
PHYSICAL REVIEW A VOLUME 43, NUMBER 7 1 APRIL 1991

Beryllium atom reinvestigated: A comparison between theory and experiment
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We compare the theoretical and experimental energies for the ground state of the beryllium atom
and investigate possible sources for the small discrepancy of about 60 phartrees found by Bunge
[Phys. Rev. A 14, 1965 (1976); 17, 486(E) (1978)]. Indications that the correlation energy tnay be un-

derestimated in Bunge's work have been confirmed by a recent, very extensive multiconfigurational
Hartree-Fock (MCHF) calculation. We emphasize that the critical part of the comparison between
theory and experiment is the sum of the first and second ionization energies —the third and fourth
are known more accurately from theory —and present the theoretical results accordingly. Before a
comparison with experimental results can be performed, corrections must be added to account for
mass polarization, for the effect of relativity including the Breit interaction and for radiative effects.
The previously unknown mass-polarization contribution to the first ionization energy has recently
been determined experimentally. Relativity is most important for the 1s electrons and this effect
was included in Bunge s work, whereas the relativistic effect on the correlation involving the 2s elec-
trons was neglected. Here, these contributions have been calculated to leading order. A crude esti-
mate of the contribution to the Lamb shift from the 2s electrons is also given. When the revised rel-
ativistic corrections are combined with recent results from a very extensive MCHF calculation, the
discrepancy in the beryllium ground-state energy is reduced to (10+50)p hartrees.

I. INTRODUCTION

By using the algorithms available today, one can deter-
mine the electronic structure of systems with many elec-
trons only by invoking a number of approximations. For
systems like beryllium with only a few electrons essential-
ly "complete" nonrelativistic calculations are within
reach, and these benchmark calculations have become
important sources of information concerning the accura-
cy of the various algorithms, approximations, and basis
sets. Before a comparison between a nonrelativistic calcu-
lation and experiment can be attempted, however, a num-

ber of other eiT'ects must be included, e.g., the motion of
the nucleus with its finite mass and relativistic and radia-
tive contributions. Many of these eA'ects have been accu-
rately calculated only for systems with one or two elec-
trons. For this reason more precise calculations of both
relativistic and nonrelativistic few-electron systems are
needed.

A good example of a complete nonrelativistic calcula-
tion is Bunge's study of the ground-state energy of the
beryllium atom. ' Using large basis sets and a complete
configuration-interaction (CI) calculation, Bunge report-
ed that the theoretical and experimental values for this
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system differ only by one phartree. ' lt seems not to be
generally known, however, that the theoretical value that
Bunge uses for this comparison is not his variational re-
sult but is based on a carefully performed extrapolation.
In an erratum Bunge later pointed out that the mass po-
larization energy was included with the wrong sign. The
difFerence between theory and experiment then widens to
almost 60 phartrees. In view of new developments and
results we have taken a review of a number of theoretical
and experimental studies of the beryllium atom and ex-
amine four possible reasons for this discrepancy: an error
in the computed nonrelativistic energy, an error in the
computed mass polarization energy, an error in the com-
puted relativistic energy, and the neglect of radiative
corrections for the 2s electrons. In Sec. II we compare a
number of computational approximations which have
been applied to Be and discuss what conclusions may be
extracted from these comparisons. In Sec. III we analyze
the corrections which must be added to the result of a
nonrelativistic calculation before a comparison with ex-
periment can be performed.

II. APPROXIMATE CALCULATIONS
AND THE IMPORTANCE OF DIFFERENT EFFECTS

The most accurate calculations for two-electron sys-
tems follow the tradition of Hylleraas and use a wave
function which contains interelectronic coordinates. The
classic work of Pekeris and co-workers has long been
used as a source of "exact" nonrelativistic results. Re-
cent studies have been able to improve the convergence
of these calculations by imposing the correct cusp condi-
tions and asymptotic form on the wave function. ' For
systems with more than two electrons, several Hylleraas-
type wave functions have been examined ' but most cal-
culations today are based instead on expansions in one-
electron orbitals. Such expansions, however, converge
relatively slowly ( =l ) when orbitals with higher angu-
lar momenta are included. ' Kutzelnigg" has suggested
a way of dealing with the cusp at r,- =r, which would im-

prove the convergence to I, for second-order energies,
but this method has not yet been applied to berylli-
um. The problem of slow convergence can also be avoid-
ed by expressing each pair function in terms of explicitly
correlated Gaussian geminals. '

The ground state of beryllium has been computed us-
ing analytical, discrete basis sets in several large CI stud-
ies, ' ' in a number of applications of many-body per-
turbation theory (MBPT), e.g. , Refs. 14 and 15 and re-
cently also in relativistic second-order calculations. '

