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The self-consistent-field treatment of the frequency-independent Breit interaction is reviewed
with applications to many-electron atoms. The implementation of the matrix Dirac-Fock-Breit
self-consistent-field procedure is presented for Gaussian-type basis sets that show no near-linear
dependency problem. The matrix Dirac-Fock-Breit procedure has the advantage over the finite-
diference approach that it does not complicate the self-consistent-field procedure in basis-set expan-
sion calculations. Basis sets of even- and well-tempered Gaussian functions were used to expand the
large and small components of Dirac four-spinors. Expressions are derived for evaluating the ma-
trix elements of the Dirac-Fock-Breit equations. Calculations done on rare-gas atoms He, Ne, Ar,
Kr, and Xe and alkaline-earth metals Be, Mg, Ca, and Sr are presented.

I. INTRODUCTION

For many-electron systems, there is no exact relativis-
tic Hamiltonian. In c-number theory, an approximate
many-electron Hamiltonian consistent with quantum
electrodynamics (QED) is the so-called no-pair Dirac-
Coulomb (DC) Hamiltonian that separates the positive-
energy states from the negative-energy ones in terms of
the projection operator onto the space spanned by the
products of the positive-energy eigenstates of the effective
one-electron Hamiltonian. '

The no-pair DC Hamiltonian is deficient in that it is
both noncovariant and inaccurate for precision calcula-
tion of fine-structure separations and binding energies of
the inner-shell electrons. Adding the low-frequency Breit
interaction to the instantaneous Coulomb operator intro-
duces the leading effects of the transverse photon ex-
change' and partially remedies the lack of covariance
of the no-pair DC Hamiltonian. '

Relativistic atomic-structure calculations are most fre-
quently performed by employing finite-difference
methods. In these calculations, the low-frequency
Breit interaction has traditionally been treated as a first-
order perturbation correction to calculations based on
the no-pair DC Hamiltonian. In fact, many successful
calculations have been performed in which the Breit in-
teraction has been treated as a perturbation on the zero-
order DC Hamiltonian in order to predict fine-structure
separations.

In contrast to the perturbative approach, the leading
effects of transverse photon exchange may be included in
the zero-order Hamiltonian by adding the frequency-
independent Breit interaction to the instantaneous

Coulomb operator. ' This approach has the advantage
that all effects through order e are included in the zero-
order Hamiltonian. The use of such a zero-order Hamil-
tonian in variational calculations naturally leads to the
Dirac-Fock-Breit (DFB) self-consistent-field (SCF) equa-
tions. As Quiney, Grant, and Wilson' pointed out, in-
corporation of the Breit term in the SCF process has the
advantage that both the electrostatic and Breit interac-
tions are included to the same order in SCF potentials
within the algebraic approximation. The inclusion of the
low-frequency Breit interaction leads to changes in the
orbitals and their energies, which in turn modify the
Coulomb interaction among the electrons in the SCF pro-
cess. This interference between the Coulomb and Breit
interactions and the resulting orbital reorganization is
naturally taken into account in the matrix DFB SCF pro-
cedure.

In the region Z=50, Gorceix, Indelicato, and Des-
claux found that the magnetic correlation between the
inner-shell electrons becomes as important as the electro-
static correlation. ' For such systems, the Breit interac-
tion can have significant effects on the inner-shell orbitals
and their energies. In order to study the electron correla-
tion induced by the Breit interaction, the instantaneous
Coulomb and frequency-independent Breit interactions
may be treated as an integral part of the two-electron in-
teraction in relativistic SCF and many-body perturbation
calculations. '" ' Treating the Breit interaction together
with the instantaneous Coulomb interaction has the
added advantage that multiple perturbation theory calcu-
lations may be avoided. ' '

Mann and Johnson showed that the finite energy of
the exchanged photon makes a non-negligible contribu-
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tion to the inner-shell binding energies of heavier sys-
tems. In an earlier study, Smith and Johnson' showed
how to treat the finite-frequency Breit interaction in the
SCF procedure. The justification for using the
frequency-independent Breit interaction in the present
study instead of the finite-frequency form is the added
complexity of the latter. This latter effect, which is of or-
der o. , may be treated by perturbation theory together
with the self-energy because they are closely interrelat-
ed."

