
charge densities for Ne (Ref. 1) and Be (Ref. 2) converge
monotonically to definite values as the basis and, hence,
the size of the CI expansion, is increased. They obey the
theoretical conditions at the nucleus and at large dis-
tances, they reproduce densities obtained from almost
“exact” CI wave functions, and accurate one-electron
properties are obtained from them.

In previous calculations, the method was applied to
closed-shell atoms. The purpose of the present study is to
calculate the charge density, the spin density, and the
density moments of the lithium atom. Because of the
well-known difficulties® in theoretically obtaining the
Fermi-contact term, this property is a particularly sensi-
tive test for trying our method.

II. CALCULATION OF THE DENSITY

The nonrelativistic CI wave functions are expressed as

V=3 &y ,ag, , (1)
K,p
where the @y ,’s are successively orthonormalized L%
and S2-symmetric projections of Slater determinants
which are built of orthonormal spin-orbitals:

"k
Py, =O0(L%S?) 3 Dyabiy - @
a=p
The spin-orbitals are linear combinations of Slater-type
orbitals (STO’s) times a spherical harmonic, times a spin
function:

Yitm;m_ = Ri(r) Y, (8,0)E, (0) , (3a)

Ry(r=3S;(ray , (3b)
J

Sjl(r)=Nj,r("f_”exp(—Zj,r) . (3c)

The charge and spin densities are obtained through the
one-electron density matrix:

y(xlx')ZNf\I/*(xl,xz, ceXp)

XW(x|,%9,...,x5)dx, - -dxy , 4)

by means of its diagonal spin-free representation.

Since the first-order density matrix commutes with L,
it is mg-block diagonal, so that charge and spin densities
can be written in terms of a and 8 contributions:

pc(r)=p,r)+pgr), (5)
ps(r)=(p,—pp)/(N,—Ng) . (6)
Upon spatial integration, one gets
[pc(rdr=N,+Nz=N, (7
fps(x)dx =1. (8)

The reduced first-order density matrix may be expanded
in a spin-orbital basis and, by using a suitable unitary
transformation, it may be diagonalized to obtain the nat-
ural expansion. Then, the densities are given in terms of
STO’s as

_ (n;+n, —2)
pAr)=3 funy | 2 NyNyclchr ™’
i ik

Xexp[—(Zj,-i-Zk,)r] ’ 9)
where y stands for the a- or B-type density contribution.
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The nj and the ¢}/ are the natural expansion parameters.
The f;, are symmetry factors which take advantage of
the parity-, of the m -, and m,-block diagonal structure
of the density matrix, and of the LS symmetry of each
atom. An atomic CI program is available* for the calcu-
lation of the wave function and the one-electron density
matrix.

The main idea is to obtain a wave function W such that
the electron density calculated trom its does not vary ap-
preciably upon further improvements in ¥. The CI
method is especially appropriate for this endeavor since
one can always extend the basis set and check the stabili-
ty of the density upon each addition of a new basis orbit-
al.

It has been shown® that, for a given orbital symmetry
and electron-correlation region (K, L, and intershell), suc-
cessively energy-optimized STO’s participate with de-
creasing energy contributions. In previous work,"? we
have found that, besides an energy pattern of conver-
gence, there exists a pattern of convergence for the elec-
tron density which follows analogous steps, although the
structure of the resulting STO sets is very different.

According to the method, one starts from the self-
consistent-field (SCF) orbitals of Clementi and Roetti,®
supplemented by orbitals that are obtained by successive
orthogonalization of the functions in the SCF basis. An
energy criterion is then used to optimize additional
STO’s. At each stage, the nonlinear exponents are opti-
mized cyclically until the energy becomes stable within
107° a.u. Bunge has pointed out the importance of the
numerical accuracy of the eigenvector components’ in
the calculation of very sensitive properties such as the
Fermi-contact interaction. In this work, it has been set at
1077, The STO’s are included in the final basis according
to a convergence in norm criterion for the spin density
(Sec. II0).