Several calculations using numerical basis sets have also
been performed. Kelly used a numeric description of
both bound and continuum orbitals in his pioneering ap-
plication of MBPT to atoms. ' In 1974 Froese-Fisher
and Saxena' solved numerically the multiconfigurational
Hartree-Fock'9 (MCHF) equations for this system. By
allowing the potential to vary between each orbital the
MCHF approach often gives surprisingly accurate results
with only a small number of configurations. Another
method which has been used to examine this system is
the direct numerical solution of the "pair equation. "

In these calculations the summation over excited orbitals
was performed implicitly by invoking the closure relation
for each angular momentum value. More efficient
methods have since been developed that produce a com-
plete discretized numerical basis set, complete on the grid
chosen. ' These have been applied to relativistic as
well as to nonrelativistic MBPT calculations. The most
accurate nonrelativistic ground-state energy for beryllium
is that from the recent very extensive MCHF calculation
by Olsen and Sundholm who performed full CI in com-
pletely energy optimized orbitals obtained by the finite-
element method.

A. Approximation schemes

For a many-electron system, a complete CI calculation
using an adequate basis set becomes computationally im-
practical and the complexity of MBPT grows rapidly
with order. Clearly, some truncation scheme must be
used in either approach. In MBPT calculation, a trunca-
tion after a given order is one possibility, but it is also
possible to truncate with respect to the complexity of the
terms or number of particles involved and sum certain di-
agrams to all orders. In contrast, when CI is truncated to
a limited number of excitations it suffers from lack of size
consistency —in terms of MBPT a truncated CI can be
"simulated" by including a number of "unlinked dia-
grams" to all orders. Various methods have been devised
to treat each electron pair separately. These methods are
closely related to a "coupled-cluster" approach including
only double excitations. In the coupled-cluster approach
the corrections to the unperturbed wave function are ex-
pressed in terms of an exponential of excitation clusters.
A numerical implementation of the coupled-cluster ap-
proach has been developed by Lindgren and Salomon-
son, initially including only double excitations (CC-D),
but recently extended to include also a complete treat-
ment of single excitations (CC-SD). Without single exci-
tations this method is equivalent to the coupled-pair
many electron theory -(CP-MET) applied to Be by Adams,
Jankowski, and Paldus using an analytical basis set. It
is also quite similar to the CCD calculation in Ref. 12
which used explicitly correlated Gaussian geminals to
circumvent the partial-wave expansion. Recently, the
coupled-cluster approach has been extended to include
three-particle excitations. For Be, a calculation with
single, double, and triple excitations can be expected to
yield almost all of the correlation energy provided a
sufficiently large basis set is used to describe the excita-
tions. Below we discuss the accuracy of the various ap-
proximate approaches. With the development of modern
computers and algorithms it has recently become possible
to perform a complete MCHF calculation for beryllium
and this calculation constitutes a new benchmark for the
comparisons.

B. Single, double, triple, and quadruple excitations

Table I compares the results for various approxima-
tions obtained in the d limit as well as results extrapolat-
ed to include all higher l values. The d-limit results may
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also be compared with results from order-by-order
MBPT. Silver, Wilson, and Bunge' performed both CI
and MBPT calculations using the same basis set and their
second- and third-order MBPT correlation energies,—71.95 and —83.80 mhartrees, respectively, can be com-
pared directly with their CI results given in Table I. (The
more complete calculation in Ref. 27 gave instead the re-
sults —72.14 and —83.89 mhartrees for the d limit in
second and third order. ) The difference between the
third-order value and the results of both CI and CC when
truncated after double excitations is due to diagrams ap-
pearing in fourth and higher orders. The effects of single
and triple excitations also enter in fourth order —but the
comparison in Table I indicates that these give consider-

ably smaller contributions for Be than the diagrams in-
cluded in CI-D and CC-D. The correlation energy in
CI-D gives rise to unlinked terms in the wave function
which are products of a pair energy and a double excita-
tion. The part involving the pair energy of the same elec-
tron pair can be rewritten in terms of linked diagrams,
whereas terms involving different pair excitations cannot
and thus destroy the size consistency. In complete CI—
or in CC-D —four-particle excitations that are products
of two pair excitations are present and cancel exactly the
unlinked terms arising in CI-D but lead also to linked di-
agrams, which have to be evaluated. The difference be-
tween CC-D and CI-D ( —3.46 mhartrees in the d limit),
can thus be attributed to these "factorizable" four-

TABLE I. Comparison between correlation energies to be added to the HF energy, —14.573023 a.u. for the ground state of beryl-
lium (in mhartree=10 ' a.u.).