The purpose of the present paper is to provide a de-
tailed description of a recently introduced matrix DFB
SCF method' ' that treats both the instantaneous
Coulomb and the low-frequency Breit interactions in the
SCF process within the algebraic approximation. There
are distinct advantages in approaches based on the finite
basis-set expansion if the Breit interaction is to be includ-
ed in the SCF procedure. Once the integrals over the
Breit operator for a given set of basis functions have been
calculated, there is no difficulty in including this term in
the SCF process. In an earlier work, the matrix DFB
SCF treatment of the low-frequency Breit interaction was
outlined and prototype calculations were performed on
He, He-like ions, Be, Be-like ions, and Ar. ' ' '

This is a successful implementation of the analytic
DFB SCF procedure on truly many-electron, multiple-
shell systems. The implementation of the matrix DFB
SCF procedure, using Gaussian-type function (GTF)
basis sets for the calculation of variational Breit energies
is reviewed in Sec. II. In Sec. III, orbital and total ener-
gies as well as variational Breit energies are given for
rare-gas atoms He, Ne, Ar, Kr, and Xe and alkaline-
earth metals Be, Mg, Ca, and Sr. The variational Breit
energies are compared with the perturbative Breit ener-
gies computed by using finite-difference DF wave func-
tions. Our variational Breit energy of the Ar atom is also
compared with the benchmark variational Breit energy
computed by using the Slater-spinor (5-spinor) basis set. '

II. MATRIX DIRAC-FOCK-BREIT SCF PROCEDURE

An approximate relativistic many-electron Hamiltoni-
an, most commonly used for relativistic many-body cal-
culations, is the so-called Dirac-Coulomb Hamiltonian.
The DC Hamiltonian is one in which one-electron effects
are treated relativistically while two-electron effects are
"nonrelativistic. " This approximation has been scrutin-
ized as being inconsistent with the foundation of atomic
structure theory, QED. '

A. The relativistic no-pair Dirac-Coulomb-Breit Hamiltonian

The DC Hamiltonian H~c, which is the usual starting
point for relativistic atomic-structure calculations, is (in
a.u. )

Hoc =ghn(i)+ g V;

which is the sum of the one-electron Dirac Hamiltonians

hL7=ca p+pc + V„„, (2)

and the instantaneous Coulomb interactions between
electrons

H+ =ghr (i)+X+ g V,
I 17Ji)j

(4)

where &+=L+(1)L+(2) L+(n), with L +(i) the pro-
jection operator onto the space spanned by the positive-
energy eigenfunctions of the DF operator. In this form,
the no-pair Hamiltonian is restricted to contributions
from the positive-energy branch of the DF spectrum.
The no-pair Hamiltonian H+, however, is deficient in
that it is not covariant. Use of the covariant electron-
electron interaction leads, in Coulomb gauge, to the sum
of the instantaneous Coulomb interaction plus the trans-
verse photon interaction T,2,

V)2 = 1/I')2+ T)2

In the limit as m~0, the frequency-independent Breit in-
teraction is obtained from T,2.

Biz = —(1/2r&z ) I a& az+ [(a&.r&z)(az. r&z)/r &z ] I .

There is justification for including the frequency-
independent Breit interaction in the H+ Hamiltonian.
Addition of the Breit interaction to the electrostatic po-
tential partially remedies the noncovariance of the H+
Hamiltonian. ' Inclusion of the Breit interaction results
in a Hamiltonian that contains all effects through order
o;, and, in the no-pair approximation of Sucher, ' yields
a many-body perturbation expansion ' ' which con-
tains the same diagrams as that from the nonrelativistic
Schrodinger Hamiltonian in expansions based on
Hartree-Fock wave functions.

