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Position moments linearly averaged over Hartree-Fock orbitals
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Linearly averaged position moments (LAPM's) are introduced for the Hartree-Fock orbitals.
When all the LAPM's are well defined, the Hartree-Fock equation is shown to be equivalent to a set
of relations between the LAPM's involving the potential-energy operator. The true Hartree-Fock
orbitals must satisfy all the relations, and hence the LAPM equations can be used as a sensitive cri-
terion to assess the accuracy of approximate Hartree-Fock orbitals. Such an application is present-
ed for He, Be, and Ne atoms.

I. INTRODUCTION

In order to study the quality of wave functions, we
have recently introduced' linearly averaged position
moments (LAPM's), which are defined as the position
moments averaged linearly (not quadratically) over the
wave function. Based on the Schrodinger equation in a
representation intermediate between the position and
momentum ones, we have shown' that there exists a set
of relationships among the LAPM's, the linearly aver-
aged potential energy, and the total energy. These rela-
tions constitute a necessary condition for the true wave
function, and they provide a sensitive criterion to assess
the accuracy of approximate wave functions. The zero-
momentum energy formula ' or its modification follows
from the simplest case of the relations.

Very recently, it has also been shown that the set of
LAP M equations is equivalent to the original
Schrodinger equation, provided all the LAPM's are well
defined. The LAPM equation is a new form of the
Schrodinger equation different from its differential form
in position space and its integral form in momentum
space. The deterministic property of the LAPM equation
has been demonstrated for the hydrogenlike atom, where
the correct wave function and energy have been obtained
from the solution of algebraic recurrence equations.

In the present paper, we report the LAPM equation

corresponding to the Hartree-Fock equation for closed-
shell systems. In the next section, the Hartree-Pock
LAPM equation is derived in spherical polar coordinates
and its properties are discussed, and its relationship with
the zero-potential-energy expression ' is also clarified.
In Sec. III, application of the LAPM equation is illustrat-
ed for the assessment of the accuracy of approximate
Hartree-Fock orbitals for He, Be, and Ne atoms. Atomic
units are used throughout this paper.

II. FORMALISM

A. Hartree-Fock LAPM equation

The Hartree-Fock equation for a closed-shell 2X elec-
tron system with N doubly occupied spatial orbitals I P;]
reads

—
—,'6+v(r)+ g (2J. IC ) g;(r)=e—;g;(r),

j=1

where the symbols have their usual meaning. Multiply-
ing both sides of Eq. (l) by exp( —ip. r) and integrating
over the whole position space, we obtain an alternative
form of the Hartree-Pock equation:

N

(p /2)[exp( —ip.r)], +[exp( —ip. r)v(r)];+ g [2[exp( —ip. r)wii(r)]; —[exp( —ip r)w, (r)].] =E;[exp( —ip r)], ,

(2)

where [f(r)],= ff(r)tt;(r)dr . (4)
g;(r')g, (r')

;.( )—= f Note that the square brackets stand for the linear average
over the orbital.
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The plane-wave expansion of exp( —ip r) is given by'

( —1) (k+l)! 2k+i
„~,k!(2k+ &+I)! ~' (6)

Substituting Eqs. (5) and (6) into Eq. (2), we can rearrange
Eq. (2) as

oo oo l

Ak(B; kl P "+'yl (Q)=0,
k=0 1=0 m = —l

where

Akl = (
—i)'( —1)"2'(k + l)!/k!(2k +2l + 1)!,

g(k, l, m)[»2k+lye (~)] (9)

g(k, l, m) (k, l, m)
i i (10)

in which e " ' is defined to be the LAPM orbital ener-
gy; it consists of the one-electron e', ,

" ' and two-electron
e(k" ) parts:

7

e(k l m)
[ k (2k +2/ + 1)[»2k+i —2ye ((u)]

+[y "+'u(r)Y,* (co)], ]/[y "+'y,* ((u)), ,

N

[2[y k2l+w(r)y+ ((u)]
j=l

(12)

—[» "+'w.
, (r) Yl* (cu)]l ]/[y "+'Yl* ((u)); .

(13)

In the one-electron part [Eq. (12)], only the orbital f; un-
der consideration appears, while in the two-electron part
[Eq. (13)],all the occupied orbitals appear.

