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A 170-point configuration-interaction involving all single and double excitations ab initio
potential-energy surface for the LiH," molecule was calculated using (11s3p1d)/[6s3p1d] and
(8s3p1d)/[6s3p1d] contracted Gaussian basis sets for lithium and hydrogen, respectively. Various
analytical functions were tested as representations of the discrete surface. A Padé-approximant
function with a Dunham expansion variable was found to give the most reliable representation with
a x?of 1.3X 1077, It is this surface that is recommended for rovibrational calculations.

I. INTRODUCTION

Traditionally, studies of vibrational and rotational in-
elastic scattering by the energy-change methods have em-
ployed ions as they are more easily energy selected and
analyzed than neutral species and can be detected with
high efficiency. Due to its electronic simplicity, many
studies have centered on unravelling the scattering col-
lisions of Lit on H,. 1=5 For example, Toennies and co-
workers! 73 in 1973 reported measurement of differential
cross sections for resolved vibrational transitions at
center-of-mass collision energies (E ,, ) between 2 and 9
eV and in 1979 detailed measurements of rotationally in-
elastic scattering for £, at 0.6 eV.

Theoretical studies® '° have consistently predicted
that the LiH, ion possesses C,, symmetry. The interac-
tion between H, and Li* is found to be highly anisotrop-
ic and the approach of Li* ion to the H, molecule
strongly influences the behavior of the potential-energy
curve at the equilibrium distance. The more sophisticat-
ed calculations® ! 718 have predicted that the ion
possesses a small binding energy of between 20 and 25
kImol~! with respect to Li"+H, (which has been
confirmed by experiment®). These predictions are con-
sistent with the view that the LiH, ion is a weak com-
plex between a hydrogen molecule and the Li* ion.

In the early 1970s Lester®® calculated a 150-point
Hartree-Fock self-consistent-field (HF-SCF) potential-
energy surface of LiH,. As is well known, the HF
method does not take into consideration electron correla-
tion, with the exception of the exchange term. Hence, ac-
curate HF wave functions account for ~99.5% of the ab-
solute energy of a molecule.!! Nevertheless, as the other
0.5% is greater than the experimental binding energy of
LiH,, the absence of correlation corrections requires
essentially complete cancellation of the correlation effects
between products(s) and reactant(s) along any dissociative
channel in order for the HF potential to be realistic well
away from the minimum-energy geometry. It is argued
that the HF potential is a “‘good” approximation for this
collision complex, since the number of paired electrons is
the same in the products (Lit +H,) as in the reactant
(LiH, ).%*!! However, as Kutzelnigg, Staemmler, and
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Hoheisel'® (KSH) have pointed out, for collinear Li*"-H,
collisions intra-H, correlation is far from constant over a
range of geometries and, furthermore, for perpendicular
collisions it has a minimum for geometries close to the
minimum C,, geometry. The conclusion drawn by KSH
(Ref. 10) is that Lester’s SCF surface is poorly described
where dissociative collisions are possible. Nevertheless,
recently Russek, Snyder, and Furlan'® have calculated a
~ 120-point HF-SCF surface for their classical trajectory
studies in which the scattering angles were in excess of a
few tenths of a degree, in order to model the vibrotational
energy in the Li*-D, collision complex.

In 1973 KSH (Ref. 10) computed a HF-SCF and a
PNO (paired natural orbitals) -IEPA (independent elec-
tron pair approximation) potential-energy surface. Each
surface consisted of over 300 points. Unfortunately the
IEPA is not variational and so calculated pair-correlation
energies may be well in excess of CISD (configuration in-
teraction involving all single and double excitations from
a single HF reference determinant) correlation energies
obtained using the same basis set.?! “22 This has been as-
cribed to the fact the IEPA ignores matrix elements be-
tween configurations belonging to different pairs and so it
tends to overestimate the correlation energy when several
orbitals occupy the same region of space.?? That is, the
method may lead to a positive or negative error in the to-
tal energy.

The only CISD calculation of LiH; in the literature is
that of Dixon, Gole, and Komornicki.!® In calculating
the Li" affinity of H, they showed that the second-order
Moller-Plesset perturbation method (MP2) energies are in
excellent agreement with the CISD calculations near the
minimum geometry.

