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Calculation of a linear-Stark effect in D-line absorption in rubidium
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An external electric field can induce M1 and E2 amplitudes in the D lines of alkali-metal atoms,
which interfere with the normal El amplitudes of these lines, causing the absorption to depend
linearly upon the external field and upon the initial spin polarization of the atoms. We discuss this
effect and calculate its size for the D lines of rubidium.

An interesting and well-known kind of Stark interfer-
ence occurs when an M 1 (magnetic dipole) optical transi-
tion between levels of the same parity, always very weak,
acquires an El (electric dipole) component in the pres-
ence of an electric field. ' Here we discuss the converse
effect in which an electric field induces Ml and E2 (elec-
tric quadrupole) amplitudes in an allowed El transition.
In this case the interference is a tiny fractional effect, but
it still should be observable in precise optical experiments
with alkali-metal atoms, and could be significant in ex-
periments designed to search for a permanent atomic
electric dipole moment. ' If the effect can be measured
precisely in alkali-metal atoms, it will provide another
quantitative test of the atomic theory of these atoms.

As we will show later, the fractional change in the ab-
sorptivity a turns out to be of the form

The Rb atoms are assumed to be initially in the 5s, &2

state with electronic spin oriented along the positive z
axis (m, =m =+—,

' ). These atoms are illuminated with
D

&
resonance radiation propagating along the x axis with

wave vector k=kx and electric field E plane polarized
along the y axis.

E=&E(x t) y ( i(ek xcot)+e —!(kx cot))—
2

(3)

The applied static electric field E, =yE, also points along
the y axis. This geometry maximizes the effect in Eq. (1).

In the absence of external fields the Rb valence elec-
tron is described by a Hamiltonian Ho=p /2m+ V(r),
with V(r) the assumed central potential. For a state of
energy O'„I, the equation for the radial wave function
R„t(r):U„t /r may—be written as

= (aE2+ aM t )(e.E, )( k X e) o. ,
A

d +2(8, V)
l(l+1) U, =o

. p' p' (4)

where E, is an external static electric field, e and k are
the polarization and propagation directions of the in-
cident light, and a is the initial atomic spin direction. In
this paper we calculate the coefficients a@2 and a~& for
the D& absorption line in rubidium (i.e., the 5s&&2~5p&&2
transition), using a central field atomic potential. Here
we quote our results:

a@2——4. 57 X 10 (kV/cm)

a~& =+2.45 X 10 (kV/cm)

If the D, and D2 lines are not resolved, the net effect is
zero for a~] and aE2.

To keep the physical origin of the effect as clear as pos-
sible, we begin by using one specific orientation of the
vectors in Eq. (1) to set up the calculation. We then in-
tegrate over the angular parts of the atomic wave func-
tions, and find the correct radial equations to be solved.
Next we describe how we have performed the radial part
of the calculation that leads to the results in Eq. (2). Fi-
nally, we generalize these results to arbitrary geometry by
using irreducible tensor methods to derive Eq. (1).

where we have introduced p = r /ao, and use atomic units
me /A (2 Ry) for energy.

The ordinary E1 amplitude for the transition of in-
terest is proportional to the matrix element

@i(——,
' +-,')=

& 5p&/2 —,
'

I

—er.EISs„„+-,' &, (5)

ieE6, (
—

—,', + —,')= — Us pUs, dp .
0

(7)

The amplitude of the magnetic dipole transition be-
tween the same two states is given by

where m must change as indicated since E is perpendic-
ular to the z axis. (Here and throughout, e is algebraic,
e= —

~e for the electron. ) The initial and final states
may be factored into radial, angular, and spin parts

~5si&2, + ~

~

=Rsvp

YooX+in ~

(6)
l 5p& r2, T~ ~ Rsp(&2/3 Y, ,X+1m &1/3 Yt,oX—in ) .

After performing the angular integration, the matrix ele-
ment becomes
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'
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In our (CGSE) units, we have B =E.
Expanding the wave functions in the intermediate

states in terms of spherical harmonics and integrating
over angles, we can simplify Eq. (8) to yield

ep~E, B
2 2) 2 g/ pr ( pl/2

eely

l5 1/2 T&
5p ss

1 + 1
VII Es

(10)

where only n = 5 contributes to the sum over intermedi-
ate states because the MI operator cannot change n. In
the sums over intermediate states we indicate the orbital
and spin projections mI and m„which amounts to as-
suming that the spin-orbit splittings are small compared
with the energy denominators. The field 8 in the light
wave is l compare to Eq. (3)]

M1

2 Re(At,*(,) 2lp, lz,
8'~ —8'~,

(12)

which is readily calculable from well-known energies and
moments. Using aM, as defined in Eq. (1), we find

aM, = =2.45 X 10 (kV/cm)
2I( gl

8 —8', (13)

as quoted in Eq. (2).
Turning now to the electric quadrupole transition, the

amplitude is given by

where in the second line, we have used Eq. (5). The tran-
sition probability is proportional to