The Coulombic singularities of the wave function have
been studied by Kato,® who introduced the cusp condi-
tion. Steiner’ extended this condition in the case of the
charge density and obtained the relationship

dp(r)

o =—2Zp(0) , (10)

r=0

which conditions the slope of the density at » =0. Also,
for the correct behavior of the electron density at large
values of r, Hoffman-Ostenhof and Hoffman-Ostenhof'°
have shown that the density should obey the following in-
equality:

lp(r) |2 < kr?~lexp(—V 2er) (1)

for r = r,, where

Z Y4
= — Z_ s
YT V2e 07 e

€ is the ionization potential, and Z is an effective
charge.!! The densities obtained should obey conditions
(10) and (11).
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III. CONVERGENCE CRITERIA

In order to asses the quality of the results, we have an-
alyzed the convergence of the charge and spin density,
and their first and second derivatives, by using a sequence
of increasingly improved densities converging towards
the full stabilized density. For this purpose, it is possible
to apply the criteria of the metric spaces theory.!?

The strongest of all is the point-by-point convergence,
which requires that, at each point in space, the absolute
value of the difference between two consecutive functions
fm and f, vanishes at the limit

lim |f,(r)—f,(r)|=0, n>m forallr. (12)
m,n— ©
A somewhat less demanding criterion is the conver-
gence in norm. A metric induced by the norm is
represented by the distance

dfpr k)= =Ll = [ 1= fo0)ldr - (13)

such that (i) d is finite and non-negative, (ii) d =0 if and
only if f,, =f,, and (iii) d is symmetric and the triangle
inequality is obeyed. Now, since a normed space is a
metric space, the basic concepts of the convergence of se-

quences are applicable.
(1) A sequence (f,) in a normed space is convergent if

it contains f such that
lim d(f,f,)= lim ||f—f,]|=0, (14)

n-—» oo

n-— oo

i.e., f, converges to f. A sequence obeying Eq. (14) is
said to be strongly convergent, or convergent in norm.

(2) In addition, sequence (f,) in a normed space
satisfies the Cauchy convergence criterion if, for each
€>0, there exists an N (€) such that

|fm—fnll <€ for all m,n>N(e) . (15)

The sequence (f,) is then called a Cauchy sequence.
Then the distances between successive functions in the se-
quence decrease monotonically.

Since the densities (and their derivatives) are continu-
ous, real-valued functions in the interval [0, o ], they be-
long to the normed spaces L”. In previous calculations
of the densities of neon! and beryllium,2 we used the cri-
terion of point-by-point convergence [Eq. (12)]. In this
study, we have employed the metric of the L' space as a
convergence criterion, because it is more practical to con-
sider the densities themselves as elements of the metric
space, instead of individual points. The convergence in
norm for the first and second derivatives has also been
imposed.

IV. CHARGE AND SPIN-DENSITY RESULTS

In order to achieve the stability of the electron and
spin density, eight s-, six p-, six d-, four f-, four g-, two
h-, and two i-type STO’s were required, distributed
among the K shell and intershell regions.

The distances, as calculated from Eq. (13) for a se-
quence of spin densities and their first and second deriva-
tives, are shown in Table I. As expected, the charge den-
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TABLE 1. Distances of the convergent sequence of the spin
density and its first and second derivatives.

Sequence lom —pmll  lom—pull lom —pnll
SCF 812 105.112 709.791 4081.337
(8] [86] 17.016 100.028 598.153
(86] [866] 1.650 9.613 57.204
[866] [8664] 0.262 1.507 8.923
[8664] [86644] 0.074 0.420 2.529
[86644]  [866442] 0.029 0.170 1.039
[866442] [8664422] 0.013 0.076 0.466
*Wave functions are denoted [abc - - -], where a,b,c,. .. are

equal to the number of s,p,d, . . . STO’s.

sity converges fast, in a manner similar to the one ob-
served for neon and beryllium. When the STO’s from
both shells are mixed to form the complete basis set, it is
found that the charge densities change little upon a cyclic
reoptimization of the total basis, and, in fact, this reop-
timization was not carried out for neon and beryllium.
Here, a total density-restricted cyclic reoptimization has
been performed automatically, to obtain the best possible
variational CI of this size, energywise. In the case of the
spin density, convergence is slower, and, in this work,
special attention was devoted to the convergence of its
value at the nucleus. Significant changes are observed
upon cyclic reoptimization.