Quasiclassical, semiclassical, and approximate quantal
scattering calculations have relied heavily on Lester’s
HF-SCF and the PNO-IEPA potential-energy surfaces.
Comparisons of experimental with theoretical differential
cross sections and transition probabilities due to rotation-
ally inelastic scattering at 0.6 eV have been made in order
to test the accuracy of ab initio methods.?>>»*725 These
studies have shown that the experimental differential
cross sections are qualitatively in agreement. However,
they have been angularly shifted with respect to the
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theoretical result. Difficulties have also been encountered
in reproducing vibrational transition probabilities in de-
tail.* It is unclear whether the inadequacy is with the ab
initio potential-energy surfaces or with failures due to the
dynamic approximations. >*

At present, Legendre expansions are generally used to
represent the potential-energy surface for scattering cal-
culations. This greatly facilitates the evaluation of cou-
pling matrix elements for rotational (with vibrational) en-
ergy transfer.?® However, in the case of rovibrational
calculations, a variety of analytical representations can be
employed.?” 734

It is the purpose of this paper to detail a CISD
potential-energy surface of LiH,  and its analytical repre-
sentation, based upon a strategy developed by von Nagy-
Felsobuki and co-workers in order to calculate the vibra-
tional band origins of H; (Refs. 27-31) and Lij" (Refs.
32-34). The surface and its analytical representation
differ in a number of aspects from those already reported
in the literature.®~'%!° First, the Cl methodology is vari-
ational and so is an upper bound to the “‘exact” energy.
Second, a vibrational coordinate space® for the discrete
surface is used and generated by a quadrature scheme
proposed by Harris, Engerholm, and Gwinn.?® Third, in
order to assist rovibrational calculations the coordinate
space is restricted to the small ry;_, (where x is the
center of the H—H bond), small ryy, and 0=3=90
(where ¢ is the angle between the vectors ry;_, and ry.y).
Hence we are sampling the potential-energy surface at
the region where a three-term Legendre expansion may
not be justified and where the approach of the Li™" ion to
the H, molecule strongly influences the behavior of the
potential curve of the complex.

II. DISCRETE CISD SURFACE

We have adopted the CISD ansatz (including size
correction) embedded in the GAUSSIAN 86 suite of pro-
grams.>” For electronic calculations we have employed
the (11s3p1d)/[6s3p1d] lithium basis of Gerber and
Schumacher®® with the d exponent being 0.15 and the
(8s3p1d)/[6s3p1d] hydrogen basis of Dykstra and
Swope.3° This compares favorably to the (9s3p)/[5s3p]
lithium and (6s3p) hydrogen basis used by Lester®® and
the Gaussian lobe basis (9s4p)/[6s4p] for lithium and
(5s3p)/[3s3p] hydrogen basis used by KSH.!° It should
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be noted that in addition to the nuclear centered lobe
functions KSH!® employed p-type bond functions which
in hindsight they concluded, “...improves the energy for
intermediate H-H distances but is less effective or has
even the opposite effect for very large or very small dis-
tances.”

Table I compares the CISD and PNO-IEPA energies
for H, with the exact results calculated by Kolos and
Wolniewicz.*C It is clear that not only are each of the
CISD calculated points more accurate than the PNO-
IEPA calculations but the CISD points parallel the exact
surface far more closely (with an error of 0.001 E, for the
CISD calculations compared to 0.003-0.006E, for the
PNO-IEPA calculations). Table I also highlights the
problems with employing a nonvariational methodology
in constructing a potential-energy surface. At a distance
of 1.2a, the PNO-IEPA methodology gives a spurious
energy (i.e., ~0.003E, lower than the exact result). This
brings into question the correlation energy calculated by
the PNO-IEPA methodology at various points of the en-
ergy hypersurface of Li*-H,.

The exact HF energy of the Li%t ion is —7.23641E,,*!
whereas our lithium basis yields —7.23621E,, a
difference of only 0.0002E,. On the other hand, both
Lester’ and KSH (Ref. 10) obtained SCF energies
0.0004E, higher than the exact HF value. Interestingly,
our CISD energy is 0.02E, lower than our SCF energy,
whereas in the case of H, the difference is 0.04E, at an
ry.y distance of 1.4a,. Hence, the exclusion of correla-
tion effects would yield incorrect relative energies for the
LiH; molecule and the disociated Li*-H,.

