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Measurement of the n =2 Lamb shift in He+ by the anisotropy method
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A high-precision measurement of the 2s S&/2 —2p P»2 Lamb shift in He+ by the quenching-

anisotropy method is reported. The theory and experimental method are described in detail. The
measured value of 14042.52+0.16 MHz (+11 parts per million) rivals the accuracy of Lamb-shift

measurements in hydrogen by microwave resonance. By subtracting the known low-order terms in

the Lamb shift, we interpret the results as a measurement of the order cz(Za) mc and higher con-

tributions to the electron self-energy GsE(Za). The various contributions to the Lamb shift are dis-

cussed, and a revised value for GsE(Zu) at low Z is extracted from high-Z calculations. The
theoretical value for the Lamb shift is 14042.51+0.2 MHz, in excellent agreement with experiment.

The results provide the most sensitive available determination of GsE(Za) for low Z. Measure-

ments and calculations for hydrogen and other members of the isoelectronic sequence are discussed.

I. INTRODUCTION

This paper presents the results of an extended series of
measurements of the 2s S&&2 —2p P, &2 Lamb shift in
He+ by the anisotropy method. Since the method was
originally proposed in 1973,' successive measurements
have progressively improved the precision to +25 parts
per million (ppm). The present work obtains a further
improvement to +12 ppm. Combining with previous

I

measurements gives an overall precision of +11 ppm.
The Lamb shift remains one of the important tests of

quantum electrodynamics (@ED) in the presence of
Coulomb fields. A main motivation for the present work
is to test the calculated corrections to the Lamb shift of
relative order a Z and higher, where a is the fine-
structure constant and Z the nuclear charge. For low Z,
the Lamb shift X can be expanded in powers of a and az
in the form (see, e.g. , Ref. 5 and earlier references therein)

Sa Za 4mc'
[ A4&+ A4iln(za) + A&oza+(Za) [A6zln (Za) + A6&ln(za) +KG(za)]

6mn

+(a/ir)[B4o+O(za)]+O(a /v )]+.. .

where the ellipsis represents finite-nuclear-mass and -size
corrections. Each of the constants 3; can be written as
the sum of electron self-energy, vacuum polarization, and
anomalous magnetic moment contributions. With the ex-
ception of the Bethe logarithm in the self-energy part

a ~o =ln(Z'R „/k„t )+ ,".5t,o— (2)

all are known analytically in closed form and are well es-
tablished. For the Bethe logarithm, highly accurate nu-
merical values are available. ' The principal theoretical
source of uncertainty comes from the term b, G(za),
which represents the residual contribution from the sum
of all higher-order terms in Ze arising from a Zo, expan-
sion of the electron self-energy. (There is also a small
vacuum polarization contribution. ) Mohr's calculation
effectively sums the Za series to infinity, and then sub-
tracts the leading terms shown in Eq. (1) to obtain the re-
sidual part b,G(za). However, the calculation involves
multidimensional numerical integrations which limit the
accuracy. Since (Zct) is four times bigger for He+
(Z =2) than for H (Z = 1), our +12 ppm measurement in
He+ is equivalent to a +3 ppm measurement in H for the
same sensitivity to the EG(za) term. This is substantial-

ly better than the currently best +9 ppm microwave reso-
nance measurement in H. In addition, He+ is relatively
less affected by uncertainties due to uncalculated recoil
corrections (see Sec. VI), and to nuclear size corrections.
The best existing microwave resonance measurement in
He+ has an accuracy of +86 ppm. '

The anisotropy method used in the present work is
based on the principle that when a metastable He+
(2s, &2) ion is quenched to the ground state by the appli-
cation of a static electric field, the emitted Ly-a radiation
is not isotropic, but possesses an anisotropy which is ap-
proximately proportional to the Lamb shift. The aniso-
tropy defined by

R = (Iii Ii )/(Iii+Ii ), —

where I~~ and Ij are the Ly-o. intensities emitted into
equal solid angles parallel and perpendicular to the elec-
tric field direction, is about 10% for all low-Z hydrogenic
ions. In general R is approximately equal to —3X/(2V),
where X is the Lamb shift and 9' is related to the fine-
structure splitting by

V=X —[E(2p i ) E(2p, i )] . —
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The additional energy difFerence E(2p3/2 )
—E(2p )/2 )

contained in V is to lowest order a non-QED effect which
can be accurately calculated. The anisotropy method is
complementary to direct resonance methods in that it
measures total intensities integrated over the resonance
profile. An important advantage is that the accuracy of
the anisotropy method is not limited by the large width I
of the Lamb shift resonance relative to the shift itself
(I =X/10). The main disadvantage is that one must
make high-precision measurements of the relative intensi-
ties. This problem is discussed in detail in Sec. III C.

The paper is organized as follows. Section II provides
an overview of the quenching theory used to interpret the
measured anisotropy in terms of the Lamb shift, includ-
ing a number of small corrections required for a high-
precision measurement. Section III gives a general
description of the experimental method, together with
considerations relating to various systematic corrections,
while Sec. IV describes some specific experimental tech-
niques designed to eliminate signal spikes and measure
the anisotropy independent of detector sensitivity. The
experimental results are presented in Sec. V, together
with the values for the systematic corrections. The vari-
ous contributions to the Lamb shift are discussed in Sec.
VI, and the results interpreted in terms of G(Za). An
important part of the interpretation is a revised deter-
mination of G(Za) at low Z from calculations at high Z
discussed in the Appendix. The revised value gives no-
ticeably better agreement with experiment.

II. QUENCHING ANISOTROPY THEORY

An account of the theory of quenching radiation asym-
metries in hydrogenic ions has been given by Drake. "
Here we discuss the main points used to relate the mea-
sured anisotropy to the Lamb shift, including some new
analytic results for the finite field corrections.

The aim of the theory is to describe the asymmetries in
the quenching radiation from the 2s»2 state in the pres-
ence of a constant electric field in terms of the radiative
transition amplitudes and energy separations of the states
involved. For atoms or ions such as H and He+ in fields
up to several kV/cm, the dominant field-induced mixing
is among the manifold of states 2s»2, 2p»2, and 2p3/2.
A small correction due to mixing with higher n states and
final-state perturbations will be added at the end. Since
He+ has zero nuclear spin, there is no additional

hyperfine structure. In addition, a perturbation expan-
sion in terms of the external electric field strength F is
useful provided that the quadratic Stark shifts are much
less than the Lamb shift. This corresponds to the condi-
tion'

12(eFao/X) «1
where ao is the Bohr radius, or F «(6.336 kV/cm) .

The formalism we use for describing the electric field
quenching of the 2s»2 state in a static electric field is
based on the phenomenological Bethe-Lamb' quenching
theory, which is in turn derived from the Wigner-
Weisskopf' analysis for time-dependent perturbations.
In this approach, the time-dependent Schrodinger equa-

H(t)=E+F(r ) V,
where a is a column vector of state amplitudes, E is the
diagonal matrix of field-free eigenvalues, V is the interac-
tion matrix with the external field, and F(t) describes its
time dependence. The key element of phenomenological
quenching theory is to replace the field-free eigenvalues
E by E —iI /2, where the I are the field-free level
widths. (I =y /2', where y. is the decay rate. ) Kelsey
and Macek' and Hillery and Mohr' have shown from
quantum electrodynamics that this procedure is justified
at least up to terms of relative order a/~. The introduc-
tion of level widths has only a small (493 ppm) effect on
the final results.

