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Spin density and density moments for the lithium ground state

Rodolfo O. Esquivel and Annik V. Bunge
Departamento de Quimica, Universidad Autonoma Metropolitana, Apartado Postal 55-534, Iztapalapa,

09340 Mexico, Distrito Federal, Mexico

Marco A. Nunez
Departamento de Matematicas, Universidad Autonoma Metropolitana, Apartado Postal 55-534, Iztapalapa,

09340 Mexico, Distrito Federal, Mexico
(Received 12 September 1990)

Accurate analytical charge and spin-electron densities for the lithium atom are obtained by using

a systematic and reliable method recently developed and applied to closed-shell atoms. The conver-

gence of the densities is analyzed in terms of well-defined improvements in the corresponding
configuration-interaction wave functions, and mathematical criteria are used to test the stability of
the densities and their derivatives. Fully converged results for one-electron properties and, in par-
ticular, for the Fermi-contact interaction are reported.
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The spin-orbitals are linear combinations of Slater-type
orbitals (STO's) times a spherical harmonic, times a spin
function:

We have developed' a systematic and reliable way of
obtaining accurate analytical electron densities. In this
method, which is based on configuration-interaction (CI)
calculations, successive wave functions are optimized by
expanding the significant electron-correlation regions.
The optimization of the orbital basis is guided both by an
energy criterion and by a best density criterion. The
charge densities for Ne (Ref. I) and Be (Ref. 2) converge
monotonically to definite values as the basis and, hence,
the size of the CI expansion, is increased. They obey the
theoretical conditions at the nucleus and at large dis-
tances, they reproduce densities obtained from almost
"exact" CI wave functions, and accurate one-electron
properties are obtained from them.

In previous calculations, the method was applied to
closed-shell atoms. The purpose of the present study is to
calculate the charge density, the spin density, and the
density moments of the lithium atom. Because of the
well-known difficulties in theoretically obtaining the
Fermi-contact term, this property is a particularly sensi-
tive test for trying our method.

II. CALCULATION OF THE DENSITY

The nonrelativistic CI wave functions are expressed as

+= g C'x, ,ax,,
K,p

where the NK 's are successively orthonormalized L-
and 5 -symmetric projections of Slater determinants
which are built of orthonormal spin-orbitals:

R;t(r) = g S t (r)a;~t, (3b)

(n. —1)S t(r)=Ntr ' exp( Z ir) .— (3c)

X% (x ),x2, . . . , x~ )dx2 ' dx~ (4)

by means of its diagonal spin-free representation.
Since the first-order density matrix commutes with Lz,

it is mz-block diagonal, so that charge and spin densities
can be written in terms of a and P contributions:

pc(r) =p.(r)+pp(r)

pq(r) =(p~ p~) l(N~ N—p) . —

Upon spatial integration, one gets

J pc(r)dr=N +Nt3=N,

Jps(x)dx =I

The reduced first-order density matrix may be expanded
in a spin-orbital basis and, by using a suitable unitary
transformation, it may be diagonalized to obtain the nat-
ural expansion. Then, the densities are given in terms of
STO's as

(n. +nk —2)
p, (r) = X fasnfi X NjtNk(& Jcl r '

X exp[ —(Z t +Zkt )r ]

where y stands for the a- or /3-type density contribution.

The charge and spin densities are obtained through the
one-electron density matrix:

y(x~x )=N f 'Ii*(x»x2, . . . , x~)
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dp(r)
dr r=0

= —2Zp(0), (10)

which conditions the slope of the density at r =0. Also,
for the correct behavior of the electron density at large
values of r, Hoffman-Ostenhof and Hoffman-Ostenhof'
have shown that the density should obey the following in-
equality:

The n;~& and the c~ are the natural expansion parameters.
The f;i, are symmetry factors which take advantage of
the parity-, of the m, -, and m&-block diagonal structure
of the density matrix, and of the LS symmetry of each
atom. An atomic CI program is available for the calcu-
lation of the wave function and the one-electron density
matrix.

The main idea is to obtain a wave function 4 such that
the electron density calculated from its does not vary ap-
preciably upon further improvements in +. The CI
method is especially appropriate for this endeavor since
one can always extend the basis set and check the stabili-
ty of the density upon each addition of a new basis orbit-
al.