The final STO basis is given in Table II. All single,
double, and triple excited configurations obtained by pro-
moting K and L electrons in the Hartree-Fock
configuration are included in the final wave function.
The result is a compact wave function, which represents
the final stage of a convergent series, both in the charge
and spin densities, and in their first and second deriva-
tives.!3 It contains 1760 terms and yields a total nonrela-
tivistic energy of —7.47769996 a.u. (Li), which
represents 99.18% of the correlation energy.

The analytical charge and spin electron densities may
be reproduced from the expression for the density [Eq.
(9)] using the parameters of the orbital set (Table II) and
the coefficients of the natural expansion given in Table
II1.

The cusp ratio

[dp(r)/dr], -y .
20 % (16)

for our density is 3.008.
With respect to the asymptotic behavior, for lithium

the ionization potential €=0.1963 a.u. and then
ro = 5.09. We have calculated the ratio
pLr) (17)

[r” " lexp(—V2er)]?

for values of r from 1 to 30 bohrs. This ratio is plotted
against the radial coordinate in Fig. 1. It is seen to be ap-
proximately constant (0.5<k?<0.54) and to present a
maximum of 0.574 at r =11.9 bohrs. If we use this max-
imum value for k2 our density strictly obeys the inequali-
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ty in Eq. (12). It is interesting to note that for the SCF
density there is no constant zone. Also shown for com-
parison in Fig. 1 is the value of the asymptotic ratio for
the density calculated by King er al.'* with a 233-term
Hylleraas-type wave function which accounts for 99.95%
of the correlation energy: the authors have pointed out
departures from the rigorous behavior when p(r) be-
comes very small.
The definite integral

"max 2

Na(/})(rmax): fo r pa(B)dr (18)

is a suitable criterion to determine the size of the region
of interest for the charge and spin density. It is found
that the B density contribution is almost totally included

TABLE II. The STO orbital set.

J Type Z; Shell®
1 1s 2.47673 K (SCF)®
2 1s 4.698 73 K (SCF)
3 2s 0.383 50 L (SCF)
4 2s 0.660 55 L (SCF)
5 2s 1.070 00 L (SCF)
6 2s 1.63200 L (SCF)
7 3s 3.96119 K

8 4s 8.006 31 KL

1 2p 4.156 18 K

2 2p 2.51309 KL

3 3p 4.85036 K

4 3p 1.466 17 KL

5 4p 13.414 80 K

6 4p 5.71219 KL

1 3d 5.004 33 K

2 3d 2.84114 KL

3 4d 11.500 00 K

4 ad 2.23905 KL

5 5d 11.23040 K

6 5d 11.23000 KL

1 Af 7.46593 K

2 af 5.57571 KL

3 5f 12.970 00 K

4 5f 11.15000 KL

1 5g 9.41000 K

2 5g 4.440 00 KL

3 6g 14.660 00 K

4 6g 13.780 00 KL

1 6h 11.2400 K

2 6h 3.85000 KL

1 7i 13.15000 K

2 7i 4.48000 KL

?Localized mainly in the shell as indicated.
®STO’s of analytical SCF orbital basis (Ref. 6).
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TABLE III. Orbital expansion coefficients and occupation numbers for the natural orbitals. Square brackets denote powers of 10.

B!

Density-matrix Block with a spin

S

S3

S4

0.9994994430

—0.6352275131[—1]
—0.384 879260 8 —2]
—0.105205 767 5[ —2]
0.965 684 3390
0.127576 5524
—0.1101952672
0.4215353262[ —4]
0.475 652520 7[ —3]

0.996 635603 0

0.9123277345
0.111915803 3
0.2478821750[ —3]

—0.9330786379[ —1]

—0.1277836182[ —1]
0.173 740078 0[ — 1]

—0.280 142599 0[ —2]

—0.739346 537 1[ —3]

0.133 619987 4] —2]

—0.1652215224[1]
—0.4801699738[ —1]
—0.3298059823[ —1]
—0.129 842503 8
—0.4379102703
0.751 9929950
0.1609237303[1]
0.4939834690[ —1]

0.287869 023 2[ —4]

0.272949 6203
0.937862 8699
—0.124103 130 1
0.1922119109
—0.129 630084 2[ 1]
0.1952126208[1]
—0.333 389409 3
—0.169 349095 7[1]