Excitation

Double (D) excitations

CI

—87.79'

d limit
CC-CI CC

—91.247 '
—91.218 '

Extrapolated to the limit l= ao

CI CC-CI CC

—92.989"'
—92.961 '

—92.983"
—92 952 '

Factorizable quadruple
excitations
(CC-D —CI-D)

—3.46

Single+ double (SD)
excitations

—88.37' —91.94 '
—91911 '

—90.218(20) —93 667

(SD-D)
Factorizable triple or
quadruple excitations
(CC-SD —CI-SD)

( —0.58g)
—3.57

( —0.693g)

—3.45
( —0.706g)

Total CI —92.39'
—92.422" —94.305(25)'

(Extrapolated) —92.43'
—92.544"

MCHF
(Nonfactorizable
triple or quadruple
excitations

—92.547'

( —0.633"')
( —0.636"

—94.35'
—(0.638")

( —0.68"')

'Configuration interaction [d-limit results from Ref. 14, Table II, the I-extrapolated results from Table II, (Ref. 1)].
"Coupled-cluster diagrams, Salornonson and Oster, Ref. 27.
'Including only the "factorizable" coupled-cluster diagrams, which can be obtained as an integral of one pair function times another
pair function.
Including all coupled-cluster diagrams.

'Alexander, Monkhorst, and Szalewicz, Ref. 12.
'Bunge, Ref. 1, Table XII.
The contribution from single excitations obtained as the difference between the results with and without single excitations.
Results from Ref. 1. Differs from a by the inclusion of one additional 3d basis function (see Ref. 14, p. 1376).
Olsen and Sundholm, Ref. 26. Full CI, thus including all single, double, triple, and quadruple excitations.

'The difference between the final coupled-cluster results (CC-SD) and the total CI results.
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particle excitations.
The most accurate single- and double-excitation calcu-

lation in Table I is the —93.667-mhartrees result from
Ref. 27. This value was calculated using a numerical
basis set complete on the grid used and includes an extra-
polation to account for all angular-momentum terms.
The numerical accuracy of this calculation has been es-
timated to be about 1 phartree with the uncertainty dom-
inated by the l extrapolation. To include more of the
correlation energy excitation clusters involving more
than two particles must be taken into account.

The terms neglected in CC-SD are the nonfactorizable
triple and quadruple excitations which enter in fourth
and sixth order of perturbation theory, respectively. If
a reliable triple-excitation calculation were available, this
value could be added directly to the final CC-SD result
and should give a very accurate estimate of the total
correlation energy.

Previous estimates of the triple-excitation contribu-
tions to the energy of Be have varied widely. Silver, Wil-
son, and Bunge'" found that in the d limit the sum of all
triple and quadruple excitations was —4.02 mhartrees.
Combination of this result with our value of —3.57 mhar-
trees (Table I) for the factorizable triple and quadruple
excitations leads to an estimate of —0.45 mhartree for
the nonfactorizable ones. From the work of Bauschlich-
er, Langhoff, and Taylor ' the value —0.267 mhartree for
this effect can be obtained by comparing the d-limit
"full" CI values and the results obtained using the
modified coupled-pair functional (MCPF) approach.
The latter is closely related to CC-SD. This estimate of
the nonfactorizable triple and quadruple excitations is
considerably smaller than the one obtained in Table I.
The discrepancy is probably caused by basis-set
deficiencies, since an error of 0.480 mhartree exists al-
ready at the Hartree-Fock level. Similarly the "full" CI
correlation energy is —84.080 mhartrees (calculated us-

ing the HF value in this basis) but a CI with only single
and double excitations gives —80.675. Not only are
these values about 5% smaller than the results by Silver,
Wilson, and Bunge' but the difference between them,
—3.405 mhartrees, is very different from the value in Ref.
14, i.e., 4.02 mhartrees.

Another estimate of triple excitations can be obtained
from the work of Froese-Fischer and Saxena. ' They
found that excitations from the pair 1s2p account for
—0.416 mhartree in the g limit. The interference of this
pair with the 1s2s excitations gives an additional —0.025
mhartree and the total interference effect on the other
pair excitations is —0.074 mhartree, which might indi-
cate a total contribution from the 1s2p excitation of
about = —0.51 mhartree, the pair excitations from the
1s 2p configuration are responsible for a large part of
the triple excitations. The near degeneracy between 2s
and Zp in Be enhances the importance of triple excita-
tions and emphasizes the usefulness of combining
multiconfiguration and MBPT methods. Unfortunately,
the approaches so far using multiconfiguration reference
functions ' ' have not yet reached the accuracy of the
CC-SD calculations presented here.

