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Hartree-Fock (HF) and local-density approximation (LDA) calculations of holes in symmetric
molecular ions lead to conflicting results on the sign of the energy associated with reducing the sym-
metry. According to the HF theory, this energy can only be negative because it corresponds to a
less restricted wave function. According to the LDA, it can only be positive because it is mostly
electrostatic force that concentrates the hole charge in the vicinity of a single atom. In the present
paper, we discuss these diverging views and present some LDA results for molecular ions with bro-

ken symmetry.

I. INTRODUCTION

In the calculation of the ionization potential (IP) of a
symmetric molecule one must face the problem of assign-
ing the symmetry to the molecular ion. Usually one as-
sumes that the ion has the full symmetry of the parent
molecule, but the possibility of it having a lower symme-
try corresponding to a localized hole cannot be discarded.
We are thinking of molecules such as Li,, CO,, N,, etc.,
that is, molecules with equivalent atoms and a plane of
symmetry. Rigorously speaking, if the nuclei are main-
tained at their symmetric positions, the exact solutions of
the many-electron Schrodinger equation are always sym-
metric or, at least, irreducible representations of the
group. For instance, for the H," ion, the lowest states
are always even or odd with respect to the plane of sym-
metry, independent of the distance between the protons.
A state in which the electron is attached to just one pro-
ton could not be exactly stationary because the electron
would tunnel to the other proton, though with very low
frequency if the disance is large. The asymmetric solu-
tion for which the electron is localized at one side only,
though not exactly stationary, may be almost so (slow de-
cay), and as such describe the state of the system in a real
experiment. Indeed, it is most unlikely that a system of
two protons, miles apart, and a single electron will ever
be observed in a state where the electron is shared, half
for each proton. It is a common expectation that the op-
posite is true and the electron will be found wholly at one
side.

Under certain circumstances, self-consistent-field (SCF)
methods such as Hartree-Fock (HF) and the local-density
approximation (LDA), though approximate methods, are
sophisticated enough to give these asymmetric ion solu-
tions, aside from the symmetric solutions that always ex-
ist. In this sense a SCF calculation can do even better
than an exact calculation that would yield only sym-
metric ions. On the other hand, SCF methods give no in-
dication of the lifetime of these asymmetric ions, for the
simple reason that they are treated as exactly stationary.

8

In other words, when giving results for the asymmetric
ion, the SCF methods cannot describe whether they are
better or worse than the symmetric solution. Since the
early work of Bagus and Schaefer' there have been a
number of investigations concerning these asymmetric
ions.>~® The studies were usually performed using HF or
configuration-interaction (CI) techniques to describe the
ionization of core electrons in molecules, that is, to calcu-
late highly excited molecular ions. By removing the sym-
metry constraints in the Hartree-Fock solution, one in-
creases the total relaxation energy, lowering the total en-
ergy of the molecular ion. In other words, common to all
HF results is the fact that the asymmetric ion has a lower
energy than the symmetric ion. This result is frequently
understood with the argument that the removal of the
symmetry constraints can only lead to a better minimum
of the variational energy. Of course, when dealing with
core ionization (highly excited molecular ions) it is not re-
quired that the energy should be a minimum, but only
that it should be a stationary point, so the argument fails.

To those used to electronic-structure calculations
based on the density-functional theory (DFT), or better,
based on the local-density approximation, the HF result
above is a complete surprise. For instance, take the case
of a crystal. A symmetric hole would be described by a
Bloch function that extends throughout the infinite crys-
tal (delocalized), while an asymmetric hole would be lo-
calized at an atom and its immediate neighborhood (lo-
calized hole). Now, all LDA calculations give an ioniza-
tion potential for the asymmetric ion (localized hole)
larger than the IP for the Bloch-state hole.®~!2 In the
case of molecules, the results of Connolly et al.,” ob-
tained with the multiple-scattering method, also present
this common feature of the LDA.

Thus the LDA is in clear opposite to HF when dealing
with the spontaneous symmetry breaking of the ion. In
Table I we show the extent of contradiction between the
LDA and HF, by comparing the ionization potentials for
symmetric and asymmetric core holes. Clearly, in the
case of the LDA
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TABLE I. Ionization potentials to the 1s-hole ions (in rydbergs).