It has been shown that, for a given orbital symmetry
and electron-correlation region (E, I., and intershell), suc-
cessively energy-optimized STO s participate with de-
creasing energy contributions. In previous work, ' we
have found that, besides an energy pattern of conver-
gence, there exists a pattern of convergence for the elec-
tron density which follows analogous steps, although the
structure of the resulting STO sets is very different.

According to the method, one starts from the self-
consistent-field (SCF) orbitals of Clementi and Roetti,
supplemented by orbitals that are obtained by successive
orthogonalization of the functions in the SCF basis. An
energy criterion is then used to optimize additional
STO's. At each stage, the nonlinear exponents are opti-
mized cyclically until the energy becomes stable within
10 a.u. Bunge has pointed out the importance of the
numerical accuracy of the eigenvector components in
the calculation of very sensitive properties such as the
Fermi-contact interaction. In this work, it has been set at
10 . The STO's are included in the final basis according
to a convergence in norm criterion for the spin density
(Sec. III).

The Coulombic singularities of the wave function have
been studied by Kato, who introduced the cusp condi-
tion. Steiner extended this condition in the case of the
charge density and obtained the relationship

III. CONVERGENCE CRITERIA

In order to asses the quality of the results, we have an-
alyzed the convergence of the charge and spin density,
and their first and second derivatives, by using a sequence
of increasingly improved densities converging towards
the fu11 stabilized density. For this purpose, it is possible
to apply the criteria of the metric spaces theory. '

The strongest of all is the point-by-point convergence,
which requires that, at each point in space, the absolute
value of the difference between two consecutive functions
f and f„vanishes at the limit

lim ~f„(r) f (r)~=—0, n )m for all r .
m, n~ oo

(12)

such that (i) d is finite and non-negative, (ii) d =0 if and
only if f =f„, and (iii) d is symmetric and the triangle
inequality is obeyed. Now, since a normed space is a
metric space, the basic concepts of the convergence of se-
quences are applicable.

(1) A sequence (f„) in a normed space is convergent if
it contains f such that

lim d (f,f„)= lim ()f f„~(

=0, — (14)

i.e., f„converges to f. A sequence obeying Eq. (14) is
said to be strongly convergent, or convergent in norm.

(2) In addition, sequence (f„) in a normed space
satisfies the Cauchy convergence criterion if, for each
e) 0, there exists an N(E) such that

~~f f„~~ (e for—all m, n )N(e) . (15)

The sequence (f„) is then called a Cauchy sequence.
Then the distances between successive functions in the se-
quence decrease monotonically.

Since the densities (and their derivatives) are continu-
ous, real-valued functions in the interval [0, ~ ], they be-
long to the normed spaces L . In previous calculations
of the densities of neon' and beryllium, we used the cri-
terion of point-by-point convergence [Eq. (12)]. In this
study, we have employed the metric of the L ' space as a
convergence criterion, because it is more practical to con-
sider the densities themselves as elements of the metric
space, instead of individual points. The convergence in
norm for the first and second derivatives has also been
imposed.

A somewhat less demanding criterion is the conver-
gence in norm. A metric induced by the norm is
represented by the distance

(13)

for r &rp, where

Z Zrp-
VPg E

e is the ionization potential, and Z is an effective
charge. " The densities obtained should obey conditions
(10) and (11).

IV. CHARGE AND SPIN-DENSITY RESULTS

In order to achieve the stability of the electron and
spin density, eight s-, six p-, six d-, four f , four g-, two-
h-, and two i-type STO's were required, distributed
among the E shell and intershell regions.

The distances, as calculated from Eq. (13) for a se-
quence of spin densities and their first and second deriva-
tives, are shown in Table I. As expected, the charge den-
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Sequence lip'-' —p" II

SCF
(81
[86]
[866]
[8664]
[86644]
[866442]

[8]'
[86]
[866]
[8664]
[86644]
[866442]
[8664422]

105.112
17.016

1.650
0.262
0.074
0.029
0.013

709.791
100.028

9.613
1.507
0.420
0.170
0.076

4081.337
598.153
57.204

8.923
2.529
1.039
0.466

'Wave functions are denoted (abc ], where a,b,c,. . . are
equal to the number of s,p,d, . . . STO's.

TABLE I. Distances of the convergent sequence of the spin
density and its first and second derivatives.

ty in Eq. (12). It is interesting to note that for the SCF
density there is no constant zone. Also shown for com-
parison in Fig. 1 is the value of the asymptotic ratio for
the density calculated by King et a/. ' with a 233-term
Hylleraas-type wave function which accounts for 99.95%
of the correlation energy: the authors have pointed out
departures from the rigorous behavior when p(r) be-
comes very small.