Although no direct estimate of nonfactorizable triple

TABLE II. Coupled-cluster results (in mhartrees) for the
correlation energy in the f limit and extrapolated to account for
higher l values. An estimate of —94.244 mhartrees for the total
nonrelativistic correlation energy is obtained from these results
by adding the value for the triple excitations in the f limit to the
final CC-SD result.

CC-D
CC-SD
(single excitations)
CC-SDT-1
(triple excitations)

Numerical orbitals

—92.049
—92.736
( —0.687)
—93.312
( —0.576)

Pair equation
(Ref. 27)

f extrap.

—92.217 —92.961
—92.917 —93.667
(
—0.700) ( —0.706)

and quadruple excitations can be obtained from the CI
calculation by Bunge' the total energy from the single-
and triple-excitation contributions was found to be
—0.33 and —1.01 mhartrees, respectively. ' These two
numbers, however, contain a certain amount of overlap
because two-particle interactions have matrix elements
between singly and triply excited configurations. We
note also that none of these results can be compared
directly with the value obtained by the difference between
the CC-D and CC-SD numbers in Table I, —0.706 mhar-
tree. This difference includes not only the single excita-
tions in the CI calculation but also the effect of factoriz-
able triple excitations. In a later work Bunge has given
the value —0.631 mhartree from the triple excitations
1snln'l'n "I" but excluding the parts 1snsn'In "l. Since
none of these excitations are including in the CC-SD (for
a closed-shell system the single excitations always con-
serve the orbital angular momentum) this calue can be
added directly to the final CC-SD result, giving —94.298
mhartrees for the total nonrelativistic correlation energy,
which is close to Bunge's value —94.305 mhartrees. This
procedure, however, neglects the contributions from tri-
ple excitations where at least one of the electrons is excit-
ed into an s state. It seems likely that these excitations
would contribute more than —0.007 mhartree or 1% of
the contribution from the other triple excitations. This is
thus an indication that Bunge's correlation energy may
be too small.

To help clarify the size of the triple excitations we have
performed a CC calculation that includes certain triple
excitations together with single and double excitations
(CC-SDT-1). A detailed description of the terms includ-
ed is given in Ref. 29. The calculation was performed us-

ing a basis set consisting of 29s, 19@, 12d, and 9f orbitals
obtained numerically as described in Ref. 36. In Table II
we compare the results of this calculation with the f-limit
result obtained from the numerical solution of the two-
particle equations. The difference between the total CC-
SDT-1 correlation energy and the CC-SD result indicates
that the triple excitations contribute —0.576 mhartree.
To estimate the uncertainty in this value, we note that
the single-excitations contribution, which is of about the
same size, differs by about —0.02 mhartree from the final
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result for the single excitations obtained in Ref. 27. Since
triple excitations are also believed to be more sensitive to
incompleteness in the basis set, the true error may be
larger.

Our triple excitations' value, —0.576 mhartree, is in
essential agreement with our earlier estimates of the
triple-excitation contributions from the works by Froese-
Fischer and Saxena' and by Bunge. ' From the com-
parison in Table II with the pair-equation calculation of
Ref. 27, we see that most of the error in the correlation
energy is due to the slow convergence of the double exci-
tations.

The discussions above point to the difficulty of obtain-

ing phartree accuracy. To improve this result requires
both a large orbital set and inclusion of at least triple ex-
citations. The inclusion of triple as well as quadruple ex-
citations using a large basis set has become possible with
the recently developed MCHF program by Olsen and
Sundholm which employs the finite-element method to
expand each radial function in terms of a set of local po-
lynomials. Compared with the more commonly used
finite difFerence approach, the finite-element method has
the advantage of a well-defined energy function, enabling
the use of modern optimization algorithms for the energy
minimization, leading to fast convergence also for large
MCHF expansions. The program uses efficient vectoriz-

TABLE III. The separation of the beryllium energy into the contributions for heliumlike beryllium
and for the changes due to the addition of two additional 2s electrons. (In hartree atomic units for Be.)
Numbers in square brackets are for reference only.