HF LDA
Sym. Asym. Sym. Asym. Expt.
Li, 4.761* 4.530% 4.387° 4.881° 4.86
N, 30.891¢ 30.200° 29.430° 30.797° 30.13
29.921¢ 30.818¢
0, 40.908¢ 39.883¢ 39.325° 40.440° 40.0

?Reference 8.
*Present work.
‘Reference 19.

VIP(asym) > VIP(sym) ’

while the opposite is true for HF, the inequalities for each
method being consistently obtained by different authors.
One must recall that, though not perfect, the LDA leads
to a physical insight of the one-particle description
through which one obtains a very good understanding of
the electronic structure. Then, based on LDA arguments
we can discuss hole localization versus delocalization in
the following terms.

(i) Suppose a symmetric core hole (delocalized) is
formed. Since its wave function is finite only near the nu-
clei, where the electronic charge density is large,
exchange-correlation effects are relatively unimportant.
Now, to concentrate the hole density at only one atom
one must make the positive electrostatic force work.
Therefore, the IP for the asymmetric ion should be larger
by the amount of work, and the symmetric ion should
have lower energy.

(ii) Suppose a valence symmetric hole (delocalized) is
formed. Now the wave function is large in the interatom-
ic regions, where the electronic charge density may not
be large at all. Then it is difficult to guess the relative im-
portance of the electrostatic energy and exchange-
correlation energy. Only an actual calculation will decide
the dominating energy. For those molecules with few
valence electrons one might have an exchange-
correlation-dominated situation where the symmetric ion
(delocalized hole) would have a higher energy than the
asymmetric ion (localized hole). In this case, the ground
state of the ion (a hole in the highest valence state) would
be asymmetric, corresponding to the common expecta-
tion that the removal of the symmetry constraints could
only lower the energy. But observe that this expectation
can only refer to the ionic ground state, and it can only
result from the exchange-correlation energy.

The purpose of this paper is twofold. On the one hand,
we want to call the reader’s attention to the contradiction
between the LDA and HF. On the other hand we want
to present some LDA results for molecules with varying
degrees of exchange-correlation domination. In Sec. II,
we discuss in a formal way what to expect from the LDA
on the problem of spontaneous symmetry breaking. In
Sec. IIT we review our LDA method, the variational cel-
lular method, which avoids the muffin-tin potential for-
mat, but still has some limitations. In Sec. IV we present
our results and in Sec. V we present conclusions.

dReference 7.
‘Reference 1.

II. SYMMETRY BREAKING IN THE LDA

The ionization potential of a molecule is defined as the
difference

Vi=E(—1)—E(0) 5

between the energies of the molecular ion E(—1) and
that of the neutral molecule E(0). Here, the argument
(—1) means that one electron has been removed from a
certain one-electron state . Within the LDA it is possi-
ble to define the total energy even for noninteger occupa-
tion numbers f, (Slater’s transition-state method)'? and
even prove that the derivative of the total energy with
respect to the occupation is the one-particle eigenvalue!*

oE —
3fa
The eigenvalue g, is itself a function of the occupations

fo> but, as verified by many authors,'® it is a mostly
linear function, so that the derivative

de,
ofq

(2)

28, 3)

is practically independent of the occupation.

For reasons that will shortly become clear, we will
refer to the derivative S, in Eq. (3) as the “self-energy.”
Recalling that, within the LDA, the Schrodinger equa-
tion potential is

! aExc
V1 =Veu(1+2 [ ar 20+ 0 ?

(rydberg units are being used), where E, is the
exchange-correlation functional, and where the total
number density is

P(r)= 3, fopolr) (5)
with
Pl D) =[P ()] Y (1), (6)

where 9,(r) is the one-particle wave function for the state
a, then one obtains the self-energy from simple first-order
perturbation theory,
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S,= [ [drdrp,r) T Pel™) L[ [drdrpyn) _8F
. 8p(r)8p(r’)
+1 [ [drdrpr)——————pu(r') . 7 PalT)p,(T)
s drdrpog el D =—jafart il 0

Furthermore, if S, does not depend on the occupation

Sar
e f)=e0)+2f, S, , (8)
and integrating Eq. (2),

E(f,)= 0)+ea(0)fa+Saf§ ) 9)
so that

VIP:—EG(O)+Sa: ) . (10)

N|—

—g,(—

which is the transition-state result.