The general solutions to (6) show complex decay pat-
terns and interference effects. " However, if the external
electric field is switched on adiabatically, the perturbed
2s &&2 initial state is a stationary state of the form

g(2s, /2, m ) =a (F)$0(2s, /2, m )

+Q I

b~ ~$0(2p~/2 m )

+b' / '$0(2p3/2, m')],
where $0 denotes the field-free wave functions for the
strongly interacting states and the matrices b'J'(j =

—,', —,')
are given by

b" '=b (F)cr E. (9)

b' '=b (F)3/2

v'3E, ' —&2EO E, 0—
E, ~M,——~3k,

(10)

The components of o in Eq. (9) are the Pauli spin ma-
trices and the E (q=0, +1) are the irreducible tensor
components of the unit vector E in the electric field direc-
tion defined by

E+, = + —(E„+iE'y ), Eo =E, .
2

Direct numerical integrations of the full time-dependent
Eq. (6) for our field geometry show that the adiabatic
condition is well satisfied. '

Since the energies of the 2s, /2 (m =+—,
'

) states remain
degenerate in an electric field and are independent of the
field orientation, the forms of Eqs. (9) and (10) remain
valid to all orders of perturbation theory. The only expli-
cit dependence on field strength is through the three
overall multiplying factors a(F), b, /2(F), and b3/2(F).
To lowest order in F, they are given by

a(F)=1+0(F ),

(F) p1/211 II &/2 +o(F3)
v'6(X, + iI /2)

(12)

tion is written in a finite basis set of strongly interacting
states in the form

i' =H(t)a,da
dt
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=&to(lsi/2 m)l~'« ' '10(2sl/2 m') & (14)

where e is the polarization vector of the emitted radia-
tion, k is the wave vector ( lkl =F3/c ), a is the 4X4 Dirac
matrix and f(2s, /2, m ) is the perturbed initial state given
in terms of the field-free states by Eq. (8). The evaluation
of the matrix elements in (14) is facilitated by the partial-
wave expansion of the plane wave in (14). Keeping only
the electric dipole (El ), magnetic dipole (M 1), and mag-

netic quadrupole (M2) terms, the result is'

ee '"'=(—', 2r)' g {e Ma", M+i(k Xe) Mal M
M

+i ( —", )'/ [k,k X e]2 Ma2 M

The notation [a,b]2 M denotes the vector-coupled prod-
uct

(F)
P3/2 II II i/2 +g(F3)

v'12( V+2 r/2)
where I is the level width of the 2p state, and the re-
duced dipole matrix elements, including lowest order rel-
ativistic corrections, are summarized in Table I. Higher-
order perturbation corrections to the above equations can
readily be calculated analytically. ' Alternatively, the
coefficients a(F), b, /2(F), b3/2(F} are the eigenvector
components obtained from an exact diagonalization of
the Hamiltonian matrix in the 2s, /2, 2p1/2, 2@3/2 basis set
of strongly interacting states.

The properties of the quenching radiation are deter-
mined by the 2 X 2 matrix A with elements

and the aL M are the standard operators for electric and
magnetic multipole transitions given by (in the Coulomb
gauge)

(1)
aL, M

L
2L +1 gL+l(k )YLL+IM

1/2L+1
2L +1 gL —l(kr )YLL —lM (17)

for electric multipoles and

aL, M gL («)YLLM(0) (18}

for magnetic multipoles. The YLJM are vector spherical
harmonics as de6ned by Edmonds, ' and the radial func-
tions gL(kr) are related to spherical Bessel functions by

gL ( kr ) =4mij L ( kr. ) . (19)

and

~0 ~1/2 +2 ~3/2

~1 ~1/2 ~3/2 +~3/2

M=M, /2+2i(k e)M. 3/2, (21)

Using the Wigner-Eckart theorem, the transition matrix
A defined by (14) can then be written in the form

A =Voe Pl+rr .[iV, (eXE)+M(kXe)], (20)

where

[a b]2 M= g & lm lm'12M &a b
m, m'

(16)
b, /2(F)

Vl/2 /, &»1/2 litt a'i" ll2p 1/2 &4~'" (22)

TABLE I. Summary of transition matrix elements.

Matrix element Value

& 2p 1/2llrll»1/2 &

& 2p3/2111'112s1/2 )

& ls1/2 lla. aI" 112p1/2 &

& ts1/211& a'1" 112p3/2 &

3+2apZ ( 1 l2 Q Z )

—6apZ '(1 ——'o,"Z )

ikap

Z 3

1/2
29

1 — —"+—ln2 —ln3 cz Z'
35 96 2

1/2
1ka p 4'
Z 3 35 48 4 41 — —"+—ln2 ——1n3 Q Z

&»1/211' aP' ll»1/2)

& ts 1 /2 II a a 2
'

112p3/2 )

& 2p 1 /2 1~12s1/2 )

& 2p3/21~12s 1 /2 )

&»1~12p &

&2p lzl» &

24
ka Z ~ (4~) —1+0 4193~ Z0 34

8

i(ka ) o.'m' Z ' —1 —0. 18210.'Z

~3apZ '(1 —
—,za Z )

—&6a Z '(1 ——'a Z )

27&2apz '/35

3apZ
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b3/2(F) jfc

V3/2 1/2 ( ls 1/2111' a'1" 112p1/2 &

4(2TT )
'/

ia(F) (o) Q

1/2

(23)

(24)
k

111dQ= Tr(pA A )dQ2' (27}

and averaged over initial states, is obtained by substitut-
ing the above results into

b3/2(F)
M3/2 =

4(21T/3 )
'1/2 '»211 '

2 11»/2 (25)

Values of the above reduced matrix elements are summa-
rized in Table I.

The physical significance of the above terms is as fol-
lows. t/'&/2 and V3/2 represent the amplitudes for electric
field quenching of the 2s»2 state via the admixture of the
2p i/2 and 2p3/2 intermediate states, respectively, with the
emission of an E1 photon, while M3/2 is a small M2
correction. All three of these terms are (approximately)
proportional to the electric field strength through the b
coefticients. The combination Vo comes from transitions
with b.m =0 in Eq. (14), and the El part of V, comes
from transitions with Am =+1~ M&/2 is the amplitude
for spontaneous relativistic M1 transitions. It is to a
first approximation independent of field strength.

The electron spin polarization P of the initial 2s, /2
state is described in general by the density matrix

p= —,'(jl+cr.P) . (26)

The emitted radiation is then characterized by the four
vectors e, k, E, and P. A detailed expression for the de-
cay rate per unit solid angle, summed over final states

I

where Tr denotes the trace. The general result for arbi-
trary e, k, E, and P has been given previously. ' For the
present experiment, the 2s&/2 state is unpolarized and the
detectors are not sensitive to the polarization e of the
emitted radiation. Setting P=O and summing (27) over
two orthogonal vectors e perpendicular to k yields

121(k)d0= I(k)d 0

with

I(k)= —,'I V(11 [1—(k E) ]+—,'I V, I [1+(k E) ]

+ IMI +2 Im(M' V, )(k.E) . (28)

The relative intensities in the directions parallel and per-
pendicular to the quenching field are then obtained by
setting k.E=1 and k E=O, respectively. The last term,
which is linear in k.E, does not contribute because each
signal measurement is averaged over the directions k and—k. The IMI term is small enough at our quenching
fields to be omitted altogether.

Equation (28) is in a form convenient for calculating
the anisotropy. However, the significance of the terms
can be more easily seen by substituting Eqs. (21) and re-
grouping the terms in the form

I(8)=
I V1/21'+ I V3/21 + IM1/21'+ l IM, /21'+2 Im[M1/2( V1/2 V3/2 M3/2)]I'1(c»8}
—

[ I V3/2 IM3/2 I'+ 2 Re[ V1/2 V3/2+MS/2( V1/2 V3/2) ]]I'2«os8) (29)

P ~3/2 ~ ~1/2 (30)

is approximately the ratio of energy denominators given
by

%+i I /2
V+1r/2

and to the same approximation, I(8) reduces to

Io(8)=
I V1/21 [1+Re(po)(1—3 cos 8)

+ —,'lpol (5 —3cos 8)]

(31)

(32)

where the I'I (cos8) are Legendre polynomials and
cosO=k-E. The above clearly shows that all cross terms
vanish on integrating over angles, leaving only a sum of
absolute squares for the various radiative decay channels
which contribute to the total quench rate. The anisotro-
py comes predominantly from the Re( V1/2V3/2 ) interfer-
ence term between the 2p &/2 and 2p3/2 intermediate
states.

For purposes of presenting the results, we first consider
the limit of weak fields and nonrelativistic matrix ele-
ments. In this limit, the ratio

and the anisotropy R, defined by Eq. (3), becomes

[3 Re(po)+ -'I po1']
Ro

[2—Re(po)+ -,'Ipol']
(33)

This lowest-order result emphasizes that the anisotropy is
determined primarily by the ratio X/7= —0.08 for all
low-Z ions, and so Ro -—0. 1 over a wide range of nuclear
charge.

There are several small corrections to the above result
which must. be taken into account in the analysis of
high-precision measurements. We now consider each of
them in turn.

Finite electric field effects introduce higher-order per-
turbation corrections to the mixing coefficients a(F),
b1/2(F), and b3/2(F) which appear in Eqs. (22)—(25). A
simple recursion relation is given by Drake' for calculat-
ing the perturbation expansion to arbitrary order. Since
p is a ratio independent of wave-function normalization,
the general results can be simplified by choosing the nor-
malization so that a (F}=l. [This corresponds to the in-
termediate normalization ( go(2s, /2 ) It((2s»2 ) ) = 1.] The
expansion of the b (F) is then of the form
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W(2i-

WJ '=(Ez/b ) E. ~/b—,

(35)

with b, i/2=X+iI /2, b3/2 9+ii /2, and E2 and E4
are the second- and fourth-order perturbation energy
coefficients for the Stark shift of the 2s&/2 state. Defining

3/2

I & 2$ lz I2p, & I'/(&, )i', (37)
j=1/2

b (F)=b'"(F)[1+(eF) W' '+(eF) W' '+ ], (34)

where the b~. "(F) (j=
—,', —,

' ) are the first-order values given

by (12) and (13), and the W'. "' are given by

TABLE II. Input data for calculating the He+ anisotropy.