Be + Be-Be+

Binding energies
First
Second

Experiment

—8.001 497 47'
—5.655 925 55'

—0.342 621 1
—0.669 228 3"

Total, experiment:

Coulomb energy
Hartree-Fock correlation

CC-SD
CI
MCHF

—13.657 423 02

Theory

—13.611 299
—0.044 267

[
—0.043 996']

—1.011 909 4

—0.961 724
[ —0.049 400']
[ —0.050 038( 28 i']
—0.050 08( 3 )g

Total, nonrelativistic:

Corrections
Mass polarization
Relativistic correction
(DFB-HF)
Correlation

Lamb shift

—13.655 566 19'

0.000 025 60'

—0.002 035'
—0.000 191j

0.000 344 04"

—1.011 80(3)g

+0.000 003"

—0.000 132'
+0.000 022( 10)"
+0.000 008( 15 )'

Total, corrections
Total, theory

—0.001 856 83
—13.657 423 02

—0.000 099(25 )—1.011 90(5)

'Theoretical value, Drake, Ref. 41.
Experimental value, Johansson, and Holmstrom and Johansson, Ref. 39.

'Theoretical value, Johnson and Soff, Ref. 50.
The CC-SD is "exact" for a two-electron system and this value is taken from the work of Pekeris. '

'Salomonson and Oster, Ref. 27.
Bunge (Refs. 1-3) brought the value for Be + in agreement with the value given in Ref. 5 by adding a
correction, —271 phartrees, to account for the basis-set truncation error.
Olsen and Sundholm, Ref. 26.

"The mass polarization in the first and second ionization limits are taken from the recent experiment by
Men et al. (Ref. 43) and from the calculation in Refs. 9 and 50, respectively. Bunge used the estimate
5(5) rnhartrees between Be and Be + for this effect.
Obtained by subtracting the nonrelativistic Hartree-Fock values from the results of a Dirac-Fock-Breit
calculation, which includes the Breit interaction together with the Coulomb interaction, following the
procedures described by Quiney, Grant, and Wilson, Ref. 46.
'Obtained by subtracting the one-electron contribution (DFB-HF) from the value —2.22646 mhartrees
for the relativistic contribution for Be + (Drake, Ref. 41, Johnson and Soff, Ref. 50).
"Second-order correlation contribution, as presented in Table IV.
'See the discussion in Sec.III C.
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able routines based on CI algorithms from Ref. 38, mak-
ing it possible to treat very large CI expansions. To ob-
tain the results for Be shown in Tables I and III, Olsen
and Sundholm performed a sequence of MCHF calcula-
tions using full CI in each set of shells, where the radial
functions defining the shells were optimized. Each calcu-
lation thus represents the best possible energy that can be
obtained with a given number of shells. Calculations
with an increasing number of radial functions were car-
ried out for each value of the maximum angular momen-
tum, thereby making it possible to monitor the angular
convergence of the correlation energy. Simple extrapola-
tions were then used to get estimates for the total correla-
tion energy. Up to about 80 fully optimized orbitals and
more than half a million Slater determinants were includ-
ed. As seen from Table I the d-limit result is about 3
phartrees below the CI result by Bunge. For the g limit,
Olsen and Sundholm obtain —14.66698 hartrees, about
0.01 mhartree lower than that given by Bunge and it ap-
pears that the contribution from higher / values for the
correlation involving the 2s electrons was underestimated
in Bunge's work. The final MCHF value is —14.66737
hartrees, corresponding to a correlation energy of—94.35 mhartrees, which is 0.04 mhartree below Bunge's
extrapolated value.

III. CORRECTIONS TO THK
NONRELATIVISTIC ENERGY

In a nonrelativistic calculation with only Coulomb in-
teractions a number of effects are neglected which must
be included before a comparison with experiment can be
performed. For a light atom, the motion of the nucleus
can give significant energy contributions. This topic is
discussed in Sec. III A. For highly accurate results rela-
tivistic effects must also be taken into account, even for
light atoms, such as Be. These effects enter in many
ways, as discussed in Secs. IIIB and IIIC. The treat-
ment of relativistic effects in many-electron systems has
received considerable attention in recent years and
significant progress has been made, making possible a
direct calculation of the relativistic effects on the correla-
tion.

In Bunge's paper the total "experimental" ground-state
energy of beryllium atom —14.669345(2) a.u. was ob-
tained by adding the experimental first and second ioniza-
tion potentials to the calculated third and fourth ioniza-
tion potentials of Pekeris and of Garcia and Mack, , re-
spectively. Drake has recently obtained an improved
value, 124 125 6.601 cm for the third ionization poten-
tial by using higher-order radiative two-electron correc-
tions. ' Although this calculation changes the best esti-
mate of the total "experimental ground-state energy" it
will not affect the comparison between theory and experi-
ment since experimental results are used only for the first
and second ionization potentials and the same correction
must be added to the theoretical relativistic result.