Sucher argues that the no-pair Dirac-Coulomb-Breit
(DCB) Hamiltonian provides a satisfactory starting point
for calculations on many-electron atoms in the sense that
it treats the electrons relativistically, treats the most im-
portant part of electron-electron interaction nonperturba-
tively, and puts the Coulomb and Breit interactions on
the same footing in relativistic DFB SCF and many-body
perturbation-theory calculations. Its presence does not
complicate the SCF process in basis-set expansion calcu-
lations, although it does in finite-difference numerical cal-
culations. ' If we follow the procedure given by Mittle-
man, ' the use of the no-pair DCB Hamiltonian as a
starting point for variational calculations leads to the
DFB SCF equations.

V,. =1/r,

H~c has been accepted in the relativistic treatment of
atomic structure, but it has been scrutinized as being in-
consistent with QED. The DC Hamiltonian is deficient
in that it does not contain the field-theoretic condition
that the negative-energy states are filled. ' In c-number
theory, a more appropriate many-electron Hamiltonian is
the so-called no-pair Hamiltonian'
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B. The matrix Dirac-Fock-Breit SCF method

In the DFB SCF scheme, the behavior of an electron in
a central field potential V is described by a radial equa-
tion of the form

Fnknn ~nn4nn r

where

err

conditions near the origin may lead to a spurious solu-
tion.

The GTF basis functions that satisfy the boundary
conditions associated with the finite nucleus automatical-
ly satisfy the condition of the so-called "kinetic bal-
ance" " for a finite value of c. If we choose for our
large-component radial basis set IX, I Gaussian-type
functions of the form

X„;=XLrexp( —a;r ) .

with

c II V—2c
Then the condition of kinetic balance imposes the small-
component radial basis set IX,. I to be

s dX, = +—X,=%sr exp( —a, r ) .
r

(16)

and

Here

+ K

dr r

P„,(r)
Q„,(r)

In the Dirac-Fock basis-set expansion method
pioneered by Kim, the radial large and small components
P„,(r) and Q„,(r), respectively, are expanded in terms of
a set of basis functions IX„;I and IX„.I,

P„.(.) =yXL, C„'.. .

Here NL and Ns are the normalization constants.
These kinetically balanced GTF basis functions are

precisely the form given in Eqs. (13) and (14). This is a
consequence of the fact that the exponent of r in the GTF
basis functions does not depend on the speed of light. In
contrast, the S-spinor basis functions, ' in which the ex-
ponent of r explicitly depends on the speed of light, do
not satisfy the kinetic balance for a finite value of c.
The kinetic balance simply guarantees that the solution
of matrix DF equations approaches the correct nonrela-
tivistic limit when c is taken to infinity. '

In matrix DFB calculations on closed-shell systems,
the SCF equation in the algebraic approximation for
symmetry-type K takes the form

FC„=SCE

Q„(r)=gX„C„, , (10)
where, following the notation used by Quiney, Grant, and
Wilson, ' the overlap matrix is given in a block-diagonal
form

P(r)/r =1+g2r +g4r + . .

Q(r)lr=f~r+f3r +
so that, for a arbitrary parameters

(12)

where IC„;) and IC„;I are linear variational parame-
ters.

In recent studies, ' ' ' we have performed DF Gaussian
basis-set expansion calculations on one- and many-
electron systems with a finite nucleus model. In these
studies, we have emphasized alteration of the boundary
conditions such that the GTF's become the best form for
basis functions. Representing the nucleus as a finite body
of uniform proton charge accomplishes that feat. With
this representation of the potential, for example, the ex-
act s~&2 solutions of the Dirac equation near the origin
are

'SLL p

p SSS

where the one-electron part f is

( yLL MLS
K K

f =
K gSL ySS 2~ 2SSS

K K K

The two-electron part I, which consists of the matrices
of two-electron Coulomb and exchange interactions, is
given by' '

The superscripts LL and SS indicate which of the large-
or small-component bases have been employed. The
Fock matrix may be written

F =f,+I +b, ,

P(r)=r+g2r + . =r exp( —ar ),
Q(r)=f, r +f3r + . =r exp( —ar ) .