I
@(+At(+. . . I'=

I
@11'+2«(At( @1)+, (11)

where ta, and At, are given by Eqs. (7) and (10), respec-
tively. Thus the change in transition probability due to
the small M1 interaction is

8~( —
—,', + —,')=

I I
n, mt, m

8'5p —8'„d

az, +
tsJ J

(5p, /z,
—

—,'I —
—,'g Q;, lnp, mtm, '&(np, m(m, 'I —eE, .rl5si/2, + —,

'
&

8'~, —8'„p
(14)

where the electric quadrupole operator is Q; =e(3x,x —5, .x, ). The first term in Eq. (14) gives the Stark mixing of the
final state by the electric field E„which we call the "d channel. " The second term corresponds to the Stark mixing of
the initial state, which we call the "p channel. "

We now need to reduce the two terms to a calculable form. We will outline the procedure for the d channel; that for
the p channel should then be evident. Using the geometry specified initially, the first term in Eq. (14) becomes

&5pi/2 l lyl«m(m' &&«m('m'lxyl5sl/2 +
8z(d channel) = +i

4
n m m Sp ndI' s

(15)

By a standard technique we can transform the infinite sum of Eq. (15) into an inhomogeneous differential equation that
defines a new function %'d ..

~5 ) I pd &
= —y I 5p1/2 (16)

We can separate this into radial and angular parts by using the angular dependence of
I 5p»2, —

—,
'

& from Eq. (6) to set

I@d & =2 g I'2 (g, t)It)x f dQ'I'z' (8', (t')X sino'sing'
p .

X[&2/3Z, , (g'y')X „, v'1/'3r„(&', P')& —„,] . (17)
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Thus D (p ) satisfies the equation This leads to the expression for the total E2 amplitude

d 6
+2(Wq —V) D(p)=pU5

dp p
(18)

(19)

where

Substituting Eqs. (6) and (17) into Eq. (15), we find that

e E,Ek
6'2(d channel)= +i &Vq~xy~5s, q2, + —,

' &,
4

e E,Ek
=+& F D pp U5 +U5ppP p dp

4 0

(22)

The angular factor F is the same ( —,', ) for both channels.
As in Eq. (12), we find

& q'~ lxy l5si~2, + —,
'

& =Ff D(p)p'U5, (p)dp,
0

(20)

and the angular factor F is found from the angular in-
tegration of Eq. (17), using Eq. (6), to be F=

—,', .
Following the same procedure for the p channel, we in-

troduce P(p), which is the solution of

E2

2 Re(82 8, )

lelE, k &D(p)lp'IU, &+ & U Ip'IP(p) &=2
5

d' 2
~+2(W5, —V) P(p)=pU5, .

dp p

aE2E, ,

where in the last step we used Eq. (1). Thus we find

(23)

+ I [ (p)p U5 +U5pp P(p)]dp5, 0 I U5~p U~, dp

which we next evaluate using a central field model of the
Rb atom.

For a first ca1culation we have chosen to use the cen-
tral field potential published by Herman and Skillman,
based on Hartree-Fock-Slater calculations. With this po-
tential, the computation proceeds in three stages. First,
we solve the Schrodinger equation [Eq. (4)] for the 5s and
5p wave functions. Then the differential equations [Eqs.
(18) and (21)] are solved for the functions D(p) and P(p).
Finally, the integrations in Eq. (24) are performed.

We make here only the briefest of remarks about the
numerical techniques we employed. We used the
Numerov method to solve the differential equations by
iteration, integrating the solutions outward from p=O
and inward from ~, and matching at a meeting point in
the exponentially dying region of the wave functions by
the "shooting method. "' We solve Eq. (4) by varying the
energy to match the logarithmic derivatives of the inward
and outward solutions at the meeting point, while the in-
homogeneous equations [Eqs. (18) and (21)] are solved by
varying the amplitudes of the inward and outward solu-
tions so that the wave function and its first derivative
match at the meeting point. The integrations in Eq. (24)
were performed using a cubic spline interpolation polyno-
mial. " A number of self-consistency checks were devised
to ensure against numerical errors.

In Table I we list our calculated energies for several
states, and compare with the experimentally known ener-
gies found in Moore. ' Although the calculated energies
agree with the experimental energies to within 2%, the
energy difference between the ground state and the 4d
state is in error by almost 5%. In Table II we list several
calculated matrix elements, which agree within 10% with

a@2= —4.57 X 10 (kV/cm) (25)

To complete the discussion of the calculation, we now
derive the full angular dependence assumed in Eq. (1).

TABLE I. Rubidium energy levels in units of 2 Ry. The ex-
perimental values are taken from Moore (Ref. 12).

nl

Ss

Sp
4d

Exp. energy

—0.1535
—0.0956
—0.0653

Calc. energy

—0.1509
—0.0933
—0.0665

the experimentally determined values when the latter are
available.