A. Mass polarization

For light atoms like Be, the kinetic energy associat-
ed with the nuclear motion P /2M =g,p, /2M

+g, ~ & ~p;p;/2M is significant. The first term leads to
the normal mass shift and is obtained by replacing the
free-electron mass m, by the reduced mass
p, , =m, /(1+m, /M). This is the origin of the mass-
dependent conversion factor between atomic units and
wave numbers: R ( Be)= 109 730.634 7 cm '. This gives
a positive energy contribution, thus reducing the binding
energy. The second term, the mass polarization, arises
from a correlation between the electronic momenta
through the motion of the nucleus. Since only exchange
contributions enter in first order (the direct terms are ex-
cluded in lowest order by the odd parity of the p operator
for each electron), this effect usually gives a negative en-
ergy contribution for each level. Because the ground
states of He, Li, and Be contain only s electrons the
lowest-order contribution is zero. The first contribution
to appear is caused by admixtures of 2p (and higher
npn'p states) and is positive. In his accurate studies of
two-electron systems, Pekeris obtained the total contri-
bution 25 phartrees for the mass polarization of Be +.
Since the value is due largely to admixtures ofp states, we
do not expect it to change significantly when two 2s elec-
trons are added. Although the 2s electrons may give rise
to additional contributions these are much smaller —for
one-valence systems, the mass polarization due to the
valence electron scales as n, just as, e.g. , the hyperfine
structure, and, indeed, Prasad and Stewart find a contri-
bution of 2 phartrees when one 2s electron is added. This
result was confirmed in the recent, very accurate calcula-
tion of King. However, the contribution from the
second 2s electron has recently been determined experi-
mentally. Wen et al. used resonance ionization mass
spectroscopy to study the isotope shift between ' Be and
Be. By examining two-photon transitions from the

ground state to a series of 2sns and 2snd states they ex-
tracted a shift of 270 MHz between the two isotopes for
the ground state in Be relative to that of Be+. This result
corresponds to an energy contribution from the mass po-
larization of 0.4 phartree for Be and can be compared
with Bunge's estimate of 3(3) phartrees.

B. Relativistic and radiative corrections

Relativistic effects are comparable to the higher-order
correlation contributions and must be considered with
some care. The dominating relativistic contribution is
accounted for by using the Dirac rather than the
Schrodinger equation to describe the electron orbitals. In
addition, we have to account for the effect of the ex-
change of transverse photons in the electron-electron in-
teraction: to lowest order, i.e., O(a ), this exchange is
accounted for by inclusion of the Breit interaction, but in
higher orders of a [O(a ) and higher], the transverse
photons lead also, e.g. , to the Lamb shift.

As mentioned, the comparison between theory and ex-
periment is affected only by the difference between the
corrections for Be and Be +. Whereas the leading rela-
tivistic effects [i.e., to O(o. )] are calculated accurately by
Pekeris for the heliumlike doubly ionized beryllium, no
calculation including both correlation and relativistic
effects has been published for neutral Be. To estimate the
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effect of relativity due to the two 2s electrons Bunge used
the Hartree-Fock expectation values for the relativistic
energy corrections from the work of Hartmann and
Clementi. The corrections were found to be relatively
insensitive to the degree of ionization: The correction
—2.198 mhartrees for neutral beryllium is changed to
—2.090 mhartrees by removing the two outer electrons,
giving a Hartree-Pock contribution of —0.108 mhartree
for the difference between Be and Be +. A fully relativis-
tic calculation leads to a Dirac-Fock (DF) energy value of
—14.575891 hartrees, giving a correction of —2.869
mhartrees to the nonrelativistic Hartree-Fock value
—14.573023 hartrees. The DF expectation value of the
Breit interaction is 0.702 mhartree (in agreement with the
older, somewhat less accurate, result by Mann and
Johnson ), and the effect is changed by only 0.04 phar-
tree by using the Dirac-Fock-Breit (DFB) procedure,
where the Breit interaction is treated self-consistently to-
gether with the Coulomb interaction. The total one-
electron relativistic and Breit contribution is thus —2.167
mhartrees which differs by 0.031 mhartree from the non-
relativistic HF expectation value. It is possible that the
discrepancy can be ascribed to 0 (a ) effects due to rela-
tivistic changes in the orbitals which modifies the
electron-electron interaction, but it seems more likely
that it is a result of incompleteness in the old nonrela-
tivistic calculation. [The O(a ) contribution to the hy-
drogenic Is energy is less than 1 phartree. j For the com-
parison with experiment the important relativistic correc-
tion is that involving the 2s electrons and their effect on
the 1s electrons, which is found to be only —0.132 mhar-
tree. (If the Breit interaction were neglected, the correc-
tion from the 2s electrons would instead be —0.167
mhartree. ) Table III shows the results separated into
contributions the energy of Be + and to the difference in
energy between Be and Be +.