For Eq. (7) to be valid for any p=(p, 0), B,. kl must be
zero, and hence at least one of the two factors on the
right-hand side of Eq. (9) must vanish; thus

exp( ip —r)=4' g g ( i)—JI(py)Yl (0)Yl* ((u),
1=0m = —l

(5)

where (y, (u) and (p, Q) are the spherical polar coordi-
nates of the vectors r and p, respectively. Yi is a spheri-
cal harmonic and jl is the spherical Bessel function of the
first kind which can be expanded as"

(15)

B. Relation to zero potential energy

For the particular case of k —+ ~, we can show that the
atomic LAPM orbital energy e " ' coincides with the
zero potential (ZP) orbital energy ' Ezp;.

To do this, we first recognize the following relation.
For a large r, let two exponentially decaying functions
F(y) and G(y) satisfy an inequality F(y) )G(y). Then we
have

lim f y "G (»)dy
n~oo . 0 f y "F(y)dy =0,

0
(16)

serve that the kinetic energy operator is implicit in Eq.
(14). Note also that the w; appearing in Eqs. (12) are not
moments in the usual sense. However, the solution of Eq.
(14) does not seem to be straightforward, since the equa-
tion for the ith orbital includes all the occupied orbitals
as is the case of the original equation (1). As a result, the
LAPM equation (14) does not provide us any simpler
procedure for the solution of the Hartree-Fock equation.

Alternatively we can use Eqs. (14) as criteria to assess
the accuracy of Hartree-Fock orbitals: The true
Hartree-Fock orbitals must satisfy Eqs. (14) for any k, l,
and I, and Eqs. (14) constitute a necessary condition for
the true Hartree-Fock orbitals. When we apply the cri-
teria to atoms, Eqs. (14) are meaningful only for some
specific l and m, since for other values of l and m, the
original LAPM relation B; kl

=0 is automatically
satisfied due to the orthogonality of the spherical har-
monics. On the other hand, there is no such restriction
for the value of k so long as it is non-negative. Judging
from the forms of the integrals involved in the LAPM ex-
pressions [Eqs. (12) and (13)], we expect that the relation
with a larger k places more weight on the accuracy of the
large-r region of a given orbital. This anticipation will be
verified in the next subsection in connection with the
zero-potential-energy criterion. Accuracy checks of
some approximate Hartree-Fock orbitals based on Eq.
(14a) are illustrated in Sec. III.

We note that a special and simplest case of Eq. (14a)
for k =l =m =0 corresponds to the Hartree-Fock ver-
sion of the zero-momentum (ZM) energy expression '

and is given by

(o, o, o)
i ZM i

N

[u(r)], + g [2[w (r)];—[w;(r)]. ] /[1],

$(k, l, m) —e(k, l, m) g
—0l i i

2k+!ye
( )) 0

(14a)

(14b)

where the two integrals are assumed to exist for all n.
For an atom with nuclear charge Z, the LAPM's ap-

pearing in Eqs. (11)—(13) explicitly take the following
forms:

for alt possible values of k, l, and m. When all the
LAPM's appearing in Eqs. (12) and (13) are well defined,
Eq. (14) is equivalent to the Hartree-Fock equation given
by Eq. (1). Equation (14) is the Hartree-Fock LAPM
equation, which may be used to determine the orbitals
and the associated energies. It may be interesting to ob-

[»2k+lys ] f »2k+I+2f (y)d»

[»2k+i —2ye ] f »2k+If (»)dy

[»2k+luye ]
—f 2k+I+2

( )d
0

(17a)

(17b)

(17c)
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TABLE I. Accuracy of Hartree-Fock 1$ orbital assessed by the LAPM equation for the He atom.

Basis set

Single-g —0.896 48

e(k, o, o)
e&, '

—1.000 00
—1.145 94
—1.231 63
—1.278 93
—1.307 82
—1.327 15

g(k, o, o)
1s

—0.103 52
—0.249 46
—0.355 15
—0.382 45
—0.411 34
—0.430 67

Double-g —0.91794 —0.922 18
—0.937 48
—0.958 50
—0.977 18
—0.991 37
—1.001 77

—0.004 24
—0.019 54
—0.040 56
—0.059 24
—0.073 43
—0.083 83

Near-Hartree-
Fock

—0.917 95 —0.918 66
—0.922 33
—0.929 86
—0.939 27
—0.948 35
—0.956 09

—0.000 71
—0.004 38
—0.01191
—0.021 32
—0.030 40
—0.038 14

[y2k +!~ Y+ ]
— r2k +I+2h

0 JJ~ &

[r2k+i~, Y,
*

] = "r2k+I+2h, (r)dr
0 J&~J

where

(17d)

(17e)

f;(y)= I YI* (co)P;(y, co)den,

g (r)= I Yi~(co)v (r, co)g (r, co)de= —(Ziy)f (y),

(18a)

(18b)

TABLE II. Accuracy of Hartree-Fock orbitals assessed by the LAPM equation for the Be atom.