The definite integral
rIBx

N~~~~(rmax)= y p ~&~dr
0

is a suitable criterion to determine the size of the region
of interest for the charge and spin density. It is found
that the P density contribution is almost totally included

sity converges fast, in a manner similar to the one ob-
served for neon and beryllium. When the STO's from
both shells are mixed to form the complete basis set, it is
found that the charge densities change little upon a cyclic
reoptimization of the total basis, and, in fact, this reop-
timization was not carried out for neon and beryllium.
Here, a total density-restricted cyclic reoptimization has
been performed automatically, to obtain the best possible
variational CI of this size, energywise. In the case of the
spin density, convergence is slower, and, in this work,
special attention was devoted to the convergence of its
value at the nucleus. Significant changes are observed
upon cyclic reoptimization.

The final STO basis is given in Table II. All single,
double, and triple excited configurations obtained by pro-
moting K and L electrons in the Hartree-Fock
configuration are included in the final wave function.
The result is a compact wave function, which represents
the final stage of a convergent series, both in the charge
and spin densities, and in their first and second deriva-
tives. ' It contains 1760 terms and yields a total nonrela-
tivistic energy of —7.477 699 96 a.u. (Li), which
represents 99.18% of the correlation energy.

The analytical charge and spin electron densities may
be reproduced from the expression for the density [Eq.
(9)] using the parameters of the orbital set (Table II) and
the coefficients of the natural expansion given in Table
III.

Type

1s
1s
2s
2s
2s
2s
3s
4s

ZjI

2.476 73
4.698 73
0.383 50
0.660 55
1.070 00
1.632 00
3.961 19
8.006 31

Shell'

K (SCF)
K (SCF)
L (SCF)
L (SCF)
L (SCF)
L (SCF)

KL

2p
2p
3p
3p
4p
4p

4.156 18
2.51309
4.850 36
1.466 17

13.414 80
5.712 19

K
KL
K
KL
K
KL

3d
3d
4d
4d
5d
5d

5.004 33
2.841 14

11.500 00
2.239 05

11.230 40
11.230 00

K
KL
K
KL
K
KL

TABLE II. The STO orbital set.

The cusp ratio

[dp(r)/dr]„
—2p(0)

for our density is 3.008.
With respect to the asymptotic behavior, for lithium

the ionization potential e=0.1963 a.u. and then
ro ~ 5.09. We have calculated the ratio

4f
4f
5f
5f

5g
5g
6g
6g

7.465 93
5.575 71

12.970 00
11.15000

9.41000
4.440 00

14.660 00
13.780 00

p(r)
[r ~ 'exp( &2er )]— (17) 6h

6h
11.240 0
3.850 00

for values of r from 1 to 30 bohrs. This ratio is plotted
against the radial coordinate in Fig. 1. It is seen to be ap-
proximately constant (0.5+ k +0.54) and to present a
maximum of 0.574 at r =11.9 bohrs. If we use this max-
imum value for k our density strictly obeys the inequali-

7l
7E

13.15000
4.480 00

'Localized mainly in the shell as indicated.
"STO's of analytical SCF orbital basis (Ref. 6).
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TABLE III. Orbital expansion coefficients and occupation numbers for the natural orbitals. Square brackets denote powers of 10.

Si

Density-matrix Block with a spin
$2 S3 $4

n; 0.999499 443 0
—0.635 227 S13 1[—1]—0.384 879 260 8[—2]—0.105 205 767 5 [ —2]

0.965 684 339 0
0.127 576 552 4

—0.1 10 195 267 2
0.421 535 326 2[ —4]
0.475 652 520 7[ —3]

0.996 635 603 0

0.912 327 734 5
0.111915 803 3
0.247 882 175 0[ —3]—0.933 078 637 9[—1]—0.127 783 618 2[ —1]
0.173 7400780[ —1]—0.280 142 S990[—2]

—0.739 346 537 1 [ —3 ]

0.133 619 9874[ —2]
—0.165 221 522 4[ 1]—0.480 169 973 8[ —1]—0.329 805 982 3[ —1]
—0.129 842 503 8
—0.437 910270 3

0.751 992 995 0
0.160 923 730 3[1]
0.493 983 469 0[ —1]

0.287 869 023 2[ —4]

0.272 949 620 3
0.937 862 869 9

—0.124 103 130 1

0.192 211 9109
—0.129 6300842[1]