In order to estimate the change in the correlation ener-

gy of Be + due to relativistic effects, Hartmann and
Clementi computed the expectation value of these
effects using a Hartree-Fock wave function. To this re-
sult, —2.090 mhartrees, they then added a value for the

Lamb shift, +0.323 mhartree, which they obtained using
their Hartree-Fock wave function and the formula by
Kabir and Salpeter. The sum, —1.767 mhartrees, was
then compared with the value, —1.878 mhartrees, for the
total corrections obtained by Pekeris using his "exact"
nonrelativistic wave function. The difference in these
two numbers, 0.111 mhartree, is taken by Hartmann and
Clementi (and later by Bunge) to be the change in corre-
lation energy due to relativistic effects. A closer exam-
ination of this procedure, however, reveals two disturbing
problems. First, Pekeris's value of —1.878 mhartrees in-
cludes a contribution of 0.0256 mhartree due to mass po-
larization. Thus Bunge includes the mass polarization
energy of Be + twice (once directly and then again when
he adjusts for the change in correlation energy due to rel-
ativistic efFects). Second, the difference between Hart-
mann and Clementi's value for the Lamb shift, 0.323
mhartree, and Pekeris's value, 0.331 mhartree, was never
corrected for. The total relativistic correction from Pe-
keris' work, —2.226 mhartrees (including the Breit in-
teraction and the hydrogenic contribution, —1.704 mhar-
trees, but excluding the Lamb shift), should instead have
been compared directly with Hartmann and Clementi's
Hartree-Fock expectation value, —2.090 mhartrees, for
these effects. However, as discussed above, Hartmann
and Clementi's expectation value of the correction may
be somewhat inaccurate. From a comparison of a Dirac-
Fock-Breit and a Hartree-Fock calculation for Be + we
obtained the value —2.035 mhartrees. The difference,—0.191 mhartree, between this result and the total
correction from Pekeris, can be attributed to correlation
contributions to the Breit interaction and to changes in
the Coulomb correlation energy induced by the relativis-
tic changes in the one-electron orbitals and their energies.

Up to this point, relativistic effects on the correlation
involving the 2s electrons have been neglected. To
remedy this situation a fully relativistic calculation of the
second-order correlation contribution was performed us-
ing the procedure described by Quiney for Be as well as
for Be + and the results are shown in Table IV. Al-
though, as seen above, the relativistic corrections in the

TABLE IV. Relativistic effects on the second-order correlation contributions obtained by perform-
ing a relativistic Dirac-Fock-Breit calculation (using the Dirac one-electron Hamiltonian together with
the electron-electron interaction given by the sum of the Coulomb interaction and the Breit interaction)
and subtracting the results of a nonrelativistic calculation, (phartrees).

Excitation

S 2

P
d2

2

h
l2

Be +

1s

—52.244
—90.438
—19.895
—8.853
—4.947
—3.066
—2.055

1s

—38.476
—89.942
—19.913
—8.836
—4.927
—3.058
—2.049

Be
1s2s

—3.971
—5.175
—1.094
—0.400
—0.256
—0.158
—0.104

2s

13.042
3.500
2.390
0.311

—0.051
—0.032
—0.026

(Be-Be2+)
Total

22.839
—1.179

1.278
—0.073
—0.286
—0.182
—0.124

Sum
Extrapolated

—181.495
—193

—167.200 —11.160 19.138 22.27
21.6
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Dirac-Fock-Breit energies are dominated by the effect of
using the Dirac rather than the Schrodinger one-electron
Hamiltonian, the dominating relativistic effect on the
correlation energy involves the Breit interaction as noted
earlier for He-like systems. "' The relativistic correla-
tion contributions converge very slowly with angular
momentum; like I compared with I for the nonrela-
tivistic Coulomb interaction, although the 2s contribu-
tions in Table IV show some deviation from this behavior
at the higher I values. The I dependence has been used
to estimate the contributions from / values larger than 6,
which were not calculated explicitly. The slow conver-
gence in the energy seems to be caused by the 6(r,2) func-
tion, which is present in the nonrelativistic limit boy.h of
the Breit interaction and of the relativistic correction to
the Coulomb interaction.