Ss Se S7 Sg

n; 0.299204 164 9[ — 5] 0.2690724457[ —6] 0.1179607857[ — 6] 0.709 502076 3[ —9]

0.565909 5499[1] 0.4069533871[2] —0.292 198799 5[2] 0.327 8436310
—0.3509136726[1] —0.198512 101 3[2] 0.1393182607[2] —0.133244 1799
—0.346008 198 5 —0.400 554762 4 —0.161499512 8[1] 0.304 588 153 8[1]

0.918 6364229 0.199 105976 7(1] 0.722 582293 5[1] —0.5578406550[1]
—0.3351660107[1] —0.194984 735 8[ 1] —0.138 698296 8[2] 0.5112761472[1]

0.4950313202[1] —0.242 656 6324[1] 0.134994 907 5[2] —0.246973 328 1[1]
—0.6938932313[1] —0.1759411794[2] 0.848 693269 8[1] 0.294 540448 6

0.1612115226[1] —0.6619316806[1] 0.5788000314[1] —0.7398949432[ —1]

P P2 P3 P4

n; 0.6139794335[ —3] 0.1402717234[ —3] 0.278 150585 7[ —4] 0.4262664724[ —5]
0.420262997 8 —0.3749152584 —0.1552905601[1] 0.1235820980[1]
0.2110017999 0.4251533206 0.1839797187[1] 0.374920044 2[1]
0.6862218698 —0.177 1655333 —0.195224 348 5[1] —0.3741630814(1]

—0.113 132438 7[—1] 0.885 3328072 —0.883 8026569 —0.102 186599 5[ 1]
—0.1163378278[ —1] —0.2323315938[—1] —0.629991001 3[ —2] 0.474376 1655
—0.288963 3443 —0.1230451433 0.2143001507(1] —0.976375796 7

Ps 143

n; 0.600 683073 7[ —6] 0.466 545248 7[ — 7]

0.8280151674[1] —0.213225951 8[2]

—0.2184565896[1] —0.193210467 1[1]
—0.343291709 8[2] 0.1724209455[2]

0.6314149523 0.372083 3887

0.2232626264[1] 0.6504352518[1]

0.271594993 5[2] 0.1357145880[1]

d, d, d; d,

n; 0.173098 426 5[ —4] 0.400226001 5[ —5] 0.164 958097 8] —5] 0.400 824975 8[ — 6]
0.806243447 1 —0.2738010900 —0.1060269725[1] —0.2235299859[1]
0.114418 368 4 0.3964854539 —0.8303753056 0.3009200519[1]

—0.4035031985[—1] —0.1384852359 0.9514613560 0.1622436358[1]
—0.1852349162[ —1] 0.720248 852 4 0.1074223019[1] —0.164607 682 1[1]
—0.340702058 3[3] 0.657 568 563 7[3] —0.319873 877 8[4] 0.362 255501 3[4]

0.3408560170[3] —0.657773 651 8[3] 0.3199386947[4] —0.3623223556[4]

ds ds

n; 0.108335717 1[ —6] 0.2862699072[ —7]

—0.724 742366 8[ 1] —0.1008185936[2]

0.443 804442 1[1] 0.4258978141[1]
—0.8516808285 0.1149012987[2]

—0.1816158227[1]
—0.150 823 927 4[ 5]
0.150 878 302 5[5]

—0.146 496 086 2[ 1]
—0.924 811934 8[5]
0.924 774 4382[5]
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Density-matrix Block with a spin

f1 /2 3 S
0.158456 604 2[ —5] 0.305229 305 1[ —6] 0.824 148 748 1[ — 7] 0.2052893642[ —7]
0.4427835904 —0.8734595874 —0.5987074119[1] —0.160410048 6[2]
0.4898555811 0.172075968 5[1] 0.3453498909[1] 0.537 600 8860[1]
—0.254988 939 8 0.1284352458 0.3151234658[1] —0.737 128945 2[ 1]
0.3222127347 —0.1073935534[1] 0.170406 0459 0.1837932890[2]
g1 82 g3 84
0.260386 704 2[ — 6] 0.6954389402[ —7] 0.286 098 809 8[ — 7] 0.8359052710[ — 8]
0.1297150592[1] 0.993 8469395 —0.307479993 5[1] —0.657264 5839[1]
0.179989 194 7 0.697484 187 8 0.1056354911[1] 0.754 1379469
—0.191503797 4 0.174 683 5662[1] 0.510190049 5 —0.202 160597 2[2]
—0.274710797 6 —0.3399463952[1] 0.2335536690[1] 0.2596810872[2]
hl h2 il i2
0.468 965934 9[ —17] 0.148 800581 1[ —7] 0.1337651460[ —7] 0.436 607 326 4] — 8]
0.9807232788 —0.2594374177 0.997 7498657 —0.1430518165