Quantity

9
7 2p

(5R /Rp }„
(5R /Rp }
(5R /Ro }Mr

Rq
R4
F

Value

175 593.54{3}MHz'
1.003 07 X 10

—23.7 X 10
6.4X10-'

—65.4 X 10
5.8471 X 10 (kV/cm}

—3.8084 X 10 (kV/cm}
631.05 V/cm

'Numbers in parentheses indicate the uncertainties in the final
figures quoted.

they are E2 = T, and E4 = —
T& T2. Then, corresponding

to the expansions of the b/(F), there are similar expan-
sions for p and R ~ of the forms

P1 =2

& lslzlnp &&nplzl2s &

E( ls ) —E(np )
(45)

P=PO+F P2+F P4+ .

R Ro+F R +F R4+

(38)

(39)

and then replacing Vo in Eq. (20) by Vo ikeF(—B+C).
Neglecting the level widths, the corresponding correction
to Ro is

After considerable algebra, the coefficients reduce to 5R
Ro

p 1+2po=2(B+C)— (1+Ro)2+p
eao

P2 3
Zh Po(1+2Po)(1 Po) with

eao' z~„,
2

P2( 1 +Po+ 4Po )

R2= —2
Z

eaoDO

'2

I pal'«( ~ i/2~3/2»

R4= —2
2

Z
Re(P4P2 i/2 3/z)

eaoDo

—3lp, l'[1 —4 Re(po)]/D',

+R /«[p2( 1 —7po ) ]/Do,

(41)

(42)

(43)

0=
& 1s

I
z

I 2p & & 2p Iz I 2$ & . (47)

B = —(25)2 /(3 3/2)ao/e

C=(7)2 /(3 v'2)go/e

Substituting these values, together with the transition
matrix elements given in Table I, yields

1+2po
(1+Ro), (48)

%co 2+po

M
Ro

The values of 8 and C can be calculated exactly by impli-
cit summation techniques ' with the results

where

Do =2—Re(po)+-', Ipol'

is the denominator of Eq. (33). Using the input data in
Table II, the numerical values are R2=5.8471X10
(kV/cm) and R z

= —3.8084 X 10 (kV/cm) . Terms
beyond R4 do not make a significant contribution of field
strengths less than 1 kV/cm.

The mixing of the 2s&/2 state with higher-lying np
states and perturbations to the 1s»2 final state are ade-
quately treated as an additional first-order electric dipole
perturbation. Since the fine structure of the np states be-
comes negligible relative to the much larger 2s-np and
1s-np Coulomb splittings, the effect of these additional in-
termediate states is to add a small background to the
quench radiation which is proportional to e.E. The addi-
tional states are taken into account by first defining the
quantities

bp /Po P3/2+ P3/2 0'i /2 P 1 /2 & (49)

where the p. and p' are the fractional corrections of
O(a Z ) to the matrix elements &2pjllrll2$»z & and
& ls»2lla. a'" II2pj &, respectively. The values taken from
Table I are

2Z2 p & ~2Z2

iM'3/z=( —
—,", ——,

' ln2+-', ln3)a'Z',

where itious=(3/8)Z e /ao is the 2s-ls transition energy.
For He+, the numerical value is —23.7 X 10

Relativistic corrections to the transition matrix ele-
rnents can be taken into account through their effect on
p. Since p is defined by Eq. (30), the correction to po
defined by Eq. (31) due to relativistic effects is

n =3

& 1$ lz I np & & np lz I
2$ &

E(2s ) E(np)—(44)
p', /~=( —

—,",——,
' ln2+ln3)a Z

Substituting into Eq. (33) results in
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1+2po
X

2+no
1+Ro
1 —

Co

R
(P3/2+83/2 Pi/2 Pi/2

rei 5RR&=Ro 1+
Ro

5R 6R

M2

+Rz(eF) +R4(eF) +O(F )

In summary, the theoretical value for the anisotropy is

For He+, the numerical value is 6.4X 10
The final small correction arises from the 2@3/2 1si/2

magnetic quadrupole (M2) contribution M3/z to Eq. (29).
The importance of this term was first pointed out by Hil-
lery and Mohr. ' Keeping only the term linear in M3/p
results in a correction,

+O(a Z /n. )+O(a Z ) .

III. EXPERIMENTAL METHOD

A. Overall plan

(53)

bIO(8) =Re[M3/2( Vi/p V3/p)](1 —3 cos 8), (51)

to Iz(8) given by Eq. (32). Neglecting the level widths,
the corresponding correction to R o is

R M3/2 (1—po)(1 —Ro/3)
R 0 V3/q ( 1+po/2)

9a'Z' (1 po)(1 Ro/3)
32 (1 +po/2)

(52)

For He+, the numerical value is —65.4X 10
Beyond the above relativistic and M2 corrections of

O(a Z ), one should consider QED corrections to the
quenching theory of O(a Z ). As discussed by Levy,
radiative corrections to the transition matrix elements in-
troduce j-independent multiplying factors in the nonrela-
tivistic electric dipole approximation. These cancel when
the anisotropy ratio is formed. The largest surviving
e8'ect is an anomalous-magnetic-moment correction to
the 2s&/2

—
2@3/2 1si/2 M2 transition amplitude, which

is smaller than Eq. (52) by a factor of O(a/n) The te. r.ms
already considered should therefore be adequate for the
analysis of experiments down to accuracies of a few ppm.

Figure 1 shows a schematic diagram of the apparatus
used to measure the quenching anisotropy. The overall
design has been described before, but the modifications
to the detection system mentioned in Ref. 4 require a de-
tailed description. BrieAy, the overall plan is as follows.
A He ion beam containing about 0.5% metastables is
obtained by passing 134.2-keV ground-state He+ ions
through a gas cell. The magnetic lens shown in the dia-
gram improves the final beam current (8 pA) entering the
Faraday cup by an order of magnitude. In the quenching
cell, the beam is subjected to a static electric field by sup-
plying opposite polarities to two pairs of cylindrical rods
mounted on insulators in a quadrupole arrangement. The
resulting Ly-a radiation emitted parallel (I~~ ) and perpen-
dicular (Ii) to the field direction is detected simultane-

ously by measuring the photoelectric current from the
photosensitive cones A, B, C, and D.

Beam contamination by ions other' than He+(2s) and
He+( ls) is kept small by the following strategies. First,
the long 900-ns Aight time from the exit of the gas cell to
the observation region allows the majority of highly-
excited-state ions to decay to the ground state. Second,
small transverse electric fields are applied in the region

S& (with film)

I

S, Collimotor

FOrOdOy
CUP

f) 3
Q

t

jx o) CJ l~

r-J

MagnetiC BeOm Of
Lens He (Zs) ions

n
Q

He Os)
ion beom

L~L S)
t

Fp(». ].. Schematic diagram of the apparatus for the He+ anisotropy measurement. The four metal rods in the quenching cell are
2700(2) cm in diameter and are supported 4.064(1) cm apart on insulators. The length of the cell is 15.24 cm. S, and S2 are photon

collimating slits with c =7.117(2) cm and s =21.999(3) cm.
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between the gas cell and the collimator to separate neu-
tral atoms from the ion beam. Third, a small axial elec-
tric field of 100 V/cm is maintained between the elec-
trodes of the prequencher (see Fig. 1) to ionize any highly
excited states which might survive the long Aight path
from the gas cell. However, the main purpose of the pre-
quencher is to apply a sufficiently strong electric field to
depopulate the 2 S&&2 state for purposes of noise deter-
mination, as described in Sec. IV A.

B. The quenching field and beam de8ection

As described above, a transverse electric field is applied
to the beam as it traverses the quenching cell. Calling the
beam axis the y axis, the field reaches a maximum
Fo =

~ Eo~ at the center yo =7.62 cm of the observation re-
gion, as measured from the entrance slit. The field not
only quenches the metastable states, but also produces a
deAection of the ions in the transverse direction. First-
order deAection corrections cancel out because the
quenching radiation intensities are simultaneously mea-
sured in all four directions, but there remains a small
second-order correction. The y dependence of the
quenching field must therefore be known to some pre-
cision. A previously described method for calculating the
field has been devised' with the results for F(y) shown in
Fig. 2. The field (in V/cm) at the center of the cell is
given by

cm, and V is the magnitude of the potential in volts for
the opposite polarities on two pairs of adjacent rods.