Equation (10) gives the ionization potential as an alge-
braic sum of two terms: (i) the eigenvalue £,(0) for the
neutral molecule of course does not depend on whether
the ion is symmetric or asymmetric; (ii) the self-energy
S,, whose expression is given by Eq. (7), may depend
much on the degree of asymmetry of the ion. Indeed,
consider the first term in Eq. (7), which is the electrostat-
ic energy term. First of all, this term is clearly a self-
energy term, giving the name for the symbol S,. Second,
this term is positive definite, making the IP larger than
the negative of the eigenvalue of the neutral molecule.
Third, if the hole number density p(r) is distributed be-
tween equivalent atoms, the term is greatly reduced. For
instance, in the extreme limit when p,(r) is the Bloch-
state number density of a hole in an infinite crystal, the
self-energy S, is exactly zero, in which case the IP fol-
lows Koopmans’s theorem. Therefore, if the exchange-
correlation term of the self-energy can be neglected, that
being the case of core holes whose wave functions are
non-negligible only in the regions of high electronic den-
sity, the process of delocalizing the hole lowers the ion-
ization potential, as discussed in the Introduction.

To fully understand the behavior of the self-energy un-
der localization or delocalization of the hole, we must
also study the second term of Eq. (7). Though we have
not used the Xa exchange correlation, but an expression
due to Gunnarsson and Lundgqvist,'® we follow the
present discussion by assuming

Elpl=—a [drp(r)*?. (11

The functional derivatives are

SE,.
Sp(r) =~ ap(n)”
=—ta [drp(r)s(r' —1) (12)
8’E —r
x a4 8—r) : (13)

Sp(r)sp(rr) 9 p(r)2/3

Then the second term of the self-energy becomes

which is negative definite, and which is important only
when the hole density p,(r) is large where the total elec-
tronic density p(r) (denominator) is small. For valence
electron, espemally in molecules where they are not
many, the second term of the self-energy might even
dominate the positive-definite first term. Then the net
self-energy would be negative and larger in absolute value
for the localized hole than for the delocalized one. Only
in this circumstance would the asymmetric ground state
of the ion have a lower energy than the symmetric ion;
that is, relaxing the symmetry constraints would lead to a
lower energy. Again we reach the conclusions advanced
in the Introduction.

III. REVIEW OF THE VARIATIONAL CELLULAR
METHOD

Our LDA results were calculated with the variational
cellular method (VCM), in its latest version.!” This
method, with marked advantages over the classical
multiple-scattering method.!® both in precision and
speed, begins by partitioning the space into cells. A point
r belongs to cell 7 if

vir—a;)*—y R} <y;(r—a;’—v;R} (15)

for all other cells j. Here a; and a; are the cell centers
(the nuclei), and ¥ and R are cell parameters. If y, =y,
the cell boundary between cells i and j is a plane, which
follows readily from Eq. (15) if the equality is used in-
stead of the inequality. This choice of ¥ is normally used.
The parameter R controls the size of the cell, so that usu-
ally we choose it equal, or proportional, to the covalent
radius. Aside from the atomic cells centered at the nu-
clei, one also defines an outer cell enveloping the mole-
cule. For this outer cell O, the center a; is chosen so that
the molecular symmetry is preserved; ¥, (which must be
negative) and R, are chosen so that the atomic cells are
not much extended.

In the cell-divided space we expand the one-electron
wave functions 3,(r) and the Coulomb potential c(r) in
spherical harmonics. Aside from these functions, one
also defines the following.

(i) The model number density

) sph. av. > (16)

that is, the spherical average within each cell of the true
number density of Eq. (5).