0.907 519266 1[ —1]

0.101039 101 9[1]

0.1683528144[ —1]

Density-matrix block with 3 spin

0.100781208 1[1]

S Sy S3 S4
0.996447 1432 0.1330268664[ —2] 0.2995913072[ —4] 0.3957003122[—5]
0.8967299156 —0.1646139406[1] 0.274478705 1 0.414554914 8[1]
0.1111141807 —0.509 826594 3[ — 1] 0.909 564 148 5 —0.278 694783 6[1]

—0.198231 708 0[ — 3]
0.109 038 587 4[ —2]
—0.4115111383[—2]
0.136264 834 6] —1]
0.858 685 975 5[ —4]
—0.106 824 718 2[ —2]

—0.293973899 1[ —1]
0.1329954347

—0.3657750437
0.678295824 8
0.154966 561 3[1]
0.6221797993[ —1]

—0.9402910758[ —1]

0.402 4215340

—0.101 326945 3[1]

0.1709679747[1]

—0.464 354976 3
—0.154777 681 8[1]

—0.188 664 840 4
0.791 166 190 9
—0.194 544513 3[1]

0.3454425790[1]
—0.5679397108[1]
0.1818156513[1]

Ss Se S7 S
;0344786978 6[ —6] 0.141 066 084 3[ —6] 0.7549620213[ —9] 0.399974 3469 —12]
—0.322492 854 1[2] 0.3851719112[2] —0.1147624465[1] 0.5687640420[ —1]

0.158 8812707[2] —0.184417933 3[2] 0.500465 3820 —0.207 150435 7[ —1]
0.6516967840[2] 0.1278567437[1] —0.2040720360[1] 0.2431661316[1]
—0.249068 341 2[1] —0.5251213800[1] 0.668 802451 7[1] —0.3133752946[1]
0.4659969563[1] 0.1188511472[2] —0.793510956 7 1] 0.2134039272[1]
—0.149809 679 8[1] —0.135908478 7[2] 0.4492772635[1] —0.813396499 3
0.156 588434 4[2] 0.1233813372[2] —0.457 607265 6 0.7989443759[ — 1]
0.4653077131[1] —0.744014 855 5[1] 0.2808458168 —0.742088917 5[ —2]
P P2 P3 P4
0.6324249134[ —3] 0.474249 545 5[ —4] 0.6856123015[—5] 0.797 4879462 — 6]
0.403 1837094 —0.1291925800[1] —0.1361824006(1] —0.6637719273[1]
0.239 566 596 4 0.1715769610[1] —0.1932406002[1] —0.202 6635572
0.668 6549775 —0.1467541219[1] 0.771424 5255 0.297 569 606 6[2]
0.2005189801[ —2] 0.2493227170[ —1] —0.1186213423 0.4178531701
—0.1159309307[ —1] —0.1165854226[ — 1] —0.260708 2909 —0.209 837101 5[1]
—0.2855169969 0.1170562516[1] 0.2672336352[1] —0.223 121 8209(2]
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TABLE III. (Continued).
Density-matrix Block with S spin
Ps Ps
n; 0.108038 6359[ — 6] 0.390298276 6] —7]
0.1109849203([2] —0.1888247579(2]
—0.3156525998[1] —0.3071125527[1]
—0.2182633401[2] 0.1135930069[2]
0.147576 871 1[1] 0.8827225406
—0.1044318293([1] 0.647726 551 3[1]
0.1430405655([2] 0.583 883832 8[1]
d, d, d; d,
n; 0.177 581287 1[ —4] 0.274 838166 1[ —5] 0.718 158 802 6] — 6] 0.1619713034[ —6]
0.789 8413343 0.8274330166[ — 1] —0.261641944 5[1] —0.424 560962 4[1]