0.195 212 620 8[1]—0.333 389409 3
—0.169 349 095 7[1]

n;

n;

n;

n;

n;

$5

0.299204 1649[—5]

0.565 909 549 9[1]—0.350 913672 6[1]—0.346 008 198 5
0.918 636 422 9

—0.335 1660107[1]
0.495 031 3202[1]

—0.693 893 231 3[1]
0.161 211 522 6[1]

pi

0.613 979 433 5[ —3]

0.420 262 997 8
0.211 001 799 9
0.686 221 869 8

—0.113 132438 7[—1]—0.116337 827 8[ —1]—0.288 963 344 3

ps

0.600 683 073 7 [—6]

0.828 015 167 4[1]—0.218 456 589 6[1 ]—0.343 291 709 8[2)
0.631 414 952 3
0.223 262 626 4[1]
0.271 594 993 5[2]

0.173 098 426 5[—4]
0.806 243 447 1

0.114418368 4
—0.403 503 198 5[ —1]—0.185 2349162[—1]—0.340702058 3[3]

0.340 856017 0[3]
ds

0.108 335 717 1[—6]
—0.724742 3668[1]

0.443 804442 1[1]—0.851 680 828 5
—0.181 615 822 7[1]—0.150 823 927 4[5]

0.150 878 302 5[5]

$6

0.269 072 445 7[ —6]

0.406 953 387 1[2]—0.198 512 101 3[2]—0.400 554 762 4
0.199 105 976 7[1 ]—0.194 984 735 8[1]—0.242 6S6 6324[1]—0.175 941 1794[2]—0.661 931 680 6[1]

p2

0.140271 723 4[ —3]
—0.374 915 258 4

0.425 153 320 6
—0.177 165 533 3

0.885 332 807 2
—0.232 331 593 8[ —1]—0.123 045 143 3

0.466 545 248 7[ —7]
—0.213 225 951 8[2]—0.193 210467 1[1]

0.172 420 945 5[2]
0.372 083 388 7
0.650 435 251 8 [1]
0.135 714 588 0[1]

0.400 226 001 5[ —5]
—0.273 801 0900

0.396 485 453 9
—0.138485 235 9

0.720 248 852 4
0.657 568 563 7[3]—0.657 773 651 8[3]

0.286 269 907 2[ —7]
—0.100 818 593 6[2]

0.425 897 814 1[1]
0.114901 298 7[2]—0.146496086 2[1]—0.924 811 934 8[5]
0.924774438 2[5]

S7

0.1179607857[ —6]
—0.292 198 799 5[2]

0.139318 260 7[2]—0.161 499 512 8[1]
0.722 582 293 5[1]

—0.138 698 296 8[2]
0.1349949075[2]
0.848 693 269 8[1]
0.578 800031 4[1]

P3

0.278 150 585 7[ —4]
—0.155 290 560 1[1]

0.183 979 718 7[1]—0.195 224 348 5 [1]—0.883 802 656 9
—0.629991 001 3[ —2]

0.214 300 150 7[1]

d3

0.164958097 8[—5]
—0.106026972 5[1]—0.830 375 305 6

0.951 461 356 0
0.107 422 301 9[1]—0.319873 877 8[4]
0.319938 694 7[4]

$8

0.709 502 076 3 [
—9 ]

0.327 843 631 0
—0.133 244 179 9

0.304 588 153 8[1]—0.557 8406550[1]
0.511 276 147 2[1]—0.246 973 328 1[1]
0.294 540 448 6

—0.739 894 943 2[ —1]

p4

0.426 266 472 4[ —5 ]

0.123 582 098 0[1]
0.374920044 2[1)—0.374 163 081 4[1]—0.102 186 599 5[1]
0.474 376 165 5

—0.976 375 796 7

0.400 824 975 8[ —6]
—0.223 529 985 9[ 1 ]

0.300 920 051 9[1 ]
0.162243 635 8[1]—0.164 607 682 1[1]
0.362 255 501 3[4]—0.362 322 355 6[4]
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TA.@LEIII. {Continued).