Starting at y =0 where the beam enters the cell with
velocity u, the transverse velocity u, (y) in the E direction
1s

u (y) Foyo ~h'o F(y') y'
d

v 2V, 0 Fo yo
(55)

where V, =134.2 kV is the accelerating potential for the
ion beam, and the transverse deAection is

u, (y')
z(y)=y f0 v yo

(56)

F=0.884 03 V/a (57)

in place of (54). All the data were taken at a single field
strength of F=631.05 V/cm.

As discussed further below, the detection system is
somewhat more complicated than shown in Fig. 1 be-
cause each slit s

&
actually consists of a pair of rectangular

slits mounted in tandem along the beam axis at distances
of 1.524 cm on either side of the center yo. At these loca-
tions, the strength of the field is reduced by a factor of
0.997 66 from the central value Fo. The correct quench-
ing field (in V/cm) to be used in Eq. (53) is therefore

Fo =0.8861 V/a, (54) C. Photon detectors

where a =2.032 cm is half the distance between the
centers of adjacent rods, each with a diameter of 1.270

1.0

0.8

0.6
F
Fp

0.2

Oo 0.2 0.4
Y/Yp

0.6
1

0.8 (.0

FIG. 2. The y dependence of the electric field strength in the
quenching cell along the beam axis. yo is the distance from the
entrance slit to the center (i.e., one-half of the cell length) and
Fo is the field strength at the center.

Each of the four detector systems shown in Fig. 1 is ac-
tually a pair of identical detectors placed a distance
I =3.048 cm apart along the ion beam as shown in Fig. 3.
The Ly-a photons from the beam pass a collimator con-
sisting of a rectangular entrance slit s, and a circular exit
slit s2, and then strike a photosensitive cone P. The cy-
lindrical housing C, kept as a positive potential Vc, col-
lects the photoelectrons and the high-precision electrom-
eter E (Keithley Model 642 LNFA) measures the photo-
current. The photocurrent is independent of V& in the
range 1 —200 V studied. The shields Sh prevent photons
from crossing between the two collimator systems.

The photoelectric yield of a cone generally improves as
its angle becomes sharper. However, in order to ensure
that the detector systems respond equally to photons of
different polarization, the cone angles were kept large
(96'). To compensate for the loss of sensitivity due to the
large cone angle, the cones were coated with a layer of
MgF2 of a few hundred A thickness, thereby enhancing
the yield to about 20%. The photon detection systems
have been designed to collect as large a photon signal as
possible with the requirement that the range of observa-
tion directions allowed by the finite sizes of the photon
collimation slits is sufficiently small to control systematic
errors (see Sec. V 82). The doubling of the photon detec-
tion system as in Fig. 3 allows this limitation on signal
strength to be surpassed.

We have introduced the above photon detection system
in place of standard photon counting techniques because
of nonlinearities which are inherent in photon counting.
The problem is that all electron multipliers produce a
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vc
I P

C

pulse height distribution which, for high count rates, is
weakly count-rate dependent due to variations in the
electron multiplication process. For example, in trial
runs with photomultipliers, we found deviations from a
linear response approaching 500 ppm at count rates of
10 counts/sec. In addition, dead time corrections be-
come increasingly troublesome for high count rates.
Both problems are avoided by directly collecting and
measuring the photoelectron current emitted from a large
surface area without further amplification. The disad-
vantage is that the photoelectron currents produced are
small ( —10 ' A). One must thus take care to ensure
that stray electrons and low-energy ions created by col-
lisions of the fast ion beam with the residual gas
( —6X10 Torr) are not detected by the cones. We
suppressed stray particles by imposing an axial magnetic
field of 20.5 G in the observation region. to confine the
electrons traveling with the beam near its axis, and by
covering the exit slits s2 of the photon collimators with

0
thin (-500 A) aluminum films. Electrons that are eject-
ed from the back surface of the films are suppressed by a
repeller plate kept at —300 V.

Each of the detection systems is connected to its own
high-precision electrometer, whose analog output in turn
is fed to a digital voltmeter (Hewlett Packard Model
3457A). The final output, normalized to the ion beam
current, is stored in a computer. In previous experi-
ments, only two electrometers were available for the four

detectors, which required the connection of two opposite
pairs of detectors via a long cable. The elimination of
these cables and their associated electronic noise has
significantly improved the overall stability of the present
measurements. The signal-to-noise ratio for each of the
detection systems now is about 1000.

D. Detector linearity

The accuracy of an anisotropy measurement is ulti-
mately limited by the linearity (as opposed to absolute ac-
curacy) of the photon-detection system. It is therefore
necessary to verify that the degree of linearity for the
current measurements is sufficiently high to measure the
anisotropy to a precision of the part per million level.

One potential source of nonlinearity is the finite volt-
age coe%cient of the resistance in the input stage of the
electrometer, where the photoelectron current is convert-
ed into a voltage signal. To minimize this voltage effect,
the input resistor of 10' 0 was constructed by connect-
ing four high-quality resistors in series so that for typical
currents of 10 ' A, the potential across a component
resistor is at most 50 mV. This ensures that the lineari-
ty between the current and its voltage analog at the input
state is well within 1 ppm.

Another potential problem is the nonlinearity between
the output voltage and the input voltage over the range
100—200 mV used in the experiment. For this range, the
linearity must be better than 10 pV per volt input. This
is less stringent than the 5 pV per volt linearity of the
Keithley Model 642 electrometers.

It is the high degree of linearity of our photon-
detection systems at high-photon fluxes that has allowed
a dramatic improvement over our earlier results obtained
by photon counting techniques.
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IV. MEASUREMENT TECHNIQUES

A. Photoelectron current

S ~xiii » i r ~l I I 1 I I I

l

1 I 1 i I I I j I I~S
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(t~ (t
)

BEAM

FIG. 3. Details of the photon detection systems 3, B, C, and
D shown in Fig. 1. The beam diameter (2p) is 0.228 cm, the
width 2a of the rectangular slit S, is 1.245 cm, the diameter 2P
of the circular slit S2 is 1.270 cm, and the cone angles are 96'.
The beam dellections (zo), and (zo)z [see Eq. (65)] due to the
transverse quenching field are exaggerated for clarity.

To eliminate effects from ion beam current fluctua-
tions, the photoelectron current for each detector pair is
normalized to the beam current and time averaged for 30
sec. The normalized photoelectron currents are quite
stable. However, superimposed are occasional current
spikes originating from a particles and cosmic rays, as
well as more gentle fluctuations induced by earthquakes.
The magnitude of these fluctuations are typically a factor
of 10 smaller than the signal. Similar variations of course
also occur during noise measurements, which we define
as the quenching signal that still persists when the 2 S&y2
ions are removed from the beam by prequenching. Since
both the signal and noise current suffer from similiar ex-
traneous fluctuations, the final time-averaged signal with
the noise subtracted is not affected on average. However,
as shown in Sec. VA, the precision is significantly im-
proved when the current spikes are removed.

B. Anisotropy

The quantity directly measured is the intensity ratio
r =I~I /I~, which is related to the anisotropy R by
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(58)
200

The need to measure the relative sensitivities of the detec-
tors, which would otherwise severely limit the accuracy,
can be avoided by measuring r for all possible 90 rota-
tions of the electric field in Fig. 1. The field can readily
be rotated by simply switching the polarities on the quad-
rupole rods in a cyclic manner. As a particular example,
let 0 be the angle between E and the CA axis. Then, for
any pair of adjacent detectors, say 3 and B, four current
ratios

r(0)= 2(0)/B(0), r(n /2)=B(vr /2) /A(rr/2),

r(n)= A(vr)/B(vr), r(3m/2)=B(3m/2) /A(3m/2)

can be obtained, where A (8) and B(8) are the simultane-
ously measured and time-averaged photoelectron
currents. Then the combination

~ 150—

E
0)

V)
CJ
(D

& ~00—

O

50—
t

/

/

/

t
t

I

/

I

t
t

I

rzz =
—,
'

I [r(0)r(m/2)]'~ + Ir(n)r(3~/2)]' (59)

is independent of the sensitivities. Furthermore, the
average

0
).266

I r ~i
).269

I I

l. 267 1.268

Intensity Ratio r = III/Ig

( r AB + rBC + rCD + rD A ) (60)

over all four adjacent detector pairs does not contain a
first-order correction due to transverse beam deAections
(beam bending) in the quenching field. Small second-
order corrections for this and other systematic effects are
discussed in Sec. V B.