(i) The potential intervening into the one-particle
Schrodinger equation

n(r)=[p(r

8E,.
Sp(r)

Vir)= |c(r)+ , (17)

sph. av.

which is also spherical within each cell.
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The total molecular (or ionic) energy is a functional of
the four functions ¥,(r), c(r), n(r)and V(r)

E[Ype,n V=3 foeltbe V1= [drV(rn(r)

+U[n _prc]_S[p]+Exc[n] ’ (18)

where €[ ] is the one-particle energy functional, U[ ] is
the electrostatic energy functional, p is the proton num-
ber density (a collection of 6 functions), and S[ ] is the
proton self-energy. The power of the VCM lies in that
the total energy is stationary for arbitrary variations in
the four functions if (i) the one-electron wave functions
satisfy the Schrodinger equation, (ii) the Coulomb poten-
tial satisfies the Poisson equation, (iii) the model number
density n (r) equals the true number density p(r), and (iv)
the Schrodinger potential V equals that of Eq. (4), which
is that of Eq. (17) without the spherical averaging. Thus
small deviations from any of the four variational condi-
tions produce only a second-order error in the total ener-
gy. Compared to the multiple-scattering method, the
VCM avoids the constant-potential region that is usually
unable to hold the valence charge in the neighborhood of
the atoms, which it scatters through the whole molecule.
For the study of localized hole states, we thought that
this advantage could be very important.

The VCM is a self-consistent method where one starts
from an approximate Schrodinger potential ¥ (r), obtains
the wave functions ¢,(r) and eigenvalues, calculate the
model number density n (#) and the Schrodinger potential
V(r), and repeats the iterations till self-consistency is
achieved. Of course the result depends on the assumed
occupation numbers f,. Instead of calculating the IP
through its definition [Eq. (1)], it is certainly faster to use
the transition-state result [Eq. (10)], which identifies the
IP with the negative of the eigenvalue at a depletion of
half electron. Since the number density of a molecule is
the functional derivative of the energy with respect to an
external potential,

SE

p(r)=m , (19)

from Egs. (1) and (10) we readily conclude that the hole
number density is exactly the same as the number density
for the state a being half-depleted

de,(—1)

Bogn(r)  Yelr)¥alr) o

the wave functions of the other states giving no contribu-
tion to the hole number density. A plot of Eq. (20) will
show how much the hole is localized in an atom.

We found that a symmetric ion solution always existed
within the VCM. For the core-ionized ions, we were al-
ways able to find an asymmetric solution (localized hole).
In the case of valence electrons, it was frequently difficult
to make the VCM equations to converge to an asym-
metric ion solution. To do so, we started from the con-
verged potential for the symmetric ion, introduced an
artificial asymmetrizer (usually by making the basis sets
of functions different for the equivalent atoms), let the

VCM program run for some iterations, then removed the
asymmetrizer and let the VCM program run freely till
self-consistency was achieved. In the case of valence elec-
trons, self-consistency frequently restored the symmetric
condition. Thus we are convinced that an asymmetric
valence ion is not always a stationary solution of the
LDA equations, at least in their VCM version. When
both solutions exist, the symmetric and the asymmetric,
there should be two IP’s, at least a broadband. The tran-
sition to one of the ions, either symmetric or asymmetric,
could dominate the other transition, depending on the
relative cross sections. But this latter point is far outside
the scope of the present work.

IV. RESULTS AND DISCUSSION

We calculated three dimmers and two simple polya-
tomic molecules. The VCM parameters for the calcula-
tions are reported in Table II. The calculations were per-
formed at the experimental geometry of the neutral
ground-state molecules. The molecules that were studied
have the common feature of having a mirror plane that is
removed from the symmetry group of the ion when the
hole becomes localized at one side.

We used the transition-state concept to determine the
ionization potential. The symmetric ion with a hole den-
sity equally distributed between the two sides of the mir-
ror plane could always be found. On the other hand, the
asymmetric ion with its localized hole could be found
only exceptionally. To reach the asymmetric solution, we
ran some iterations where the bases for the expansion of
the wave functions were different at the two sides of the
mirror plane (asymmetrizer). Once the two sides were
unbalanced, the asymmetrizer was removed; that is, the
bases were made equal at the two sides, and the iterations
were run till self-consistency was achieved. In most cases
of the valence holes, self-consistency restored the full
symmetry of the hole density, indicating that an asym-
metric hole solution does not exist.