Density-matrix Block with a spin

n; 0.158 456 604 2[ —5]
0.442 783 590 4
0.489 855 581 1

—0.254 988 939 8
0.322 212 734 7

0.305 229 305 1 [ —6]
—0.873 459 587 4

0.172075 968 5[1]
0.128 435 245 8

—0.107 393 553 4[1]

0.824 148 748 1[—7]
—0.598 707411 9[1]

0.345 349 890 9[1]
0.315 123 465 8[1]
0.170406 045 9

0.205 289 364 2[ —7]
—0.160410048 6[2]

0.537 6008860[1]—0.737 128 945 2[1]
0.183 793 2890[2]

0.260 3g6 704 2[ —6]
0.129 715 059 2[1]
0.179989 194 7

—0.191 503 797 4
—0.274 710797 6

0.695 438 940 2[ —7]
0.993 846 939 5
0.697 484 187 8
0.174 6g3 566 2[1]—0.339 946 395 2[ 1]

0.286 098 809 8 [ —7]
—0.307 479 993 5[1]

0.105 635 491 1[1]
0.510 190049 5
0.233 553 669 0[1]

g4

0.83S 905 271 0[—8]
—0.657 264 583 9[1]

0.754 137946 9
—0.202 160 597 2[2]

0.259 681 087 2[2]

h,

n; 0.468 965 934 9[—7]
0.980 723 278 8
0.907 519 266 1 [ —1]

h2

0.148 800 Sg 1 1[—7)
—0.259 437 417 7

0.101 039 101 9[1]

n, 0.133 765 1460[—7]
0.997 749 865 7
0.168 352 8144[—1]

0.436607 3264[ —8]
—0.143 051 816 5

0.100 781 208 1[1]

$)
Density-matrix block with P spin
$2 S3 $4

0.996 447 143 2

0.896 729 915 6
0.111 114 1807

—0.198 231 708 0[ —3]
0.109038 587 4[ —2]—0.411 511 138 3[—2]
0.136 264 834 6[ —1 ]
0.858 685 975 5[ —4]—0.106 824 718 2[ —2]

0.133026 866 4[ —2]
—0.1646139406[1]—0.509 826 594 3[—1]—0.293 973 899 1[—1]

0.132 995 434 7
—0.365 775 043 7

0.678 295 824 8
0.154966561 3[1]
0.622 179799 3[—1]

0.299 591 307 2[ —4]

0.274 478 705 1

0.909 564 148 5
—0.940291 075 8[ —1]

0.402 421 534 0
—0.101 326 945 3 [ 1]

0.1709679747[1]
—0.464 354 976 3
—0.154 777 681 8[1]

0.395 700 312 2[ —5]

0.414 554 914 8[1]—0.27g 694 783 6[1]—0.188 664 8404
0.791 166 1909

—0.194 544 513 3[1]
0.345442 5790[1]

—0.567 939 7108[1]
0.181 815 651 3[1]

S5

n; 0.344 786 978 6[ —6]
—0.322 492 854 1[2]

0.158 881 270 7[2]
0.651 6967840[2]—0.249 068 341 2[1]
0.465 9969563[1]—0.149 809 679 8[1]
0.156 588 434 4[2]
0.465 307 713 1[1]

$6

0.141 066 084 3[—6]

0.385 1719112[2]—0.184 417 933 3[2]
0.127 856 743 7 [1]—0.525 121 3800[1]
0.118851 147 2[2]—0.135 908 478 7[2]
0.123 381 337 2[2]—0.744014855 5[1]

$7

0.754 962 021 3[ —9]
—0.114762 446 5[1]

0.500465 382 0
—0.204072 0360[1]

0.668 802 451 7[1]—0.793 5109567[1]
0.449 277 263 S[ 1]—0.457 607 265 6
0.280 845 816 8

S8

0.399 974 346 9[—12]

0.568 764 042 0[—1]—0.207 150435 7[ —1]
0.243 166 1316[ 1]—0.313 375 294 6[1]
0.213 403 927 2[1]—0.813 396499 3
0.798 944 375 9[—1]—0.742 088 917 5[ —2]

n;

pj

0.632 424 9134[ —3]

0.403 183 709 4
0.239 566 596 4
0.668 654 977 5
0.200 518 980 1[—2]—0.1159309307[—1]—0.285 516 996 9

p2

0.474 249 545 5 [ —4]
—0.129 192 5800[1]

0.171 576 961 0[ 1]—0.146 754 121 9[1]
0.249 322 7170[—1]—0.116585 422 6[ —1]
0.117056 251 6[1]

p3

0.685 612 301 5 [ —5]
—0.136 182 400 6[1]—0.193240 600 2[1]

0.771 424 525 5
—0.118621 342 3
—0.260 708 290 9

0.267 233 635 2[1]