A residual dependence on detector sensitivity arises
from the use of the detector pairs mounted in tandem
along the beam axis because the beam bending correction
is larger downstream than it is upstream. A correction
for this was avoided by averaging over two sets of obser-
vations with the upstream and downstream detectors in-
terchanged. A 30%%uo difference is known to exist between
the two sets of detectors due to variations in thickness of
the Al fi1ms covering the entrance slits.

V. RESULTS

A. The uncorrected data

We will denote the two sets of measurements before
and after interchanging the upstream and downstream
detectors by the labels I and II. Set I corresponds to the
higher sensitivity detectors being upstream. Each set will
be further subdivided into two groups to test the effect of
filtering out the current spikes described in Sec. IV A.

Figure 4 shows that a histogram of 933 unfiltered mea-
surements for set I is well fitted by a Gaussian curve. A

test yields g =15.75 for 16 degrees of freedom, corre-
sponding to a 55%o confidence level. A similar group of
unfiltered measurements was obtained for set II with the
results

ri =1.267 644931+0.000013 680,

1.267 672 337+0.000012 227 .

The Gaussian shape and a comparison with the filtered

FIG. 4. Histogram for the distribution of the 933 unfiltered
measurements of the intensity ratio rI. The dotted line is a
Gaussian distribution with the same mean and half-width.

results shows that the only observed result of the current
spikes is to increase the standard deviation, without
changing the mean value. Figure 5 shows a histogram
for the 3019 filtered measurements from set I. The stan-
dard deviation is 30% smaller than what it would have
been without filtering, but the average values for sets I
and II,

1.267 646 870+0.000005 555,

r,'& =1.267 656719+0.000005 657,

agree with the above unfiltered values. Also, the g test
improves to y =21.60 for 25 degrees of freedom, corre-
sponding to a 67% confidence level. Since the standard
deviation is proportional to v'X, where X is the number
of measurements, filtering reduces the number of mea-
surements required for a given accuracy by nearly a fac-
tor of 2.

The weighted mean values for the two groups of mea-
surements in each set are

r&
= 1.267 646 596+0.000 005 147,

riJ = 1.267 659 351+0.000005 134 .

The corresponding uncorrected anisotropies are

R i =0. 118028 354+0.000 002 002,

Rig =0.118033 315+0.000001 996 .

Averaging these gives the final uncorrected experimental
value
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B. Systematic corrections

The above experimental value for the anisotropy in-
cludes the correction for background noise of about
0.2%. There remain further corrections for a small 2E1
two-photon component of the signal, as well as correc-
tions for averaging the signal over the finite solid angle of
the detectors, beam bending and a relativistic angular
shift. These are now discussed in the following subsec-
tions.

1. Ttao-photon background

The quenching signal contains a small isotropic back-
ground from the spontaneous 2E1 decay of the 2 S&y2
state. This can be calculated and subtracted provided
that the sensitivity of the detectors to the broad two-
photon continuum is known. For each detector, the pho-
toelectron current due to 2E1 transitions can be written
in the form

l I l

&. 267 l. 268

Intensity Ratio r = Ii~/Ii
I.269

Ia 3'2s
I2F, = g(v)g(v)dv, (61)

FIG. 5. Histogram for the distribution of the 3019 measure-
ments of the intensity ratio r &', filtered to remove current spikes
(see Sec. IV A). The dotted line is a Gaussian distribution with
the same mean and half-width.

where I, =(Iii+2It)/3 is an average intensity which is
proportional to the total quench rate, independent of the
anisotropy l'cf. Eq. (29)j, yz, =131.7 sec ' is the 2E1 de-
cay rate and

1&»i„lzl2p„, ) I'

X'+ r'y4y(F)=y, (eF)'

R,„„,=0.118030 834 0.000001 414

l &»inl~l2p3/2) I+ 9+r /4
(62)

at a field strength of 631.05 V/cm.
The above difference of (4.96+2.00)X10 between

R, and R„is in accord with the expected difference due
to the different sensitivities of the detectors (see Sec.
VB2).

is the field-induced decay rate" to the ground state. The
quantity g(v) in (61) is the spectral distribution function
for two-photon emission normalized so that

—,
' J g(v)dv= 1,

TABLE III. Systematic and higher-order corrections used to obtain the zeroth-order anisotropy Ro
and the Lamb shift L from R, pt.

Quantity

Measured anisotropy R, pf

Detector nonlinearity
2E1 two-photon decay
Finite solid angle of detectors

and deAections of ion beam
Relativistic angular shift
20.5 G Zeeman splitting
vXB electric field

R2F +R4F
R.(&R /RO)M,
R,(6R/R, )„
Ro(5R /RO )

Ro (sum of above)
X [from Eqs. (31) and (33)]

Value

0.118030 834(1414)
0.000 000 000(350)
0.000 001 641(160)
0.000 151 984(262)

0.000 007 499(12)
0.000 000 279(1)
0.000 000 352(2)

—0.000 232 242(60)
0.000 007 715
0.000 002 796

—0.000 000 755
0.117970 103(1489)

14042.59(18) MHz



43 MEASUREMENT OF THE n =2 LAMB SHIFT IN He+ BY THE. . . 3335

u~0. 2—
C)O~
C3

l+
LaJ

Os~ p
0
CD

CD

C3

p,
0

I
l

I
I

I
11

10
I I I I I I I I I I I I I I ( I I I

20 50 40 50

Photon Energy (eV}

FIG. 6. Composite diagram showing the photosensitivity g(v) for MgF~ as a function of photon frequency (Ref. 25), and the 2E1
2s S&/z-1s S&/z two-photon distribution function g(v) in arbitrary units (Ref. 24).

where h vo=E(2s, &z)
—E( ls, &z) is the Lya transition en-

ergy, and ri(v) is the sensitivity of the detector to photons
of frequency v relative to the sensitivity at vp. The factor
of —,

' is included because each pair of photons is only
counted once. The above assumes that, because of the
small solid angle observed by the detectors, only one of
each photon pair is recorded. The fractional correction
to R expt is then

A numerical evaluation of the integral of Eq. (64) with
the data shown in Fig. 6 yields the result g=0.637
+0.065. The estimated error corresponds to variations in
the shape of q(v) allowed by the error bars. ri(v) is
known to be small below 10 eV (Ref. 25) where the curve
extrapolates to zero. Using yz, /y(F)=2. 102X10 at
F=631.05 V/cm, the correction to the amsotropy from
Eq. (63) is 5R =(1.641+0.160)X 10 as listed in Table
III.

5R

2E1
q(1 +R /3),

y
(63)

2. Finite solid angle and beam bending

where

voI g(v)g(v)dv .
2'rI vo 0

(64)

The function g(v) shown in Fig. 6 is accurately known
from theoretical calculations. What remains to be
found is g(v) for the MgFz coating on the photosensitive
cones for an angle of incidence of 42, corresponding to
the 96 cone angle. The experimental points in Fig. 6 are
from the work of Lapson and Timothy on the photon
e%ciency for MgF2-coated channeltron electron multi-
pliers at an angle of incidence of 45. This can be taken
to be the q(v) for MgF~ itself for the following reasons.
First, a channeltron responds with near certainty to a sin-
gle photoelectron. Second, the results for the coated
channeltron are in agreement with the direct eKciency
measurements on MgF2 at an angle of incidence of 50' by
Lukerskii et a/. for photon energies above 100 eV.
Since only relative eKciencies are required to evaluate g,
sm.all variations in angle are of negligible importance.

The solid angle correction takes into account the finite
slit sizes of the photon collimators, along with the effects
of beam deAection by the quenching field and the pro-
gressive depletion of the metastable state along the beam.
Once the corrections have been obtained for a single
detector, they must be averaged over the detector pairs
shown in Fig. 3 with weighting factors m& and m2 equal
to the relative radiation intensities.

The radiation intensity decays exponentially along the
beam according to I(y) =I(0)e r~, where 1/y is the de-
cay length due to quenching. The beam also bends due to
the transverse electric field in the z direction, giving it a
parabolic trajectory of the form

z =zp+ Ay +py (65)

where zo is the beam deflection and A, =U, /v~ is the veloc-
ity ratio in the z and y directions, all evaluated at the
center of the detector viewing region. Finally,
p, = ~E~/4V„where V, is the accelerating potential for
the ion beam. In terms of these constants and the ones
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shown in Figs. 1 and 3, the observed anisotropy R is re-
lated to the solid angle corrected anisotropy R, by

1 —R, ~2 pz p2t' +
s 3 4 2s

R
R,

where

+ [—'(1—R )
—R]— (1—R ),ZQ 2

Z p 2

R C C Cs s
(66)

ct2t2 2( 1 t2)zo=zo+[A, +2(p —
A, y)zo] +

2 22= 2+ —'[F2+2( —A, ) ] 2t2+ P (3t +6t+2)
Zp Zp 4

and t =s/d. Equation (66) assumes that the signals from
opposite detectors are averaged so that first-order correc-
tions from beam bending cancel out. The input parame-
ters for Eq. (66) and their uncertainties, along with the re-
sulting relative errors 5R /R in the anisotropy, are listed
in Table IV. The subscripts 1 and 2 on the parameters re-
lating to beam bending refer to the upstream and down-
stream detector sets, respectively, in Fig. 3. The two
correction factors are

(R, /R ),= 1.001 329 298+0.000 002 006,

(R, /R )2=1.001229248+0.000002 116 .