Ab initio investigations have consistently predicted the
LiH; molecule to have C,, symmetry. The predicted
equilibrium geometries and minimum potential energies
(E,) using various basis sets and methodologies are
presented in Table II. Our HF optimization gives an E,
energy of —8.378902 E, for the C,, geometry, with a
ry;—p separation of 3.893 a, and a6y_;;_y bond angle of
20.8°. Our calculated HF E, is the lowest so far reported
in the literature (as is illustrated in Table II) thereby vin-
dicating the size of the basis set employed. The respec-
tive CISD calculations also gave the lowest variational Cl
energy, with a predicted geometry not greatly dissimilar
to our HF geometry (i.e., C,, geometry with an r;_g
separation of 3.860a, and a Oy_y; g bond angle of

TABLE I. Comparison of Cl energies for H,. (All energies in Hartrees. The symbol A represents

the difference between exact and calculated energies.)

This work

ran /a0 Exact? CISD (A) PNO-IEPA (A)®
1.0 —1.12454 —1.12324(0.001 30) —1.11990(0.004 64)
1.2 —1.16493 —1.16379(0.001 14) —1.16797(—0.003 04)
1.4 —1.17447 —1.17339(0.001 08) —1.17090(0.003 57)
1.8 —1.15507 —1.15394(0.001 13) —1.15173(0.003 34)
2.4 —1.10242 —1.10110(0.001 32) —1.098 51(0.003 91)
3.0 —1.057 32 —1.05598(0.001 34) —1.051 67(0.005 65)

2See Ref. 40.

bSee Ref. 10.
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21.2°).

The CISD calculations indicate that LiH; is weakly
bound with respect to Lit +H, by 24.9 kImol~'. This
compares favorably to the experimental value of 27.2
kJ mol ™! (Ref. 20) and with other theoretically calculated
values of 21.8 (SCF),!! 23.4 (MP2),"* 23.1 (SCF),"” 21.3
(CISD), '® and 21.5 kJ mol~! (MP2)."®
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The discrete CISD potential-energy surface consists of
energies at 170 geometries with a maximum energy of
—7.675238 E,.** An initial set of 39 points was calcu-
lated along the vibrational or displacement ¢ coordinates
(for a C,, triatomic) as derived by Carney, Langhoff, and
Curtiss.>> The ¢ coordinates are described in Fig. 1 and
are related to the three bond lengths via

2
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TABLE II. Comparison of ab initio results for LiH2+ .
Reference Method Li basis H basis rui.a/ao 0 (deg) E,/E,
6 DIM 5.0 16.1 a
7 FSGF (2s) 3.436 25.3 —6.920
8-9 HF (9s3p) /[553p] (653p) 3.83 21.1 —8.3783
10 HF (9s4p) /[6s4p] (553p)/[3s3p] 3.81 21.1 —8.3782
PNO-IEPA (9s4p) /[ 6s4p] (5s3p)/[3s3p] 3.81 21.1 —8.4560
11 HF (8s5p) (6s4p) 3.975 20.4 —8.3744
13 HF 4-31G 4.269 18.7 —8.3645
MP2® 6-31G** 4.269 18.7 —8.4007
14 FSGF (2s) 3.97 20.3 —6.9201
15 HF* 6-311G (2d,2p) 4.050 19.9 —8.3777
MP2 6-311G (2d,2p) 4.050 19.9 —8.4200
16 HF 6-31G** 4.06 19.5 —8.3682
SCEP® 6-31G** 4.06 19.5 —8.4079
17 HF (9s5p) (9s5p) 3.872 21.0 —8.3787
18 HF (11s4p2d)/[5s2p1d] (552p)/[3s2p] 3.957 20.4 —8.3775
CISD® (11s4p2d)/[5s2p1d] (552p)/[3s2p] 3.957 20.4 —8.4151
MP2® (11s4p2d)/[5s2p1d] (5s2p)/[3s2p] 3.957 20.4 —8.4071
This work HF (11s3p1d)/[6s3pld] (8s3p1d)/[6s3p1d] 3.893 20.8 —8.3789
CISD (11s3p1d)/[6s3p1d] (8s3p1d)/[6s3p1d] 3.860 21.2 —8.4351

apredicted binding energy with respect to Li* +H, is 10.5 kJ mol ™.

bSingle-point calculation at optimized HF geometry.
°Single-point calculation at the MP2 optimized geometry.
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In the first instance, the diagonal points in the ¢ coordi-
nates were fitted with a fifth-order exponential power
series. The resulting fit was then used with the quadra-
ture scheme of Harris, Engerholm, and Gwinn’® to gen-
erate additional points in the t-coordinate space. Gen-
erally such a strategy gives a greater density of points
where the potential surface is shallow, therefore ensuring
that the succeeding fits are properly weighted by data
points in the more difficult regions on the potential-
energy surface. In our scheme we obtain 20X20X20
quadrature points which are too numerous to keep the

Li
t\
\H——-————H/'
-l
ta\\
He—  H

FIG. 1. The t-vibrational modes as defined by Egs. 1-3.
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problem tractable. Hence using graphical inspections,
the additional 8000 z-coordinate points are culled to 70
points, giving 109 points in total. Each of these points
corresponds to a C,, configuration of LiH;. The Li-H
separation ranges from 1.722739 to 7.791276 a, while
the H-H separation ranges from 0.654 159 to 5.894 657a,.