0.797 487 946 2 [ —6]
—0.663 771 927 3[1]—0.202 663 557 2

0.297 569 606 6[2]
0.417 853 170 1

—0.209 837 101 5[1]—0.223 121 8209[2]
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TABLE III. (Continued).

n;

Ps

0.108 038 635 9[—6]

0.110984 920 3[2]—0.315 652 599 8[1]—0.218 263 340 1[2]
0.147 576 871 1[1]

—0.104431 829 3[1]
0.143 040 565 5[2]

Density-matrix Block with P spin

P6

0.390 298 276 6[ —7]
—0.188 824 757 9[2]—0.307 112 552 7[1]

0.113593 006 9[2]
0.882 722 540 6
0.647 726 551 3[1]
0.583 883 832 8[1]

d2 d3

n;

0.177 581 287 1[—4]
0.789 841 334 3
0, 132 810295 6

—0.418 284984 3[ —1]
0.387 589 697 9[—2]

—0.315093 427 6[31
0.315 241 849 2[3]

d5

0.381 653 878 3[ —7]
—0.264 406 730 0[ 1 ]—0.633 057 332 9

0.815 726401 8[1]
0.912 627 737 0

—0.588 950 688 7[5]
0.588 898 393 8[5]

0.274 83g 166 1[—5]
0.827 433 0166[ —1]
0.948 479 754 1

—0.502 021 919 1
—0.127 549 g84 8[ —1]

0.210 876 144 4[4]
—0.210 926 123 3[4]

6

0.1569930935[ —7]

0.113 367 601 8[2]—0.656 185 789 7[1]
—0.813 909 545 7[1]

0.298 759 354 9[1]
0.710 144 117 1[5]—0.710 140 905 9[5]

0.718 158 802 6[ —6]
—0.261 641 944 5[1]

0.149 825 035 6[1]
0.157 795 653 5[1]
0.381 699 852 0[—1]

—0.155 568 589 6[4]
0.155 598 643 0[4]

0.161 971 303 4[ —6]
—0.424 560 962 4[1]

0.106277 423 4[1]—0.881 632 5240
0.258 703 108 2

—0.168 970 678 6[5]
0.169011601 1[5]

n;

n;

0.159 8902462[ —5]

0.405 286 454 7
0.517 443 776 6

—0.249 234 474 7
0.328 428 930 5

0.263 442 703 1[—6]

0.128 594 605 3[1]
0.198 219 770 7

—0.177 166 699 7
—0.290 043 982 0

0.292 275 705 8[ —6]
—0.268 068 220 0

0.142 8069944[1]
0.713 996 985 4[ —1]

—0.138 718 335 4[1]

82

0.683 656 975 2 [ —7 ]

0.123 453 383 7[1]
0.623 474 145 6
0.198226058 8[1]—0.386 269 901 4[1]

0.686 784471 2[ —7]
—0.422 514 671 4[1]

0.292 828 525 3[1]
0.394 674 560 8[1]—0.191 451 604 3[1]

0.247 738 615 4[ —7]
—0.251 315 368 3[1]

0.103 149 297 6[1]
0.215 131 6120[1]
0.153 483 067 4

0.175 800433 6[ —7]
—0.166 141 475 9[2]

0.575 735 286 5[1]
—0.697 8802647[1]

0.182 589 269 3[2]

g4

0.780 911729 1[—8]
—0.676 983 950 2[1]

0.843 505 303 8
—0.200860291 5[2]

0.260 077 122 6[2]

n; 0.470946 878 3[—7]
0.976 891 515 9
0.105 270 669 1

0.146 394 9112[ —7]—0.273 512 137 6
0.100 898 1670[1]

n; 0.133 955 918 7[ —7]
0.996 214 703 8
0.272 726 804 7[ —1]

l2

0.434 188 926 7[ —8]
—0.153 378 227 1

0.100758 365 3[1]

at a distance of 2.0 bohrs, whereas the a density contribu-
tion extends to about 8.0 bohrs. These contributions are
shown in Fig. 2 where the values of the definite integral
for a, P and total densities are plotted for difFerent values
of r „.Figure 3 shows the radial density functions
D (r) =4~r p(r) for the a and P densities.

A comparison between our best density and the one ob-

~Dc(r) DcI(r) DscF(r)

~Ds( ) DcI(r) DscF(r)

(19a)

(19b)

tained from an SCF wave function is shown in Fig. 4,
which represents plots of the differences in the charge
and spin-density distributions Dc(r) and Dz(r):
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TABLE IV. Comparison of the density moments results. obtained from the hyperfine structure constant A»2 ..