The difference bR, 2/R =(1.00050+0.02942) X 10
corresponding to AR i 2

= 11~ 81 X 10, arises from the
greater beam bending at the downstream position. The
average of (R, /R ), and (R, /R )2, weighted by the rela-
tive intensities w, and w2 (see Table IV) at the two detec-
tor positions, is

(R, /R ) = 1.001 287 647+0.000002 0887 .

This is the final value used to calculate the solid angle

correction in Table III.
Since the signals from the upstream and downstream

detectors were combined, the above difference could not
be observed directly; but it could be observed indirectly
when the two detector sets were interchanged. Our 30%
difference in detector sensitivity corresponds to a predict-
ed hR =(3.55+0. 10)X 10 upon interchange. This is
in good agreement with the observed value
(4.96+2.00) X 10 presented in Sec. V A.

3. ReIatiuistic angular shifts

The observed intensity I~~ emitted parallel to E in the
laboratory frame by the fast moving ions corresponds to
emission at a small angle O=U/c to E in the comoving
atomic frame. There is a similar angular shift for I~, but
because of rotational symmetry about the field direction,
this intensity is not affected. The net correction to the
anisotropy is

M =R, (1—R, )(v/c) (67)

4. Zeeman splitting and v X Bfields

The Zeeman splittings of the n =2 manifold of states
in an axial magnetic field B produce corrections to the
mixing coefficients a(F) and b'~' (F) in Eq. (8) which
cancel out to first order in ~8~. However in second order,
the net effect is to enhance the Stark coupling between
the 2 S&&2 and 2 P, &2 sublevels, thereby decreasing the
anisotropy. For our field strength of 20.5 G, the correc-
tion to R is 5R =(0.279+0.001)X 10

The B field introduces a further correction. As the ion
beam traverses the quenching field E, it progressively ac-
quires a velocity component v, =A,u [see Eq. (65)] in the
transverse direction. The resulting vXB electric field is
perpendicular to E, and the vector sum produces a net
effective quenching field which is rotated through a sma11
angle O=u, B/(cF). The resulting correction to the an-
isotropy is

5R /R, =28 (68)

Parameter Value 6R/R (ppm)

TABLE IV. Parameters for calculating the solid angle and
beam bending corrections [see Eq. (66)]. 5R/R is the relative
error in R corresponding to the uncertainty in each parameter.

This must be evaluated separately for the upstream and
downstream detectors.

Numerical values for the above corrections and the
final experimental value for the zeroth-order anisotropy
Ro are summarized in Table III. The Lamb shift X is
then obtained from Ro using Eqs. (31) and (33).

C

p

A2

(Zp )&

(Zo )p

Wi

W2

y

0.6223+0.0013 cm
0.6350+0.0013 cm
7.1171+0.0025 cm
14.8826+0.0025 cm
0.1143+0.0077 cm
(1.178+0.010)X 10 cm
0.011 74+0.0009
0.018 92+0.0015
0.030 34+0.000 24 cm
0.077 06+0.000 62 cm
0.5745+0.0010
0.4255+0.0010
0.098 53+0.0080 cm

1.051
1.641
0.082
0.396
0.092
0.003
0.004
0.007
0.177
0.835
0.000
0.000
0.000

VI. DISCUSSION

The final experimental value for the Lamb shift from
Table III is 14042.59+0. 18 MHz, as first reported in
Ref. 27. This agrees with, but is somewhat higher than
our previous anisotropy measurement of 14 042.22+0. 35
MHz. The statistically weighted mean of the two mea-
surements is 14 042. 52+0. 16 MHz. This is in good
agreement with the currently best microwave resonance
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TABLE V. Comparison of theory and experiment for the
He+ Lamb shift (in MHz).

Experiment

14042.51+0.16'
14042.0+ 1.2"
14046.2+ 1.2'
14040.2+ 1.8

Theory

14042.33+0.5'

14042.51+0.2

'Present work.
Reference 10.

'Reference 28.
Reference 29.

'Calculated with Mohr's (Ref. 8) AG&E(Zn) = —22.9(1.0).
'Calculated with revised AGsE(Za)= —22.48(38) (see the Ap-
pendix and Table VIII).

value of 14042.0+1.2 MHz, ' but is substantially more
accurate. Table V gives a complete listing of past mea-
surements. Only the older measurement of Narasimham
and Strombotne (14046.2+ 1.2 MHz) is in clear

E(l,j ) =E~(j )+b,EI (I,j )+5E~+AE„, , (69)

where ED(j) is the Dirac energy, EEL (l,j) is the QED
correction for infinite nuclear mass, AEM is the finite nu-
clear mass correction, and b E„, is the finite nuclear size
correction. The first two are given by ' ' (for n =2)

(Za) mc
N(N+2+y —k )

(70)

with k =j+—,', y=[k —(Za) ]', and N=2[1 —(1
—k /2)( k —y ) ]

' ~, and

disagreement with the others.
A recent discussion of Lamb shift calculations has been

given by Sapirstein and Yennie. To compare with
theory, the energies of the 2s, &2 and 2p (j=—,', —', ) states
can be written in the form

HEI (I,j )=C([—,",+ln(Za) ]5& o
—P&+ —', 5t &cI /(21+1)+mZa(+', ', —

—,
' ln2)5I o

+(Za) I
—

—,
' ln (Za) 5&o+ln(Za) [(41n2 —

—,",, )5&o+( —,",, + —,', 5~,&z)51,]+G(Za)]

+(a/vr)[0. 40415&o 0.24645&—,c& /(21+1)+O(Za)]+O(a /m )),
where cI =2(j—I )/( j+—, ) is the anomalous magnetic moment factor and the overall multiplying factor is

C =a(Za) mc /6m =135.643 81(2)Z MHz .

The Bethe logarithms are

I32, =2.811 769 893 120, /32
= —0.030 016 708 630 .

The finite nuclear mass corrections consist of a reduced mass part, given to sufficient accuracy by

(71)

AE (red. mass)= — 1 — E (j)+(Za)
16

2

—C ln(elm )5( o—

—1 GAEL(l j )

1 — —
38 5, ,c, J /( 2I + 1 ) ] (72)

where, p= mM/(m +M ) is the reduced mass, and a relativistic recoil part

b,EM(rel. rec. ) = C (Zp/M ) [
—2P~ + [ ~ ln(Za ) + —",4' ]5~ o —,', 5~ ~ } (73)

The term proportional to ED(j) in Eq. (72) does not contribute to X, but it does contribute to P. There are additional
radiative-recoil corrections of order C (Zap/M ) and pure recoil corrections or order C (Z ap/M). Evaluation « the
latter has recently been completed. The higher-order (HO) results for both sets of terms are

(HO) = ' p~(Zap, /M) [(—"ln2 ——',9+
—,",, —0.41S+0.004)+Z[ —', —ln(2/Za)+Din(1/Za) —4.25]]5Io (74)

5E„,= —,', a Z mc2(r, , /ao) 5I o (75)

The total contribution from Eq. (74) is —0.016 MHz for
He+. The remaining nuclear size correction in Eq. (69)

is

where r, , is the root-mean-square radius of the nuclear
charge distribution. [For higher-Z ions, see Eq. (A23) in
the Appendix. ]

The nuclear size correction requires some additional
discussion. In the case of Lamb shift measurements in
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hydrogen, this is a major source of uncertainty because
there are two measurements of r, , which difFer by
several times the quoted error bars [0.805+0.011 fm
(Ref. 35) and 0.862+0.012 fm (Ref. 36)]. The corre-
sponding difFerence in the Lamb shift is 18 kHz, which is
twice the experimental uncertainty. The situation is
more favorable in the case of He+. Here, there have been
three electron scattering measurements of r, , which are
in good agreement with each other. The combined
result of all three measurements is r, , =1.674+0.012
fm. In addition, the value r, ,=1.673+0.001 fm has
been determined from the 2s, &z

—
2p&&2 and 2s&&z

—
2p3/2

transition frequencies of the muonic system p -He +,
The validity of this measurement has been questioned be-
cause of subsequent difFiculties in observing evidence for
the p -He +(2s) metastable state. ' However, Bracci
and Zavatinni have recently argued that the observa-
tion of the muonic transition frequencies at high pres-
sures (-40 atm) can be explained by the formation of
triplet molecular ions of the form He(p -He +), analo-
gous to the stable triplet HeH+ molecule. In view of this,
we take the muonic measurement of r, , as correct. Re-
verting to the less accurate electron scattering value of
r, , has almost no effect on the final value for X, but it
increases the uncertainty in the nuclear size correction
EE„, by about a factor of 10. A remeasurement of the
muonic transition frequencies at low pressure would be
highly desirable for the interpretation of the electronic
Lamb shift in He+.