(13) JLL KLL

KSL

KLS

ASS KSS (21)

Thus, in the finite nuclear model, the GTF's of integer
power of r are appropriate basis functions because impo-
sition of the finite nuclear boundary results in a solution
which is Gaussian at the origin. In the previous study, '

we have shown that the failure to satisfy proper boundary ITT—~ (2 ~ i+ I )(~ TT JO, TT TT+ g) TT gO, TT, TT)
Kij

=
K'kl Kij, K'kl K'kl Kij, K'k1

K', k, I

(22)

The matrices J and K, where the subscripts T and
T' are either L or S, have matrix elements of the form' '
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lt TT' yg(21 + 1 )b (JJ )D TT'It v, TT', TT'

v K'kl
(23) DTT gTgT

KlJ Kl KJ

Here the superscripts TT represent a pair I.S or SI. The
Coulomb and exchange integrals in Eqs. (22) and (23) are
given in terms of the GTF basis functions, IX„,I and
IX„,I as

J'- .kl
= X rX. r U rsX ksX ls

The frequency-independent Breit interaction in Eq. (6)
leads to the term b in the matrix SCF equation,

BLL BLs
K K

bK —
gSL BSS (26)

K K

The Breit-interaction matrices are given as

where

and

Xds dr,
rX,k r U rsX

Xds dr,

s r, s&r

(24) gLL —yy(2~i+ 1) LL( K~)DSS lt v LL,SS
7

v K'kl

B„=gg. (2J'+1)tf (K, K')D ~ K '.
v K'kl

+g (K,K')D„kr W",' q~(],

g SS —y y ( 2~
~ + 1 )e SS

( K K
'

)D LL lt v, SS,LL

v K'k, l

where

(27a)

(27b)

(27c)

W;''kI ='f f "X„;(r)X .k(r)U (r,s)X, (s)X„.&(s)ds dr —f™f X;(r)X„k(r)U (r, s)X z(s)X„&(s)ds dr .
0 0 0 r

The relativistic angular coefficients e, (K,K'), e (K, K ),
f (K, K ), and g (K,K') were evaluated by using the tech-
nique described by Grant and Pyper. These coe%cients
are tabulated up to p3/2 symmetry (see Table I).

C. Computation

Using the expansion scheme outlined above, the DFB
SCF calculations were performed on rare-gas atoms He,
Ne, Ar, Kr, and Xe and alkali-earth metals Be, Mg, Ca,
and Sr. For a11 these species, the SCF ca1culations were
repeated without the Breit term, b in the Fock matrix.
This is the conventional Dirac-Fock-Coulomb (DFC)
SCF scheme. Basis sets of nonrelativistically optimized

even-tempered and well-tempered GTF's were used in
all the calculations except for Ne and Ar, in which calcu-
lations were also performed using small- and medium-size
GTF basis sets given by Van Duijneveldt. For Be, Ne,
and Ar, we have performed a number of calculations by
systematically enlarging the basis set in order to study
the convergence pattern of DFB, DFC, and Breit-
interaction energies.

The finite nulceus model discussed in Ref. 21 was used
in all the calculations. The atomic masses used for He,
Ne, Ar, Kr, and Xe are, respectively, 4.00, 20.179,
39.948, 83.80, and 131.30. The atomic masses used for
Be, Mg, Ca, and Sr are, respectively, 9.00, 24.305, 40.080,
and 87.62.

TABLE I. Table of the angular Breit-interaction coefficients.

S 1/2

I 1/2

I I/2

P 3/2

P 3/2

P3/2

S 1/2

S1/2

P 1/2

S1/2

I 1/2

P3/2

e (K K')

0.333 333

0.0
0.2

0.333 333

0.5
0.1

0.333 333
0.0

0.183 333
0.064 285 7

e v 4, K~K

0.333 333

1.0
0.0

0.333 333

0.0
0.2

0.033 333 3
0.128 571

0.183 333
0.064 285 7

f„(K,K')

0.333 333

0.166 666
0.166 666

0.333 333

—0.083 333 3
0.216 666

—0.016 666 6
0.15

0.083 333 3
0.107 143

g, (K, K')

0.0

0.166 666
—0.166 666

0.0
—0.083 333 3

0.083 333 3

—0.15
0.15

0.0
0.0
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TABLE II. The effects of the basis-set size on the DFB SCF, DFC SCF, and variational Breit-
interaction energies of the Be atom.