0.1328102956
—0.4182849843[ —1]
0.387 5896979 —2]

0.948 479754 1
—0.502021919 1
—0.127549 884 8] — 1]

0.149 825035 6[1]
0.157795653 5[1]
0.3816998520[ —1]

0.106277 423 4[1]
—0.8816325240
0.258 703 108 2

—0.3150934276[3] 0.210876 144 4[4] —0.155568 589 6[4] —0.168970678 6[5]
0.3152418492[3] —0.210926 123 3[4] 0.155598 643 0[4] 0.169011 601 1{5]
d5 dé
n; 0.3816538783[—7] 0.156993093 5[ —7]
—0.2644067300[1] 0.113367 601 8[2]
—0.6330573329 —0.6561857897[1]
0.815726401 8[1] —0.8139095457[1]
0.9126277370 0.298 759 3549(1]
—0.588950688 7[5] 0.710144 117 1[5]
0.588 898 393 8[5] —0.710 1409059 5]
/i /2 3 fa
n; 0.1598902462[ —5] 0.2922757058[ —6] 0.6867844712[ —7] 0.175800433 6] —7]
0.405 2864547 —0.2680682200 —0.4225146714[1] —0.1661414759[2]
0.517443776 6 0.142 806994 4[1] 0.292 828 5253[1] 0.5757352865[1]
—0.249234 4747 0.7139969854[ —1] 0.394 674 560 8[1] —0.697 880264 7[1]
0.3284289305 —0.138 718 3354[1] —0.191451604 3[1] 0.1825892693[2]
g1 g2 83 84
n; 0.263442703 1[ — 6] 0.683 6569752[ —7] 0.2477386154[ —7] 0.780911729 1{ —8]
0.128 594 605 3[1] 0.1234533837[1] —0.2513153683[1] —0.6769839502[1]

0.1982197707
—0.177 166 699 7
—0.290043 9820

0.6234741456
0.198226058 8[ 1]
—0.3862699014[1]

hy h,

0.103 149297 6[1]
0.2151316120[1]
0.153 483067 4

Iy

0.843 505 303 8
—0.200860291 5[2]
0.260077 122 6[2]

i

n;,  0.470946 878 3[ —7] 0.1463949112[ —7]
0.9768915159 —0.2735121376
0.105270 669 1 0.100898 167 0[1]

n;

0.996214703 8

0.2727268047[ — 1]

0.133955918 7[ — 7]

0.434 188926 7[ — 8]
—0.153378227 1
0.100758 365 3[ 1]

at a distance of 2.0 bohrs, whereas the a density contribu-
tion extends to about 8.0 bohrs. These contributions are
shown in Fig. 2 where the values of the definite integral
for a, B and total densities are plotted for different values
of r..x. Figure 3 shows the radial density functions
D (r)=477'r2p(r) for the a and 8 densities.

A comparison between our best density and the one ob-

ADC(r):DCI(r)—DSCF(r) 5
ADg(r)=D(r)—Dgcp(r) .

tained from an SCF wave function® is shown in Fig. 4,
which represents plots of the differences in the charge
and spin-density distributions D(r) and Dg(r):

(19a)
(19b)
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— This work

Asymptotic Behavior
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FIG. 1. Comparison of the asymptotic behavior of different calculated densities: King’s (Ref. 14) and SCF (Ref. 6).
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FIG. 2. Definite integral of the charge and spin densities.
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Radial Distribution Difference

Radial Density Distribution
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FIG. 3. Radial distribution functions for the spin densities.
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FIG. 4. Radial distribution difference between the SCF density (Ref. 6) and this work.
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TABLE IV. Comparison of the density moments results.

{(rm) This work Literature values

(r~2) 30.24252 30.24071*  30.246°
(r=1 5.717 929 5.718 087 5.718 110°
(rh) 4.990 184 4.989 765 4.989 538
(r?) 18.35990 18.35707 18.354 74
(r*) 92.629 12 92.62792  92.603 64
r*) 550.0402 550.4163 545.80°
(r’) 3695.848 3706.018

(r) 27 648.79 27889.71

r") 227842.1 234064.8

(r®) 2050515.1 22321720

(r’) 20008 387.7 25826 190.0

(r'®) 210364940.2 407 477 900.0

*From the 233-term Hylleraas wave function of King (Ref. 14).
YFrom the 45-term CI wave function of Weiss (Ref. 15).
°From the 602-term Hylleraas wave function of King (Ref. 16).