The term G (Za ) in Eq. (71), which represents the sum
of all higher-order terms in Za, consists of the self-

energy and vacuum polarization parts

G(Za)=GsE(Za)+Gvp(Za) . (76)

The dominant source of theoretical uncertainty at low Z
comes from the term GsE(Za). The available calcula-
tions at Z = 10, 20, and 30 (Ref. 48) have been extrapolat-
ed by Mohr to low Z by fitting exactly a three-parameter
function of the form

GsE(Za) =a, +(Za)[a2ln(Zu) +a3] . (77)

For the 2s, &z state of He+, this procedure yields
GsE = —23.55+1.0, where the uncertainty is determined
by allowing the Z = 10 value to shift by the amount of its
uncertainty. The corresponding Lamb shift is
14042.33+0.5 MHz. This agrees with experiment, al-
though the central value lies lower by more than the ex-
perimental uncertainty. A more extended five parameter
fit to all ten calculated points up to Z =100 is described
in the Appendix. The result is the somewhat higher
value GsE= —23. 16+0.15 for the 2s, &2 state (or b, GsE= —22.48+0. 38 for the transition), corresponding to a
Lamb shift of 14042.51+0.2 MHz. The additional un-
certainty due to the nuclear size correction is +0.02
MHz assuming the muonic value for r, „and +0.2 MHz
assuming the electron scattering value. A further uncer-
tainty of +0. 15 MHz assigned by Sapirstein and Yennie
due to uncalculated recoil corrections is no longer includ-
ed because the evaluation of these terms is now com-
plete. The new terms are included in Eq. (74). The ex-
cellent agreement with experiment lends support to the
higher value for GsE, but the question cannot be settled

TABLE VI. Comparison of theory and experiment for the total Lamb shift, and the derived electron self-energy part GsE of the
term G(Zn) in Eq. (1). r, , is the nuclear radius used.

Ion r, , (fm) +expt +theor (AGSE )expt {~GSE )th o {~Gvp )th o

'H

19F
31P
32S

"Cl
4'A
238U

0.862(12)
0.805(11)
1.673(1)
2.56(5)
2.711(14)

2.900{15)
3.197(5)
3.247(4)
3.335(18)
3.428(8)
5.751(50)

1057.845(9)'

14042.52(16)
62 765.(21)'

2192.(15)'
2215.6(7.5 )g

2203.(11)h

3339.(35)'
20.188(29)'
25.266(63)"
31.19(22)'
37.89(38)
70.4(8.3)"

1057.878(8) MHz
1057.859(8) MHz

14042.51(20)
62739.(6)
2196.54(47) GHz

3343.7(9)
20.258(11) THz
25.378(16)
31.35(2)
38.25(2)
75.3(4) eV

—27.45+ 1.25+0.57
—24.88+ 1.25+0.48
—22.47+0.35+0.02
—17.22+4.0+0.78
—22.92+7.9+0.03
—10.45+4.0+0.03
—17.11+5.8+0.03
—21.47+9.1+0.03

—19.63+0.35+0.004
—19.45+0.52+0.003
—19.22+ 1.3+0.013
—19.55+ 1.6+0.005
—7.83+0.46+0.02

—22.91(40)

—22.45(38)
—22.10{33)
—20.52(22)

—20.24(20)
—18.75(13)
—18.53(12)—18.31(12)
—18.09(10)
—7.563{4)

—0.516

—0.508
0.500

—0.473

—0.469
—0.449
—0.447
—0.444
—0.442
—0.600(8)

'The first uncertainty listed is due to the experimental uncertainty
in L, and the second to the nuclear radius uncertainty.
AGvp =b GU+ AGwz.

'Reference 9.
Present work.

'Reference 50.
Reference 51.
Reference 52.

"Reference 53.
'Reference 54.
'Reference 55.
"Reference 56.
'Reference 57.

Reference 58.
"Reference 59.



43 MEASUREMENT OF THE n =2 LAMB SHIFT IN He+ BY THE. . . 3339

until more accurate calculations are available for low Z.
For hydrogen, the revised fit increases GsF from

—24. 1+1.2 to —23.60+0. 17. The effect is to increase
the Lamb shift by 4 kHz to 1057.859(8) MHz for
r„,=0.805 fm and 1057.878(8) MHz for r, , =0.862 fm.
Both of these lie above the experimental value of
1057.845(9) MHz.

The next largest source of uncertainty due to uncalcu-
lated terms in the Lamb shift arises from the exchange of
two virtual photons. This gives rise to the leading terms
of order P(u/m. ) in Eq. (71) t'denoted by B40 in Eq. (1)],
but binding corrections of relative order ZaB50 have not
been evaluated. Assuming a coefficient 850 =+2B40, the
uncertainty in X is +2Z kHz for low Z. The result for
He+ is +0.06 MHz.

Since the primary theoretical uncertainty comes from
the GsF part of G(Za) in Eq. (76), it is instructive to ex-
tract an experimental value for Gs~ from the measure-
ments by taking the other well-established terms in Eq.
(1) as correct and subtracting their contributions. The re-
sults for all ions for which measurements of significant
precision are available are shown in Table VI, along with
the values of the nuclear radii used and their uncertain-
ties Th. e tabulated quantity is b, GsF =GsF (2s»2 )—GsF(2p, &z) for the Lamb shift transition. Other details
of the calculations as a function of Z are given in the Ap-
pendix. (Not included in the table is the work of Sokolov
and co-workers who effectively measure the ratio X./I
to very high precision. ) Our value for He+ of
EGsF = —22.47+0.35, together with the values for I' ' +

and S ' + of —19.63+0.35 and —19.45+0.52 respec-
tively, provide the most stringent tests of theory. While
the former is in agreement with theory, the latter two lie
significantly below theory. Most of the results for Z + 8
show a similar trend. Since the other theoretical terms
are assumed to be correct, the uncertainties in the above
experimentally derived values for AGs~ reAect only the
experimental errors in X an r, , There is an additional
uncertainty of +0.2/Z for small Z due to the uncalculat-
ed two-photon exchange term B50 discussed above. This
is much less than what is required to reconcile the ap-
parent agreement with theory for He+ with the above
disagreement at higher Z.

In summary, the 11-ppm accuracy obtained in the

present work for He+ rivals the 9-ppm accuracy in hy-
drogen. The He+ result is a factor of 4 more sensitive to
the G(Za) term because of its Z scaling relative to the
leading terms. The interpretation of the results is rela-
tively unaffected by uncertainties in the nuclear size
correction, even if the less accurate electron scattering
value of r is used. The derived value for EGs~(Za) is in
good agreement with theory, especially with the revised
value obtained in the Appendix by fitting to all the calcu-
lations up to Z=100. The most pressing problems for
future work are (i) improved calculations of GsF for low
Z and (ii) a remeasurement of the p -He + transition fre-
quencies at low pressure in order to determine a firm
value for r, ,
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APPENDIX

f(x)=a&+a2x lnx +a3x+a~x +a5x (A1)

where M is an integer in the range 8 —15 chosen to give
the best overall fit to the data. The last term provides a
phenomenological representation of the strongly nonper-
turbative behavior of the self-energy which eventually
sets in for high Z, but it makes a negligib1 contribution
for low Z. The final results for low Z are nearly indepen-
dent of M over a broad range. The above five functions
provide an accurate representation over the entire range
of Z without oversaturating the function space so that
the coeKcients become only weakly determined. Since

Values of Gsp(Za) for Z (10 have been obtained in
the past by fitting exactly a three-parameter function of
the form of Eq. (77) to calculations at Z = 10, 20, and 30.
However, there is additional information contained in the
results for Z =40, 50, . .. , 100 which might be used to ad-
vantage, especially in view of the large uncertainty intro-
duced by the calculation for Z = 10. To this end, we have
tried fitting the five-parameter function

TABLE VII. Fit to GsF(Ze) derived from Mohr's electron self-energy term F(Za) for the 2s&/2
state.