6
8

10
12
14
16
20

Numerical
limit'

EDFB

—14.537 218 70
—14.568 630 14
—14.573 886 44
—14.574 867 06
—14.575 11742
—14.575 16942
—14.575 189 13

EDFC

—14.537 91607
—14.569 332 13
—14.574 588 74
—14.575 569 48
—14.575 819 85
—14.575 871 86
—14.575 891 57
—14.575 891 9

EB(+)

0.000 697 37
0.000 701 99
0.000 702 30
0.000 702 42
0.000 702 43
0.000 702 44
0.000 702 44

'Computed by using the finite-difference DF program (Ref. 29).

III. RESULTS AND DISCUSSION

A number of DFB and DFC SCF calculations on
ground-state Be were performed in which the even-
tempered GTF basis sets were systematically enlarged.
The speed of light used in these calculations was 137.0370
a.u. Table II contains the seven representative sets of to-
tal DFB and DFC energies, EDF~ and EDFC espectively,
of Be along with the DFC energy obtained by using the
finite-difference DF program. E~ ( 4) denotes the varia-
tional Breit interaction energies computed as the
difference EDF& —EDFC. The variational Breit energy is
the level shift in the total SCF energy due to the inclusion
of the Breit term in the SCF process.

The results clearly demonstrate the convergence pat-
tern of the total energies as well as the variational Breit-
interaction energy in Be. While the total energies com-
puted with the smaller basis sets have not converged to
the numerical limit as well as with the larger, the varia-
tional Breit-interaction energy computed with a set of 12
even-tempered GTF's has already converged to four
figures and agrees well with that obtained with the largest
basis set. A basis set of 16 GTF's is necessary to obtain
convergence to five figures in Eii($). The ED„c calculat-
ed with 20 GTF expansion agrees well with that obtained
in the finite-difference calculation. Basis-set truncation
error is on the order of 0.1 phartrees.

A series of DFB and DFC SCF calculations on
ground-state Ne and Ar were performed in which the
GTF basis sets were systematically enlarged. The speed
of light was taken to be 137.0370 a.u. Table III contains
seven representative sets of results for Ne along with the
DFC energy obtained with the finite-difference numerical
DF program. The variational Breit-interaction energy
computed with the smallest basis set, 10s5p GTF of Van
Duijneveldt, has already converged to three figures, i.e.,
to 0.1 mhartrees, although the total energy is only accu-
rate to 0.1 hartree in this basis set. The variational Breit
energy computed with the medium-size 14s 10p well-
tempered GTF basis set of Huzinaga has converged to
five figures, i.e., to microhartrees, although the total ener-

gy has converged only to millihartrees. Fourteen well-
tempered GTF basis functions used for s

& && symmetry are
nearly saturated. The use of ten well-tempered GTF
basis functions, however, does not saturate the p]y2 and

p 3/2 symmetries, and enlarging the basis set in p symme-
try improves the convergence of the variational Breit en-
ergy by another digit to six figures. The variational
Breit-interaction energy of 0.01664076 a.u. obtained by
using 14s12p well-tempered GTF basis set is in excel-
lent agreement with the value 0.016640 80 a.u. computed
with the largest 23s17p basis set. The total DFC energy
of Ne calculated with the even-tempered 23s17p GTF
basis set is in excellent agreement with the numerical lim-

TABLE III. The effects of the basis-set size on the DFB SCF, DFC SCF, and variational Breit-
interaction energies of the Ne atom (in a.u. ).