The results of some of the numerical checks, and the
final calculations appear in Table III. From our
definitions of P(p) and D(p), it follows that rows a 1 and
a2 of Table III should be equal, as should rows 61 and
b2 We see t.hat the numerical agreement is good (using
the calculated energies), which provides a check on the
consistency of the calculation. In Table III rows c1 and
c2, and d1 and d2, the contributions to the interference
from the nearest levels alone are compared to the sum
over all states. We see that the 4d and 5p states dominate
the d channel and p channel, respectively. Because the
calculated energy denominator in row c2 is in error by
roughly 5%, we expect that our result for azz below will
have an uncertainty at least this large. Given the simple
single-particle potential employed, however, a much
larger error in aEz is possible. Using Table II, Table III,
and Eq. (24), we find that:
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Matrix element

& U„lp(p) )
(U dlD(p))
(U lplU, )
( U«l plU» &

& &(p) lp'I U„)
( U„lp'I p(p) &

( U4d Ip'
I
U

& U„lp'I U,„)

Calc. value

+46.86
—127.33

—5.395
+6.855

+4792.4
+2714.2

—35.03
61.09

TABLE II. Rubidium matrix elements in atomic units.

62(m', m )= &Sp, /2, m'. Czl5s~/2, m &,

where

(30)

A.

A, =iE,Ek (e' r) (e r)(k r)
Sp

which verifies the angular dependence of Eq. (1). Note
that only the E 6 term from Eq. (27) gives a contribu-
tion.

To treat the F.2 term, we rewrite Eq. (14) for arbitrary
geometry

We begin with the Ml term, rewriting Eq. (8) for arbi-
trary directions of e, k, and E, ( =E,E'):

+(e r)(k r) (&'.r)
5s

=2iE,EkQ, b, T,b, , (31)

JN, (m ', , m ) = & 5p, / ,2ml JR, I 5s, / ,2m &2, (26) with

where

ep&E, [e' r, (o.+I) B]
W5 —8'5,

1 1
abc a ~ ~ b c c b ~ II aT =r rr+rr r

5p 5s

Q,b,
= e', (eb k, +

khan,

) .
(32)

i [(e' k)(e r) —(e' e)(k.r)] .
8'5 —W5,

(27)
We have written Q,b, as symmetric in its b and c indices
because T,b,

= T„b. The tensor product can be written in

terms of irreducible components
The interference term in Eq. (11)may be written

2Re(6'*, A, , )=X &5&i/2 mjl «.EI5p|/2 mj&
Q b Tb gQ'" T" (33)

X ( 5p1/2 m, l~i l»1/2 m (28)

&«, & m, li (j,j b jbj, ) I m, &-
= g', (p, kb+ eb k~ )e, Ed,bod/2'
=(e.e')o" (k X e.)/2, (29)

We can set matrix elements of r proportional to corre-
sponding matrix elements of j, the angular momentum,
since j (=—,') is the same for all states. After summing

over m
' and introducing cr =2& m ljlmj. &, we find (using

vector component notation with repeated indices abed
summed)

2 Re(8 fAt, ) ~ e', (e,kb+ebk, )

6'~& i[(e' e)(k r)+(e'.k)(e r)], (34)

where n =0, 1, . . . stands for scalar, vector, etc. parts.
Because we are connecting j=

—,
' to j=

—,', only the sca-
lar and vector parts T' ' and T"' can contribute. The
scalar Part T EabcTabc& is zero because Tabc Tac
An arbitrary three index tensor has at most three irreduc-
ible vector components given by the contractions 5,b T,b„
6„T,b„and 5b, T,„,. The presence of the (scalar) energy
denominator in Eq. (32) only affects the magnitude of the
vectors in the matrix element. In our case, 5b, T,b, =0
because the electric quadrupole operator Q, in Eq. (14)
is traceleSS, which yields Tc ~ab Tahe ~ab Tach c

We have, then, that Q,' =5,bQ, b, =(e' e)k,
+ (e' k)e, . Thus

TABLE III. Checks of the calculation. The energy denominators are the calculated energies.

Checks and comparisons Calc. value

a1
a2
b1
b2
c1
c2
d1
d2

(U„lp(p) &

( U, Ipl U, )/2(E„E)—
& U., ID(p) &

( U4d I p I Us~ & /2(Es~ E4d)—
& D(p) I

p'I U„&
& Usr Ipl U4d && U4dlp IUss &/2(Esp E4e)
( U„lp'I p(p) )
& U „Ip'I Us, & & Us, Ip I Us. & /2(Es. —Es, )

+46.86
+46.85

—127.33
—127.74
4792.4
4474.2
2714.2
2862.2
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which contains the same two terms as A,
&

does in Eq.
(27). The anaglsis following Eq. (27) can be repeated.
Again, the e'-k term yields zero interference, while the
e'-e term leads to the angular dependence shown in Eq.
(29), which completes the derivation of Eq. (l).

An interesting aspect of the results in Eq. (2) is that a@2
and aM, have opposite signs and cancel to about 50%.
Since a~& is known to better than 1%, a measurement of
the total effect a =a+2+a~, yields a precise test of the
atomic theory needed for the E2 part. Accurate mea-

surements of this Stark interference in Rb and other
alkali-metal atoms could be used as an exacting test of a
more refined atomic theory.
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