It can be seen that the effect of correlation is to increase
both the charge and spin densities within the K and L
shells, and that the spin density is much more sensitive to
correlation than the charge density, especially in the vi-
cinity of the nucleus.

V. ONE-ELECTRON PROPERTIES FOR LITHIUM

The density moments {r") for powers n from —2 to
10 have been calculated from the final charge densities
and are given in Table IV, together with results obtained
by other authors. The values for these properties as the
basis is improved converge quite fast: in fact, an
[8s,4p,4d,2f] basis is sufficient to obtain the final re-
sults.!> As an example, the convergence of r~1, r?, and
r10 is shown in Table V. An analysis of the convergence
of (r") for positive values of n shows that it follows a
pattern similar to that of the spin density, i.e., it is more
dependent on a good representation of the density close
to the nucleus. On the contrary, for negative n, {r")
converges in the same way as the charge density. The
good convergence of 70 is another proof of the goodness
of the density at large distances.

Of special importance, in this study is the accurate cal-
culation of the Fermi-contact term f for lithium, which is

3381
obtained from the hyperfine structure constant 4 ,:
4, = |Hoiatag | 0)
6mhayl

where p, is the vacuum permeability, g, is the electronic
gyromagnetic factor, pp and uy are the Bohr and nuclear
magneton, respectively, I is the nuclear spin angular
momentum, and p; is the magnetic moment of the nu-
cleus. f can be theoretically calculated as the spin densi-
ty at the nucleus, p5(0).>7

It is well known that the Fermi-contact term
represents a very sensitive test of the accuracy of the
wave function, and, in the case of the lithium atom, it has
received considerable attention for almost 20 years.® The
main difficulties which arise in the calculation of an accu-
rate value for this interaction are that (i) it is very sensi-
tive to the electronic correlation, (ii) it is strongly depen-
dent on the choice of the orbital basis parameters used to
represent the wave function, and (iii) since it is a property
that represents a single point in the spin-density function,
it is imperative that the latter be well represented every-
where.

Harriman® has discussed the results of more than 40
calculations of various types [Hartree-Fock (HF),
multiconfiguration Hartree-Fock (MCHF), CI, and Hyl-
leraas], and he has noted the lack of a direct relationship
between the precision of the energies and that of f. The
best result in Harriman’s review is that of Larsson,'® ob-
tained with a Hylleraas-type wave function containing
100 terms, f =2.9060, which agrees with one of the
theoretical-experimental values accepted in the literature
and reported for the first time by Larsson himself. How-
ever, Bunge’ has shown that Larsson’s result has not con-
verged, and still oscillates markedly when the number of
basis functions is increased. Also, King et al.’s'®
Hylleras-type function of 602 terms, which accounts for
99.96% of the correlation energy, yields an f value which
still has not quite converged. Some representative results
are presented in Table VI.

The converged value obtained for the Fermi-contact
term f in this work is f=2.908 56+0.00008 a.u. When
multiplied by the correction factor for the effect of the

TABLE V. Convergence of some density moments.

Function (r=2) (rt (r?) (r'®)
[8s]° 30.264 068 5.714 589 18.6596 23366[4]°
[8s,6p] 30.242 285 5.717170 18.3892 21234[4]
[8s,6p, 6d] 30.242411 5.717 659 18.3640 21060[4]
[8s,6p,6d,4f] 30.242 646 5.717784 18.3602 21034[4]
[8s,6p,6d,4f,4g] 30.242 740 5.717 829 18.3590 21025[4]
[8s,6p,6d,4f,4g,2h] 30.242723 5.717 837 18.3587 21023[4]
[8s,6p,6d,4f,4g,2h,2i] 30.242718 5.717 841 18.3585 21022[4]
“Wave functions are denoted [a, b,c, . . .], where a,b,c, . . . are equal to the number of s,p,d, . . . STO’s.