Orbital

1s

Basis set

Single-g

Double-g

Near-Hartree-
Fock

—4.717 12

—4.732 83

—4.732 67

(k, o, o)
1

—4.320 98
—1.328 28
—0.416 91
—0.376 33
—4.653 37
—1.766 53
—0.19991
—0.168 60
—4.727 80
—4.23220
—0.789 87
—0.218 63

g(k, 0,0)

+0.396 13
+3.388 84
+4.300 21
+4.340 79
+0.079 46
+2.966 30
+4.532 92
+4.564 23
+0.004 87
+0.500 47
+3.942 80
+4.51404

2$ Single-g

Double-g

Near-Hartree-
Fock

—0.308 64

—0.309 23

—0.309 27

—0.31463
—0.333 13
—0.355 14
—0.372 95
—0.306 83
—0.291 20
—0.254 97
—0.217 77
—0.309 31
—0.309 34
—0.308 91
—0.307 39

—0.005 99
—0.024 49
—0.046 50
—0.064 31
+0.002 40
+0.01803
+0.054 26
+0.091 46
—0.000 04
—0.000 07
+0.000 36
+0.001 88



3302 KOGA, MATSUYAMA, AND THAKKAR 43

(18c)

h...(r) =( 1 lr)f, (r),
O(e ")f;(r) for s-type atom

h, (r)= '
(llr )f, (r) otherwise,

(20a)

(20b)

For a large r, the leading asymptotic behavior of an
atomic Hartree-Fock orbital is known' ' to be

f, (r)=[a;r '+O(r ' )]exp( —
g, r), (19)

in which a, is an unknown proportionality constant, and
the exponent g; is determined by orbital energies. In par-
ticular, g, =( —2E, )'~ for those few atoms like H, He, Li,
and Be in which only s orbitals are occupied, and

g; =( —2eh )'~ in which h labels the highest occupied or-
bital for all other atoms. Based on Eq. (19), we can show
after some manipulation that

for a large r, where 0 (e ") represents an exponential de-
cay, and where A, is a positive integer. Then, from Eqs.
(12), (13), and (16), we have

—k (2k +2l +1)I r "+'f, (r)dr
im e(k'I' ~= lim A

kazoo ' kazoo 2k+ I +2
0

(2 la)

(21b)

For a very large value of k, the integrals appearing in Eq.

TABLE III. Accuracy of Hartree-Fock orbitals assessed by the LAPM equation for the Ne atom.
The index l is 0 for the s orbitals and is 1 for the 2p orbital.

Orbital

1$

Basis set

Single-g

Double-g

Near-Hartree-
Fock

—32.662 13

—32.759 88

—32.772 48

(k, 1,0)
1

—30.930 28
—14.476 40
—4.860 14
—3.706 85

—32.46044
—22.544 28
—7.221 00
—4.596 13

—32.733 54
—29.828 47
—16.512 63
—12.765 98

g(k, 1,0)
l

+ 1.731 85
+ 18.185 73
+27.801 99
+28.955 28
+0.299 44

+ 10.215 60
+25.538 88
+28.163 75
+0.038 94
+2.944 01

+ 16.259 85
+20.006 50

2$ Single-g

Double-g

Near-Hartree-

Fock

—1.732 50

—1.921 87

—1.930 43

—1.885 53
—2.211 40
—2.562 26
—2.837 20
—1.912 01
—1.884 02
—1.864 03
—1 ~ 878 09
—1.927 19
—1.91038
—1 ~ 881 57
—1.873 17

—0.153 03
—0.478 90
—0.829 76
—1.104 70
+0.009 86
+0.037 85
+0.057 84
+0.043 78
+0.003 24
+0.020 05
+0.048 86
+0.057 26

2p Single-g

Double-g

Near-Hartree-
Fock

—0.561 72

—0.84143

—0.850 44

—1.374 01
—2.042 53
—2.506 82
—2.815 21
—0.975 86
—1.170 93
—1.352 46
—1.489 47
—0.840 55
—0.821 89
—0.813 30
—0.822 71

—0.812 29
—1.480 81
—1.945 10
—2.253 49
—0.13443
—0.329 50
—0.511 03
—0.648 04
+0.009 89
+0.028 55
+0.037 14
+0.027 73
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and hence

(22b)

where czar, . is the zero potential orbital energy defined by

Ezi, ; —= lim [ —
—,'bg;(r)]/g;(r)

= —(g,'/2) . (23)

Equation (22b) is the desired result. Clearly, when a
LAPM relation [Eq. (14a)] with a large value of k is em-
ployed as a criterion of accuracy, more importance will
be attached to the tail quality of the orbital.