The results are presented in Tables III-VII. Discus-
sion about these results naturally separates into core-hole
ions and valence-hole ions. In the case of core holes, we
could always find the asymmetric ion solution, together
with the symmetric one. That means there are two ion-
ization potentials for core-hole ions (within the LDA),
one corresponding to the localized hole, the other corre-
sponding to the delocalized one. In all cases, the ion with
a localized hole has a larger IP than the ion with the sym-
metric hole, which is in opposition to the results obtained
with HF (Ref. 1) (Table I), but in agreement with our ar-
gument requiring an extra electrostatic force to create the
hole cloud at just one side of the molecule. Indeed, one
observes from the tables a sharp increase in the self-
energy of the core holes when going from delocalized to
localized at one side. Roughly, the self-energy of the core
hole is multiplied by a factor of 2 when it is localized
[first term of Eq. (7)]. It is also interesting to observe that
the self-energies of C(1s) in CO, and C,H, (asym.) are
nearly equal, indicating that one is dealing with a mostly
atomic, and not molecular, state. The same situation
happens for the self-energy of O(1s) in O, and CO,.



3352 KINTOP, MACHADO, AND FERREIRA 43
TABLE II. Cell parameters.
Diatomic molecules
Li, N, 0,
dy.x (a.u.) interatomic distance 5.051 2.068 2.282
R; (a.u.) 3.5 2.0 1.8
R, (a.u) 6.0 3.0 3.0
Vi 1.0 1.0 1.0
Yo —2.0 —1.8 —1.0
Full symmetry group D, D, D,
Broken symmetry group C.y C., C.,,
Polyatomic molecules
CO, C,H,
C-C interatomic distance (a.u.) 2.5303
C-X interatomic distance (a.u.) 2.20 2.0526
R¢ (aw) 1.10 2.20
Ry (au) 1.10 1.49
R, (a.u) 3.30 4.00
Ye 1.0 1.0
Yx 1.0 2.0
Yo —1.0 —0.6
Full symmetry group D, D,,
Broken symmetry group C., Cy
TABLE III. Results for Li, (in rydbergs).
Dooh Coou
Symmetry Ionization potential Self- Symmetry IP Self-
level Expt.? VCM (sym.) Eigenvalue energy level VCM (asym.) energy
20, 0.40 0.4354 —0.2570 0.1784 20 0.4164 0.1594
lo, 4.73 4.3865 —3.7283 0.6582 lo 4.8813 1.1530
lo, 4.86 4.3871 —3.7303 0.6568 lo 4.8813 1.1510
?Reference 20.
TABLE IV. Results for N, (in rydbergs).
D wh Cw v
Symmetry Ionization potential Self- Symmetry IP Self-
level Expt.? VCM (sym.) Eigenvalue energy level VCM (asym.) energy
3o, 1.14 1.1920 —0.7716 0.4204 40 1.4601 0.6885
T, 1.23 1.2199 —0.8134 0.4065 T 0.9167 0.1033
20, 1.37 1.3964 —0.9975 0.3989 30 1.6349 0.6374
20, 2.74 2.2153 —1.7729 0.4424 20 2.5068 0.7339
N(1s) 30.13 29.4297 —27.9303 1.4994 N(1s) 30.7968 2.8665
2Reference 21.
TABLE V. Results for O, (in rydbergs).
D wh Coo v
Symmetry Ionization potential Self- Symmetry IP Self-
level Expt.2 VCM (sym.) Eigenvalue energy level VCM (asym.) energy
T, 0.96 0.6625 —0.2726 0.3899 27
Ty 1.31 1.4220 —1.0282 0.3938 17
3o, 1.55 1.4723 —1.0832 0.3891 4o
20, 2.05 1.9836 —1.5890 0.3945 30
20, 3.06 2.6681 —2.2473 0.4208 20
O(1s) 40.0 39.3254 —37.7410 1.5844 O(1s) 40.4406 2.6996