As expected, the relativistic effects are largest for the
1s electron pair, which is relatively insensitive to the
presence of two additional 2s electrons. The higher par-
tial waves give nearly identical contributions for these
two systems and the large change for the 1s —+s excita-
tion is dominated by the exclusion of the 1s ~2sns exci-
tations for neutral beryllium. We note that the relativis-
tic corrections to the second-order energy for heliumlike
beryllium is quite close to the all-order result obtained
from Pekeris's work. There is a certain amount of can-
cellation between the contributions from the 1s pair and
the 1s2s pair energies, leaving the total correction close
to that from the 2s pair. The nonrelativistic second-
order energy for this pair is changed by nearly 50%%uo when
higher-order terms are included and we assign an uncer-
tainty of this size to the relativistic corrections obtained
in second order. The sum of the relativistic corrections
for the first two ionization energies, —0.110 mhartree,
coincides with the value used by Bunge based on a HF
calculation, and it appears that the error caused by the
incompleteness in the older HF calculation to a large ex-
tent compensates the omission of the correlation contri-
bution.

C. The Lamb shift

Using a Hartree-Fock wave function Hartmann and
Clementi obtained a Lamb shift contribution of 323
phartrees for Be . This value was added by Bunge'
to his nonrelativistic results. The hydrogenic contribu-
tion obtained in the recent work of Johnson and Soff is
45.507 cm '=207.3 phartrees which is in agreement
with the older value by Garcia and Mack used by
Bunge for the "experimental" fourth ionization energy.
For the second 1s electron, Pekeris, using his "exact"
nonrelativistic wave function, obtained a Lamb shift con-
tribution of 27. 1 cm =123.5 phartrees, which was in-
cluded in the experimental third ionization energy used
in Bunge's comparison. Together with the hydrogenic
contribution, this gives 331 phartrees. Adding this con-
tribution, rather than the smaller HF value, removes an
inconsistency in Bunge's comparison with experiment
and increases the discrepancy by 8 phartrees. Drake ' '

has obtained an improved value, 29.996 cm '=136.7
phartrees of the Lamb shift for the third ionization ener-

gy by including higher-order radiative corrections. How-
ever, as discussed above, this improvement does not affect
the comparison between theory and experiment, which
involves only the first and second ionization energies.

To get a very rough estimate of the contributions in-
volving 2s, we can use the values given by Drake, ' for
the addition of a 2s electron to a 1s electron into a singlet
and triplet state. These numbers, 13.3 and 16.3 phar-
trees, respectively, include both the contributions from
the 2s electron and the modification of the 1s contribu-
tion and should be compared with the hydrogenic 2s con-
tribution ' of 26.8 phartrees. The presence of one 1s
electron thus results in an average shielding of —11.3
phartrees for the 2s electron. If we assume that the in-
teraction with the second 1s electron is of the same order,
we get a net contribution of 4.2 phartrees from each of
the two 2s electrons. Since the two 1s electrons screen
each other they are located somewhat further out than in
the 1s2s states, and their interaction with the 2s electrons
may thus give even larger contributions. Neglecting this
effect as well as the 2s-2s interaction gives us an estimate
of 8 phartrees for the difference in Lamb shift between Be
and Be +. We have included a relatively large error, +15
phartrees, in view of the large cancellations involved in
the hand-waving argument. The correct theoretical
treatment of radiative corrections for many-electron sys-
tems is still an open question, but clearly more reliable es-
timates would be worthwhile.

IV. DISCUSSION

Obtaining an accuracy of 1 phartree or even 10 phar-
trees for a few-electron system is a nontrivial problem.
At this level many effects which are often neglected give
contributions which are many times larger than the
desired accuracy. For the Be atom Bunge found a
discrepancy of about 60 phartrees (or, rather, 40 phar-
trees if the estimates of relativistic corrections had been
used in a consistent way). Correction terms such as the
effect of relativity on the correlation involving the 2s elec-
trons and the radiative corrections from these electrons
are close to this size but were neglected in Bunge's study.
In comparisons such as these, it is essential that calcula-
tions be performed on those quantities which are known
most accurately from experiment. In general, the experi-
mental uncertainty is smallest for the binding energy of
the outer electrons, which are least tightly bound. For
heliumlike systems like Be +, on the other hand, the ac-
curacy of the most complete theoretical calculations sur-
passes the experimental accuracy. In the present work
we have examined in detail the energy differences be-
tween Be and Be +. Our best theoretical estimate for this
difference is —1.01190(5) hartrees, to be compared with
the experimental value —1.011 909 4 hartrees. Several
of the individual energy components in the final result
have undergone substantial revision since Bunge's paper.
In particular, the extensive MCHF calculation of Olsen
and Sundholm, , which gave a final ground-state energy
of —14.667 37 hartrees, has shown that the nonrelativis-
tic energy of Be was previously underestimated by almost
45 phartrees. Many of the components to the energy
difference which we have examined could be further im-
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proved by more extensive calculations. It is our hope
that this paper will stimulate further work in this area.
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