III. APPLICATIONS: ACCURACY
OF HARTREE-FOCK ORBITALS

ASSESSED BY LAPM EQUATION

We have applied the LAPM equations (14) to the as-
sessment of the accuracy of Hartree-Fock orbitals for the
He, Be, and Ne atoms. The single-g, double-g, and near-
Hartree-Fock wave functions reported by Clementi and
Roetti' have been examined.

In Table I, the results for the He 1s orbital are summa-
rized, where only results for the nontrivial case l =m =0
are shown with the index k varying from 0 to 5. When
one goes from the single-g to the near-Hartree-Fock wave
function, the accuracy of the orbital measured by the
smallness of ~5I",' ' '~ increases. However, the LAPM
measure is found to be very sensitive to the error. In the
case of the near-Hartree-Fock calculation, for example,
the calculated orbital energy differs from the true value'
—0.917 96 only by 1 X 10, but the LAPM energy as-
signs the error 7. 1X10 even for k =0. This is due to
the linear dependence of the LAPM energy on the orbital
error. Another remarkable trend found in Table I is that
in all the three cases, the accuracy decreases as the index
k increases. As has been discussed in the preceding sec-
tion, this is a reAection of poor description of the large-r
tail region of the orbital compared to the small- and
intermediate-r regions, and suggests that it is rather
difficult to determine the correct asymptotic behavior of
Hartree-Fock orbitals using the simple basis-set expan-
sion scheme.

Table II shows the results for the Be atom, where the
indices l and m are again zero. As in the case of the He
atom, the LAPM criterion reveals that (i) the best accura-

(2la) are expected to be governed by the large-r asymp-
totic behavior of the function f, (r). Inserting the asymp-
totic expression (19) in Eqs. (21) leads to

(22a)

cy is found for the near-Hartree-Fock wave function and
(ii) the accuracy decreases as k increases. However, quite
different qualities of the core 1s and valence 2s orbitals
are observed in this table. In the case of the near-
Hartree-Fock wave function, the calculated orbital ener-
gies agree with the exact values' completely. According-
ly, the LAPM error is rather small for the 2s orbital.
However, this is not true for the inner 1s orbital; the er-
ror for k =0 may be acceptable, but for k =3 the relative
error amounts to 95%. As Eqs. (11)—(13) imply, the
LAPM energy does not directly reAect the quality of the
orbital under examination, since all the occupied orbitals
participate through the two-electron part. A finer
analysis shows, however, that the major contribution
comes from the one-electron part especially when k in-
creases. Therefore, the larger error for the 1s orbital may
be interpreted as an indication of the poor tail quality of
this orbital, which is ineffective energetically. In this
sense, we can say that the Be 2s orbital of the near-
Hartree-Fock wave function is the most accurate orbital
among the six orbitals examined in this study.

The results for the three occupied orbitals of the Ne
atom are presented in Table III. The index m is 0 for all
orbitals, but I is 0 and 1 for the s and p orbitals, respec-
tively. The two remarks given for the He and Be atoms
are also valid for the Ne atom. Moreover, we may draw
the same conclusion, as in the case of Be, about the
different quality of the 1s and 2s orbitals. Though the 2p
orbital is a new type of orbital, it does not seem to have
any special tendency; an exception is that even when
k =0 the LAPM measure assigns a poor quality for the
single-g approximation relative to the other orbitals.
When we examine the relative LAPM error (defined by
~5',

"" '/e;
~ ), we find that the 2s orbital is more accurate

than the 2p orbital for all the three approximate wave
functions. In these wave functions, the number of s-type
basis functions is about twice the number of p-type ones.
We anticipate that among orbitals of the same symmetry,
a Hartree-Fock calculation in the basis-function-
expansion scheme tends to give more asymptotic freedom
to the outer orbitals (2s orbital in this case) at the expense
of the large-r quality of the inner orbitals (ls orbital in
this case), as a consequence of the energy-minimization
requirement.

IV. SUMMARY

We have derived the Hartree-Fock LAPM equation
and discussed its properties. The equation has been ap-
plied to the assessment of the accuracy of approximate
Hartree-Fock orbitals. The high sensitivity of the LAPM
criterion has been demonstrated and the different quality
of the inner and outer orbitals resulting from Roothaan-
Hartree-Fock calculations has been clarified.
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