2Reference 21.
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TABLE VI. Results for CO, (in rydbergs).
D, C,,
Symmetry Ionization potential Self- Symmetry IP Self-
level Expt.? VCM (sym.) Eigenvalue energy level VCM (asym.) energy
Ty 1.01 1.0575 —0.7135 0.3440 27
T, 1.29 1.3757 —1.0254 0.3503 17
3o, 1.33 1.2356 —0.8905 0.3451 60
4o, 1.43 1.3359 —0.9945 0.3414 50
20, 2.73 2.4325 —2.0654 0.3671 40
3o, 2.73 2.4696 —2.1126 0.3570 3o 2.4982 0.3856
C(1s) 21.86 22.0287 —19.8059 2.2228 C(1s)
O(1s) 39.75 39.1662 —37.6406 1.5256 O(1s) 40.2891 2.6485
*Reference 22.
TABLE VII. Results for C,H, (in rydbergs).
D2h C2v
Symmetry Ionization potential Self- Symmetry P Self-
level Expt.? VCM (sym.) Eigenvalue energy level VCM (asym.) energy
bi, 0.77 0.8130 —0.5342  0.2788 15,
bs, 0.91 1.0361 —0.7468  0.2893 2b,
3a,, 1.09 0.8355 —0.5560  0.2795 4a,
by, 1.15 1.2781 —0.9886  0.2895 1b,
2by, 1.39 1.5155 —1.2133  0.3022 3a,
2a,, 1.73 1.8911 —1.5726  0.3185 2a,
C(1s) 21.1213 —19.9670 1.1543 C(1s) 21.9847 2.0177

*Reference 23.

In the case of valence holes, we obtained localized hole
solutions for Li,, N,, and for the lowest valence state of
CO,. In the other cases, an asymmetric ion solution sim-
ply does not exist; that is, after the removal of the asym-
metrizer, the self-consistent iterations restored the sym-
metric ion. The valence state of Li, is so shallow that we
were unable to obtain a fully variational VCM solution
for the neutral molecule, while it is very easy to converge
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FIG. 1. Number density for the asymmetric 3o valence hole
for Li,* along the molecular axis, compared to the number den-
sity for the symmetric hole (207,).

the solution when the muffin-tin approximation is made.
Without going that far, we chose to restrict the degrees of
freedom of the VCM potential in the intersphere region,
as described in Ref. 17, to reach convergence. The solu-
tion presents a clear case of exchange-correlation energy
dominating over the Coulomb self-energy. When the
hole could is localized at one side, the ion energy de-
creases, not increases. Thus the ground state of the Liz’L
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FIG. 2. Number density for the asymmetric 30 valence hole
of CO,™ along the molecular axis, compared to the number den-
sity for the symmetric hole (30,).
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ion becomes asymmetric. In Fig. 1 we compare the num-
ber densities of the symmetric and asymmetric 3o
valence holes of Li,.

In the case of N,, though the asymmetric solutions
could be found, they compare poorly with the experimen-
tal results (IP), so that one may wonder whether these
solutions are not an artifact of the LDA or VCM. Due to
the hole localization, the smallest IP becomes that of the
7 hole, not that of the 40 hole. This result could be ex-
pected becase the 7 hole is denser where the total elec-
tronic density is smaller, which increases the negative
contribution of exchange-correlation energy to the self-
energy.

The only localized valence hole of CO, is 30. This is
mostly a O(2s) atomic state, with great energy, and can
be almost classified as core. Thus one expects a Coulomb
term to dominate the self-energy equation. For this
reason, the IP to the localized-hole ion is larger. In Fig.
2 we compare the number densities for the symmetric
and asymmetric holes.
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V. CONCLUSIONS

Our results are in agreement with the physical intui-
tion of the LDA: the ionization potentials of asymmetric
core-hole ions are all larger than those of symmetric ions,
while for valence holes, when the asymmetric ion exists,
its IP will be larger or smaller depending on the degree of
self-energy dominance by exchange correlation. On the
other hand, the HF calculations of asymmetric core holes
all lead to opposite results.

That the LDA and HF can lead to such contradictory
results is perplexing; we think that the HF calculations of
highly excited ionic states might be suffering from a de-
fective orthogonalization to lower excited and ground
ionic states. This possibility was suggested by Agren,
Bagus, and Roos,’ who showed that, with a limited
configuration interaction, one could lower the core-hole
IP of O, by almost 1 Ry. On the other hand, since the re-
sults of the LDA confirm our physical intuition, this
method is very attractive.
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