(rn) This work Literature values

30.242 52
5.717 929
4.990 184

18.359 90
92.629 12

550.040 2
3 695.848

27 648.79
227 842.1

2 050 515.1
20 008 387.7

210 364 940.2

30.240 71'
5.718087
4.989 765

18.357 07
92.627 92

550.416 3
3 706.018

27 889.71
234 064.8

2 232 172.0
25 826 190.0

407 477 900.0

30.246
5.718 110'
4.989 538

18.354 74
92.603 64

545.80

'From the 233-term Hylleraas wave function of King (Ref. 14).
From the 45-term CI wave function of Weiss (Ref. 15).

'From the 602-term Hylleraas wave function of King (Ref. 16).

It can be seen that the efFect of correlation is to increase
both the charge and spin densities within the K and L
shells, and that the spin density is much more sensitive to
correlation than the charge density, especially in the vi-
cinity of the nucleus.

V. ONK-ELECTRON PROPERTIES FOR LITHIUM

The density moments (r") for powers n from —2 to
10 have been calculated from the final charge densities
and are given in Table IV, together with results obtained
by other authors. The values for these properties as the
basis is improved converge quite fast: in fact, an

[8s,4p, 4d, 2f] basis is sufficient to obtain the final re-
sults. ' As an example, the convergence of r ', r, and
r' is shown in Table V. An analysis of the convergence
of (r" & for positive values of n shows that it follows a
pattern similar to that of the spin density, i.e., it is more
dependent on a good representation of the density close
to the nucleus. On the contrary, for negative n, ( r" )
converges in the same way as the charge density. The
good convergence of r ' is another proof of the goodness
of the density at large distances.

Of special importance, in this study is the accurate cal-
culation of the Fermi-contact term f for lithium, which is

POI BI NgePI

6m.ha ol
(20)

where po is the vacuum permeability, g, is the electronic
gyromagnetic factor, p~ and pz are the Bohr and nuclear
magneton, respectively, I is the nuclear spin angular
momentum, and pI is the magnetic moment of the nu-

cleus. f can be theoretically calculated as the spin densi-

ty at the nucleus, pz(0). '
It is well known that the Fermi-contact term

represents a very sensitive test of the accuracy of the
wave function, and, in the case of the lithium atom, it has
received considerable attention for almost 20 years. The
main difficulties which arise in the calculation of an accu-
rate value for this interaction are that (i) it is very sensi-
tive to the electronic correlation, (ii) it is strongly depen-
dent on the choice of the orbital basis parameters used to
represent the wave function, and (iii) since it is a property
that represents a single point in the spin-density function,
it is imperative that the latter be well represented every-
where.

Harriman has discussed the results of more than 40
calculations of various types [Hartree-Fock (HF),
multiconfiguration Hartree-Fock (MCHF), CI, and Hyl-
leraas], and he has noted the lack of a direct relationship
between the precision of the energies and that of f. The
best result in Harriman's review is that of Larsson, ' ob-
tained with a Hylleraas-type wave function containing
100 terms, f =2.9060, which agrees with one of the
theoretical-experimental values accepted in the literature
and reported for the first time by Larsson himself. How-
ever, Bunge has shown that Larsson's result has not con-
verged, and still oscillates markedly when the number of
basis functions is increased. Also, King et al. 's'
Hylleras-type function of 602 terms, which accounts for
99.96% of the correlation energy, yields an f value which
still has not quite converged. Some representative results
are presented in Table VI.

The converged value obtained for the Fermi-contact
term f in this work is f=2.90856+0.00008 a.u. When
multiplied by the correction factor for the e6'ect of the

Function

TABLE V. Convergence of some density moments.

10)

[Ss ]'
[Ss,6p]
[8s,6p, 6d]
[Ss, 6p, 6d, 4f]
f 8s, 6p, 6d, 4f, 4g]
[Ss,6p, 6d, 4f, 4g, 2h)

[Ss, 6p, 6d, 4f, 4g, 2h, 2i]

30.264 068
30.242 285
30.242 411
30.242 646
30.242 740
30.242 723
30.242 718

5.714 589
5.717 170
5.717 659
5.717784
5.717 829
5.717 837
5.717 841

18.6596
18.3892
18.3640
18.3602
18.3590
18.3587
18.3585

23 366[4]
21 234[4]
21 060[4]
21 034[4]
21 025[4]
21 023[4]
21 022[4]

'Wave functions are denoted [a, b, c, . . .], where a, b, c, . . . are equal to the number of s,p, d, . . . STO's.
The notation [n] means 1X 10".
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TABLE VI. Comparison of Fermi-contact interaction values obtained by various methods.