The ¢t coordinates are only appropriate for a C,,
geometry and so an additional 61 collinear points [with
the atoms in the configuration (Li-H-H) ™ ] were calculat-
ed between 1.0=ry g <3.0 and 0.95=<r;; _y =4.0, where
H represents the nearest hydrogen nucleus to lithium.

An important feature of the discrete surface is the sad-
dle point corresponding to the linear (Li-H-H)* form of
the molecule. A CISD optimization was used to deter-
mine the minimum-energy collinear geometry. The col-
linear minimum has an energy of —8.428142E, for a Li-
H separation of 3.870a, and a H-H separation of 1.402q,,.
This geometry has an energy only 18 kJ mol ! above that
of the equilibrium C,, structure. A stationary point is
also observed for the linear (H-Li-H)* configuration.
However, it has a relatively high energy barrier (224
kJ mol ') with a Li-H separation of 4.239a,.

III. ANALYTICAL REPRESENTATION

Lester®® and KSH (Ref. 10) developed intermolecular
analytical representations for their respective discrete
potential-energy surfaces. For example, KSH (Ref. 10)
developed a five-term exponential series expansion in
ru.g With the angular dependence generated by a three-
term Legendre expansion. This intermolecular approach
is desirable for the Li™-ion distant from the H, molecule,
since it is easy to incorporate the monopole-quadrupole
interaction term(s). The Legendre is commonly used in
the scattering calculations since it simplifies the
potential-energy integrals involved in the calculation of
scattering properties. 2°

For geometries concomitant with the bonding nature
of the LiH;™ molecular ion and its vibrational excitation,
where Li+-H2 distances are small, a three-term Legendre
expansion may not be justified.'® It is then desirable to
develop an analytical representation following the guide-
lines suggested by Burton et al.?’ Consequently, for H3"
(Refs. 27-31) and Lij" (Refs. 32-34) power-series expan-
sions of Dunham,*® Simons, Parr, and Finlan,** and Ogil-
vie®® and the Morse-type variants were examined in de-
tail. 3

Of all the possible power-series variants investigated
previously the Morse-Dunham and Ogilvie expansions
most accurately reproduce the LiH,™ discrete surface.
The Morse-Dunham expansion variable has the form

—_(ri—re)
p;=1—exp — | (4)

e

where p; is the internuclear separation of two atoms and
r, is their separation when the molecule is at its equilibri-
um geometry. The Ogilvie expansion variable has the
form
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TABLE 1III. Expansion coefficients for Dunham-
Padé-Approximant expansion of the LiH; potential-energy
surface.

Expansion coefficient

Term Expansion parameter Numerator Denominator
1 —178.2047 —1.00000

1 pi+p, —336.4846 —0.888 19
2 ps —161.7542 0.092 31
3 pi+p} —208.6695 —0.293 81
4 p} 41.8770 0.10078
5 pip —695.5297 —1.11638
6 Pap3 PP —292.5161 0.15511
7 pitp —94.2672 —0.23376
8  p3 2.0409 —0.05972
9 plpt+plp —354.4265 0.306 68