Ne 10s 5p
12s7p
13s8p
14s 10p
14s 11p
14s 12p
23s 17p

Numerical
limit'

EDFa

—128.659 456 10
—128.673 792 33
—128.674 698 20
—128.675 066 94
—128.675 129 12
—128.675 135 77
—128.675 290 24

EDFc

—128.676 079 53
—128.690 430 98
—128.691 338 09
—128.691 707 52
—128.691 769 87
—128.691 776 53
—128.691 931 04
—128.691 94

+0.016 623 43
+0.016638 65
+0.016 639 89
+0.016 640 58
+0.016 640 75
+0.016 640 76
+0.016 640 80

'Computed by using the finite-difference DF program (Ref. 29).
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TABLE IV. The effects of the basis-set size on the DFB SCF, DFC SCF, and variational Breit-
interaction energies of the Ar atom (in a.u. ) ~

Ar 10s7p
14s 10p
16s1 1p
17s 13p
17s 14p
17s 15p
27s22p
28s23p

Numerical
limit'

EnFB

—527.988 940 0
—528.534 308 4
—528.549 164 3
—528.550 723 2
—528.550 998 6
—528.551 037 8
—528.551 446 4
—528.551 476 0

EnFc
—528.120 3193
—528.666 604 0
—528.681 481 6
—528.683 044 8
—528.683 321 3
—528.683 360 6
—528.683 769 4
—528.683 799 0
—528.683 84

Egg()

+0.131 379 3
+0.132 295 6
+0.132 317 3
+0.132 321 6
+0.132 322 7
+0.132 322 8
+0.132 323 0
+0.132 323 0

'Computed by using the finite-difference DF program (Ref. 29).

it obtained in the finite-difference calculation. Basis-set
truncation error is on the order of 10 phartrees.

Table IV contains eight representative sets of results
for Ar. The variational Breit-interaction energy comput-
ed with the smallest 10s7p basis set of Van Duijneveldt
has converged to two figures. Use of the moderately
large 17s15p well-tempered basis set is enough to obtain
convergence to six figures in Es($). The variational
Breit-interaction energy of 0.132 322 8 a.u. obtained with
the 17s15p basis set is in excellent agreement with the
value, 0.132 3230 a.u. computed with the largest 28s23p
even-tempered GTF basis set. The results shown in
Tables III and IV demonstrate that, with the use of medi-
um to moderately large GTF basis sets, the variational
Breit-interaction energies have converged very rapidly to
at least five figures, although the total DFB and DFC en-
ergies have not converged as well.

For the Ar atom, both the perturbative and variational
Breit-interaction energies were reported in recent stud-
ies. ' In those studies, however, the value of the speed
of light used was different from the one we used to obtain
the results in Table IV. The previous calculations were

performed by using either c = 137.035 989 5 a.u. or
c =137.0390 a.u. In order to directly compare our re-
sults with those of the recent studies, ' we have repeated
our matrix DFB and DFC SCF calculations by using
both these values of c.

In Table V, the total energies as well as the perturba-
tive and variational Breit-interaction energies of Ar re-
ported in previous studies are compared with our results
computed with a 27s22p even-tempered basis set. Qui-
ney, Grant, and Wilson' have performed matrix DFB
SCF calculations on Ar using a 17s17p S-spinor basis set.
The S-spinor basis-set calculations employed the point
representation of the nucleus and c=137.0359895 a.u.
In Table V, their results are given in the second row (the
entry denoted by STF). The total DFC energy they ob-
tained by employing the point nucleus representation is
approximately 0.6 mhartrees below our DFC energy
computed in finite-nucleus representation. However, their
variational Breit-interaction energy Es(4)( =0.132 325 5

a.u. ) computed in the point nucleus approximation is in
excellent agreement with our GTF results of 0. 1323250
a.u. obtained in the finite nucleus representation. The

TABLE V. Comparison of the energies of Ar computed by GTF expansion with those computed by
S-spinor expansion and Anite-difference methods (in a.u. ).

CxTF'

STFb

MCDF'

Mann-Johnson'

27$22p

17s 17p

EnFc
E~(S)

EnFc
E (4)
E,(P)

EnFc
E,(P)

EnFc
E~(P)

c = 137.035 989 5

—528.683 797 2
+0.132 325 0

—528.684 450 5

+0.132 325 5

+0.132 365 3

—528.683 86
+0.132 364 6

c = 137.0390

—528.683 714 5
+0.132 319 1

—528.683 7
+0.132 36

'Finite nucleus of uniform proton charge distribution.
S-spinor basis-set expansion calculations employing the point nucleus approximation.
Finite-difference DF calculations employing the finite nucleus of Fermi-charge distribution.
Reference 8.