Z

10
20
30
40
50
60
70
80
90

100

F(Za)

4.893(2)
3.5063(4}
2.8391(3)
2.4550(3)
2.2244(2)
2.0948(4)
2.0435(8)
2.065(2)
2.169(3)
2.387(3)

GsE(Za)
—20.69+0.28

—18.114+0.014
—16.101+0.005
—14.351+0.003
—12.771+0.001
—11.316+0.002
—9.956+0.002
—8.664+0.004
—7.411+0.005
—6.160+0.004

Fit, Eq. (A9)

—20.54
—)8.109
—16.103
—14.351
—12.771
—11.317
—9.956
—8.663
—7.411
—6.160

Difference

—0.15
—0.005

0.002
—0.0004
—0.0002

0.0005
0.0002

—0.0007
0.0004

—0.0000
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the revised fit has a noticeable efFect on the comparison
with experiment, the procedure is described below in
some detail.

The coefficients a; are determined by a least-squares fit.
Defining the basis set of functions

f, (x)=1, f2(x)=x lnx

f3(x)=x, f~(x)=x, f,(x)=x

the least-squares solution for the column vector of
coefficients a is '

summed to all orders in Za. It is related to GsE(Za ) by

GsE(Za) =[—,'F(Za) —F„„(Za)]/(Za) (A5)

where F&, (Za) contains the known low-order terms
which must be subtracted. They are

F& (Za)=ln(Za) + —,"o —13„&+6.968340681(Za)

+(Za) [ ——', ln (Za)

+ A6, (n, l,j)ln(Za) ] (A6)

a= A 'b, (A2)
for s states and

Fi,„(Za)= —P„i+—',c( /(2l+1)

+ A6, (n, l, j)(Za) ln(Za) (A7)

GsE(Z;a)fk(Z, a)
2=1 Oi

(A4)

for p states. The values of A 6, (n, l,j ) are

A 6, ( 1,0, —,
'

) =7 ln2 ——'„', A 6, ( 2, 0, —,
'

) =4 ln2+ —,", ,

Z, = 10, 20, . . . , 100 for i = 1,2, . . . , 10 and o.
, is the un-

certainty in the calculated GsE(Z, a). The quantity
F(Za) tabulated by Mohr is the total self-energy

I

Correspondingly, cr, =—'cTI '/(Z;a), where o'; ' is the un-

certainty in F(Z, a). The results of the least-squares fit
are

GsE(1s&&2,za) = —23.419+5.852Za ln(Za) + 15.922Za+4. 294(Za) +2.572(Za)'

GsE(2s, &2, za)= —24. 177+6.293Zaln(Za) +16.548Za+5. 549(Za) +2.977(Za)",

GsE(2p, &~, Za) = —0.715+0.170Za ln(Za) + l. 195Za+0.357(Za) + 1.502(Za)

GsE(2p3&z.,za)= —0.417+0.233Zaln(Za) +0.449Za+0. 191(Za) —0.032(Za)

(A8)

(A9)

(A 10)

(Al 1)

TABLE VIII. Summary of values used for GsE(Zn ),
GU(Za), and G~K (Za), as calculated from Eqs. (A8) —(A21).

State GsE(Za) GU(Za. ) G~K(Za)

As an example, the details of the fit for the 2s»2 state are
shown in Table VII. In each case, the deviations from
the input points are substantially less than the uncertain-
ties. The accuracy of the result GsE(2s, &z ) = —23. 16 for
Z =2 was determined by (i) letting the calculated points
shift up and down by cr, , (ii) deleting each of the points
in turn from the fit, and (iii) progressively deleting all the
points for Z =10, 20, and 30. In no case did the extrapo-
lated value at Z=2 change by more than +0.1. Chang-
ing M in the range 8 ~ M ~ 14 also gave agreement to
within +0.1. However, these tests may still underesti-
mate the actual error. To be conservative, we take the

I

uncertainty to be three times the change in GsE from test
(i) above. Even this may underestimate errors introduced
by the empirical form of the fit at high Z. A definitive
value must await accurate calculations at low Z.

The difference from previous extrapolations comes pri-
marily from the choice of weights. Setting 0; =1 in (A3)
and (A4) yields GsE(2s»2) = —23.56+0.75 for Z =2, in

close agreement with Mohr's estimate, but with some-
what reduced error. However, this procedure gives much
higher weight to the Z =10 calculation than is justified
by its accuracy. Omitting this point from the fit yields
—23.20, in agreement (+0.1) with our revised value.
For the 1s&&z state, the difference is much less and in the
opposite direction, the values for Z=2 being —22. 35
Mohr's procedure and —22. 46 from Eq. (A8).

A similar fit can be obtained for the Uehling vacuum
polarization contribution denoted by Mohr as HU(za).
HU(Za) is related to GU(Za) by

H( 1$1/2 )

H(2S ~ /2 )

H(2p )/2 )

H(2p3/2 )

He+(1s 1/2 )

He (25 1/p )
He+(2p 1 /2 )
He+ (2p3/z )

—22.88(27)
—23.60(17)
—0.69(23)
—0.40(21)

—22.46(25)
—23.16(15)
—0.68(23)
—0.38(21)

—0.464
—0.606
—0.048
—0.011
—0.455
—0.597
—0.048
—0.011

0.042
0.042
0
0

0.041
0.041
0
0

GU(Za) = PHU(za) —H),„(za)]/(Za)

where

(A12)

H„{Za)=—
—,'+(5m. /64)(za) —

—,', {Za) ln(Za)
(A13)

for s states and H&, (Za)=0 for p states. Since a& is
known exactly, only the remaining four parameters in
(Al) need be fitted. With cr; = 1, the results are
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GU( ls&&z, Za) = —0.475 180+0.163 99Za ln(Za) —0.025 17Za —0. 155 52(Za) —1.064 82(Za)

GU(2s, &z', Za) = —0.619 167+0.168 75Za ln(Za) +0.11393Za —0.541 18(Zu) —2.46701(Za)

GU(2p&&z', Za) = —0.048 214—0.005 53Za ln(Za) —0.056 14Za —0.23203(Za) —1.15799(Za)

GU(2p3&z, Za) = —0.010714+0.001 15Za ln(Za) +0.008 29Za —0.005 60(Za) +0.001 62(Za)

3341

(A14)

(A15)

(A16)

(A17)

A fit to the Wichmann-Kroll vacuum polarization calculations of Johnson and Soff, ' using an extension of the func-
tional forms given by Mohr, yields

GwK( ls, zz', Za) =0.042 51—0. 10305Zu+(Za) [0.04793 ln(Za) +0.129 30—0.068 26Za ln(Za) ],
GwK(2s, zz, Za) =0.042 51—0. 10305Za+(Za) [0.04463 ln(Za) +0.175 12—0. 103 96Za ln(Za) ],
Gw~(2p, &z, Za) =(Za) [0.001 131n(Za) +0.054 31 —0.058 78Za ln(Za) z],
GwK(2p3&z', Za)=(Za) [0.001 13 ln(Za) +0.002 12—0.00098Za ln(Za) ] .

(A18)

(A19)

(A20)

(A21)

The total vacuum polarization term is then

Gvp(Za)=GU(Za)+GwK(Za) . (A22)

and (b.E„,)U to the self-energy and Uehling vacuum po-
larization terms calculated by Johnson and Sofr'. ' The
total Gnite-size correction is therefore written in the form

The final values used for GsE(Za), Gtj(Za), and
GwK(Za) are summarized in Table VIII. All of the
above assume a point nuclear charge distribution. The
accuracies of the fits for GU(Za) and Gwz(Za) are
much better than the uncertainties in GsE(Z;a).

For the finite nuclear size correction, Eq. (75) is ade-
quate for low-Z spins, but there are important relativistic
corrections for high-Z ions as discussed by Mohr.
There are also significant finite-size corrections (b,E„,)sE

bE„,=—', n [6t o+t„ t(Za) ](Za) (Zr, , /ao) 'mc

+ ( bE„,)sF+ ( bE„, )U, (A23)

where s=[1—(Za) ]'~ and t„=0.50, tz, =1.38,
t~~, ~z =3/16, tzp 3/z 0. In Table VI, the terms (bE„, )sE
and (b,E„,)U are negligible except in the case of U9'+,
where they contribute

(bE„,)sE+(bE„,)U= —1.1189+0.831=—0.358 eV .

*Permanent address: Institute of Experimental Physics, Univer-
sity of Gdansk, 80-952 Gdansk, Poland.
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