Method

Hylleraas (100 terms)
Hylleraas (352 terms)
Hylleraas (602 terms)
MCHF
Bruckner-Goldstone
MBPT —coupled-cluster
MBPT-relativistic
CI—spin-density convergence
Experimental
Experimental'

Reference

Larsson (Ref. 18)
King and Shoup (Ref. 19)
King (Ref. 16)
Sundholm and Olsen (Ref. 20)
Garpman et al. (Ref. 21)
Lindgren (Ref. 22)
Blundell et al. (Ref. 23)
This work
Beckmann, Boklen, and Elke (Ref. 24)
Beckmann, Boklen, and Elke (Ref. 24)

f =4rrp, (0)

2.907 0'
2.905 1(20)
2.906 7(4)'
2.904 9(20)
2.909 5'
2.9172
2.9112
2.909 53(8)
2.909 40( 10)
2.906 06( 10)

'Recalculated in this work to include the reduced mass effect and the relativistic and nuclear-size
corrections (Ref. 22).
Theoretical-experimental value without QED effects, as computed by Lindgren (Ref. 22).

'Theoretical-experimental value including QED effects, as computed by King (Ref. 16).

finite nuclear mass,

[m, /(I, +M„„,)] =—0.999 7654

it becomes f=2.907 88 a.u. In addition, the f value has
to be corrected for relativistic and finite-nuclear size
effects. These corrections are not negligible. Lindgren
has used a model of homogeneous nuclear charge density
and pointlike nuclear moments to estimate them to be
bf„,=0.001 65 a.u. The uncertainty of these corrections
is not known. Finally, the Fermi-contact term is found to
be

f =fNtt+b, f„i=2.909 53+0.00008 a. u. ,

which agrees with the experimental result obtained by
Lindgren.

VI. CONCLUSION

Precise charge and spin densities and one-electron
properties have been obtained for the lithium atom. The
procedure used to optimize the basis functions ensures
that the sequence of calculations is a Cauchy sequence,
where densities, their derivatives, and properties con-
verge monotonically to their final values.

We note that other manners of enlarging the basis set
do not, in general, lead to converging results. ' In partic-
ular, we have verified that, when only an energy criterion
is used, neither the SCF orbitals nor the additional orbit-
als obtained by adding STO's to the basis are adequately
distributed among the K and L shells of the atom. The
minimizing sequence, in this case, neither converges in
the Cauchy sense, nor does it produce accurate densities
and properties. For lithium, in order to obtain a very
good energy eigenvalue it is necessary to crowd most
STO orbitals within the E shell, thus unbalancing the

basis set and, consequently, the wave function. These
facts support the notion mentioned by Filar that "the
best wave function can be chosen from several alterna-
tives by using the criterion of lowest energy, but the ener-

gy turns out to be an insensitive criterion with respect to
a best wave function for other physical properties. "

Accurate converged density moments have been ob-
tained for all powers of r from —2 to 10, this being one
more check on the goodness of the density in all regions
of space.

The result obtained for the Fermi-contact term
represents the best calculation of this property to date, in
the sense that it is the only one which has clearly
converged to a definite value, and for which an error
margin can be indicated. Two convicting theoretical-
experimental values are usually reported in the litera-
ture, ' but a careful analysis ' of their origin shows
that the difference between them resides in the use of
different values for the electronic gyromagnetic factor in
the expression relating the experimental hyperfine split-
ting and the spin density at the nucleus. Calculated
nonrelativistic spin densities do not, in general, include
quantum-electrodynamics (QED) corrections, and hence
they should be compared with Lindgren's result,
f=2.9096. (Actually, when the latest values for the fun-
damental constants are used, f becomes 2.9094.) If the
first-order QED correction were estimated and taken into
account, then the calculated f values could be compared
to King's theoretical-experimental Fermi-contact term, '

i.e., f=2.9060 a.u. However, this is not straightforward,
since the magnetic Hamiltonian contains additional
higher-order relativistic and magnetic interaction terms
where radiative effects are included. To our knowledge,
no estimates of these effects have been reported to date.
A more detailed study of the Fermi-contact interaction in
the isoelectronic series of lithium will be published else-
where.
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