*The notation [#] means 1X 10",
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TABLE VI. Comparison of Fermi-contact interaction values obtained by various methods.

Method Reference f =4mp,(0)
Hylleraas (100 terms) Larsson (Ref. 18) 2.907 0°
Hylleraas (352 terms) King and Shoup (Ref. 19) 2.905 1(20)
Hylleraas (602 terms) King (Ref. 16) 2.9067(4)*
MCHF Sundholm and Olsen (Ref. 20) 2.904 9(20)
Bruckner-Goldstone Garpman et al. (Ref. 21) 2.909 5*
MBPT -coupled-cluster Lindgren (Ref. 22) 29172
MBPT-relativistic Blundell er al. (Ref. 23) 29112
CI-spin-density convergence This work 2.909 53(8)
Experimental® Beckmann, Boklen, and Elke (Ref. 24) 2.90940(10)
Experimental® Beckmann, Boklen, and Elke (Ref. 24) 2.906 06(10)

aRecalculated in this work to include the reduced mass effect and the relativistic and nuclear-size

corrections (Ref. 22).

STheoretical-experimental value without QED effects, as computed by Lindgren (Ref. 22).
°Theoretical-experimental value including QED effects, as computed by King (Ref. 16).

finite nuclear mass,
[m,/(m,+M,,.)]>=0.999 765 4

it becomes f=2.907 88 a.u. In addition, the f value has
to be corrected for relativistic and finite-nuclear size
effects. These corrections are not negligible. Lindgren??
has used a model of homogeneous nuclear charge density
and pointlike nuclear moments to estimate them to be
Af ., =0.00165 a.u. The uncertainty of these corrections
is not known. Finally, the Fermi-contact term is found to
be

f=Fxgr +Af=2.90953+0.00008 a.u. ,

which agrees with the experimental result obtained by
Lindgren.?

VI. CONCLUSION

Precise charge and spin densities and one-electron
properties have been obtained for the lithium atom. The
procedure used to optimize the basis functions ensures
that the sequence of calculations is a Cauchy sequence,
where densities, their derivatives, and properties con-
verge monotonically to their final values.

We note that other manners of enlarging the basis set
do not, in general, lead to converging results.!* In partic-
ular, we have verified that, when only an energy criterion
is used, neither the SCF orbitals nor the additional orbit-
als obtained by adding STO’s to the basis are adequately
distributed among the K and L shells of the atom. The
minimizing sequence, in this case, neither converges in
the Cauchy sense, nor does it produce accurate densities
and properties. For lithium, in order to obtain a very
good energy eigenvalue it is necessary to crowd most
STO orbitals within the K shell, thus unbalancing the

basis set and, consequently, the wave function. These
facts support the notion mentioned by Pilar? that “the
best wave function can be chosen from several alterna-
tives by using the criterion of lowest energy, but the ener-
gy turns out to be an insensitive criterion with respect to
a best wave function for other physical properties.”

Accurate converged density moments have been ob-
tained for all powers of » from —2 to 10, this being one
more check on the goodness of the density in all regions
of space.

The result obtained for the Fermi-contact term
represents the best calculation of this property to date, in
the sense that it is the only one which has clearly
converged to a definite value, and for which an error
margin can be indicated. Two conflicting theoretical-
experimental values are usually reported in the litera-
ture,'®~22 but a careful analysis?®?’ of their origin shows
that the difference between them resides in the use of
different values for the electronic gyromagnetic factor in
the expression relating the experimental hyperfine split-
ting®* and the spin density at the nucleus. Calculated
nonrelativistic spin densities do not, in general, include
quantume-electrodynamics (QED) corrections, and hence
they should be compared with Lindgren’s result,
£ =2.9096. (Actually, when the latest values for the fun-
damental constants are used, f becomes 2.9094.) If the
first-order QED correction were estimated and taken into
account, then the calculated f values could be compared
to King’s theoretical-experimental Fermi-contact term,'6
i.e., £=2.9060 a.u. However, this is not straightforward,
since the magnetic Hamiltonian contains additional
higher-order relativistic and magnetic interaction terms
where radiative effects are included. To our knowledge,
no estimates of these effects have been reported to date.
A more detailed study of the Fermi-contact interaction in
the isoelectronic series of lithium will be published else-
where.
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