10 plps+pips —157.0927 0.13708

11 P13+ pap} 98.3250 0.12534

12 pipops —681.6319 —0.33684

13 pi+pd —43.3469 —0.017 44

14 p} —8.8394 0.000 66

15 pipa+pip —39.7770 0.000 52

16  pips+pips —66.8614 0.024 61

17 ppitppl 18.4490 —0.002 95

18 pip3 —89.4748 0.004 43

19 plpi+pipd 81.1499 —0.008 74

20 Pipaps+pip3os —360.3963 0.002 58

21 pipap3 106.3896 0.002 59

22 pitps —2.9803

23 p3 —0.1271

24 pipa+pip, —46.0157

25 plostpoies —38.8884

26 pipi+papd —7.8769

27 pip3+pio3 56.0775

28 Pip3+pip3 30.0708

29 pip3+pio3 13.0266

30 pipapstpipips —12.3412

31 pipop3 30.9005

32 plodps —145.8230

33 plppiteipips 30.9203

34 pS+ps —1.5057

35 o3 0.0213

36 pipatpip —0.8166

37 plpstoips —2.3367

38 ppitps —0.3036

39 pioi+pip? —2.4217

40  plpi+pip} 4.4660

41 pipt+pip} 1.2108

42 pippstpipips —37.2704

43 P1p2pP4 —7.0436

44 Pip3 5.8807

45 pipi+p3p3 —3.2093

46 pipip;tpipips 51.3713

47 pipp3itpipipd 28.0094

48 plppitpipip3 11.7577

49 pipdpd —51.1058

X2 1.3x1077

2r;—r,)
pi (ri+r,) -~ ®)

The sixth-order Morse-Dunham—type and the Ogilvie-
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type expansion variables give the smallest sum of squares
of residuals. In particular, the Y for the sixth-order
Morse-Dunham and the sixth-order Ogilvie are
1.4X 10~ * and 4.5 X 107, respectively.

Figures 2(a)-2(c) show energy contour plots using the
sixth-order Ogilvie fit, whereas Figs. 2(d)-2(f) show ener-
gy contour plots using the sixth-order Morse-Dunham fit
to represent the discrete surface. In all figures each con-
tour represents an energy increment of 50 kJ mol ™! (with
approximately 2.5 kY mol ! available from ambient sur-
roundings).

Unlike the sixth-order Ogilvie fit, graphical examina-
tion of the physical nature of the sixth-order Morse-
Dunham fit in the region defined by the data indicates
that the functions do not satisfy the criterion?® of being
smooth everywhere with monotonically increasing repul-
sive walls. As in the case of Hy (Ref. 29) and Li;" (Ref.
33), some of the high-order coefficients for this fit and the
sixth order Ogilvie fit are large. Singular value decompo-
sition (SVD) analysis on the sixth-order Ogilvie fit (set-
ting o 45 to zero) yields a ? of 4.8 X 107>, which has only
marginally degraded the fit. A similar SVD analysis of
the sixth-order Morse-Dunham fit did not eliminate
singularities.

The 2 of the power series fits are too poor to be ap-
propriate for rovibrational or scattering calculations.
Consequently, investigations were conducted on the use
of Padé approximants. Padé approximants have been
used as analytical representations of diatomic potential-
energy curves. 46-48  Ppadé approximants are rational
functions in which the numerator and denominator are
power-series expansions (of order m and n, respectively)
of a variable p. That is,

m m m . .
22X aijkpllpéplg
i=0j=0k=0
n n

igo jgﬂ k'
such that (i +j+k)<mand (i'+j +k')<n.

The six variables previously used for the power-series
expansions>® were also used as expansion variables in the
Padé-approximant representations. In each case, the x?
of the ensuing fits are lower than those for the respective
power-series representations. However, on graphical ex-
aminations it was revealed that the Padé surfaces suffered
from a substantial increase in the number of singularities.
Moreover, the singularities are not removed by use of the
SVD analysis. For example, Figs. 3(a)-3(c) give the ener-
gy contour plots with respect to ¢ coordinates for a sixth-
order Padé approximant [denoted P(6,6)] using Dunham
expansion variables. Of all the variants, this fit gives the
lowest % of 1.1 X 1078,

An alternative form of the Padé approximant was test-
ed to represent the LiH," surface. It has the form

P(m,n)= , (6)

n

vk
by jp1PhP3
=0

m m m Dk
2 2 > aijkP'leP3
P'(m,n)= i=0j=0k=0 ’

n n n
_ vk
T12723713 22 X bi'j'k'P1P2P3
i'=0j'=0k'=0
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where (i +j +k)<m and (i"+j'+k')<n. The two r ;4
separations are represented by r;, and r,; and the ryy
separation by r;;. This function gives a small y? for all
the variants but in general the high-order expansion
coefficients are large and graphical inspections of the con-
tour plots revealed many singularities. However, the
Dunham expansion which is sixth order in the numerator
and fourth order in the denominator [that is, P'(6,4)]
gives a function that is smooth and has monotonically in-
creasing repulsive walls over the region defined by the
data points. The fit gives a ¥ of 1.3X 1077, which indi-
cates that this fit is substantially more accurate than the
best power-series expansion. Contour plots for this sur-
face are given in Figs. 3(d)-3() and the expansion
coefficients of the P'(6,4) Padé approximant are given in

Table III. It is this surface that is recommended to be

used in calculations involving rovibrational proper-
ties. 192934
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