3276 YASUYUKI ISHIKAWA, HARRY M. QUINEY, AND G. L. MALLI 43

TABLE VI. Total DFC SCF, DFB SCF, and variational Breit-interaction energies of the rare-gas

atoms (in a.u.). Speed of light used is 137.0370 a.u.

He

Ne

Ar

Xe

EDFC
EDFB
E (S)

EDFC
EDFB
E,($}

EDFc
EDFB
E~(S)

EDFC
EDFB
E (4)

Er Fc
EDFB
E,()

QTF
—2.861 812 846 6
—2.861 749 071 9
+0.000 063 774 7

—128.691 776 53
—128.675 135 77

+0.016640 76

—528.683 360 6
—528.551 037 8

+0.132 322 8

—2788.856 297
—2787.430 423

+ 1.425 874

—7446.894 950
—7441.125 194

+5.769 756

Finite difference

—2.861 813 3

—128.691 94

—528.683 84

—2788.861 81

—7446.9010

effect on E~(S) of the different representation of the nu-
cleus is approximately 0.5 phartrees and thus is negligible
in this system.

Quiney, Grant, and Wilson' have also computed the
first-order Breit-interaction energy Ez (P ) using their
DFC wave function as an unperturbed wave function.
The perturbative Breit-interaction energy of 0.1323653
a.u. is slightly larger by approximately 40 phartrees than
the variational Breit-interaction energy of 0.132 325 5 a.u.
The perturbative Breit energy computed by using the
6nite-di6'erence DF program is given in the third row of
Table V. This value is in excellent agreement with the
perturbative Breit energy obtained in the S-spinor basis
expansion calculations, although the former used the
finite nucleus representation, the difference being approx-
imately 0.7 phartrees.

Mann and Johnson calculated the perturbative Breit-

interaction energy on a number of neutral atoms using
c =137.0390 a.u. Their results on Ar are given in the last
row of Table V for comparison. Our DFC energy corn-
puted in GTF basis-set expansion is in excellent agree-
ment with the numerical limit given by Mann and
Johnson. The perturbative Breit-interaction energy,
0.132 36 a.u. , is slightly larger by approximately 40 phar-
trees than our variational Breit-interaction energy,
0.132 319 1 a.u.

Table VI shows the total DFC and DFB SCF energies
of the rare-gas atoms He, Ne, Ar, Kr, and Xe. Also
shown are the variational Breit-interaction energies
Ez(4'). In the fourth column, the DFC energies obtained
by using the finite-diQ'erence Dirac-Fock program are
tabulated for comparison. DFC and DFB SCF calcula-
tions were performed on He in 16 even-tempered
GTF's. For Ne, Ar, Kr, and Xe, respectively, basis sets

TABLE VII. Total DFC SCF, DFB SCF, and variational Breit-interaction energies of the alkali-

metal atoms (in a.u. ). Speed of light used is 137.0370 a.u.

Be

Ca

Sr

Er Fc
EDFB
E,(S)

EDFc
EDFB
E~(S}

EDFc
EDFB
E~(S)

EDFC
EDFB
E,(S)

—14.575 871 86
—14.575 16942
+0.000 702 44

—199.934 788 6
—199.902 961 7

+0.031 826 9
—679.709 594 1
—679.518 600 1

+0.1909940
—3178.074 209
—3176.355 672

+ 1.718 537

Finite difference

—14.575 891 9

—199.935 08

—679.71028

—3178.081 5
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Orbital

1$&/2

2$&

2p &/2

2p 3/2
3$ ~/p

3p &/2

3p3/2
3d 3/2
3d 5/2
4$ &/2

4p1/2
4p3/2
4d 3/2

4d5/2
5$1/2
5p 1/2

DFC SCF
—1277.258
—202.4650
—189.6782
—177.7045
—43.01036
—37.659 54
—35.325 18
—26.023 29
—25 ~ 537 03
—8.429 814
—6.452 325
—5.982 693
—2.711 237
—2.633 670
—1.010069
—0.492 489 3
—0.439 730 7

DFB SCF
—1274.292
—202. 1845
—189.1988
—177.3806
—42.969 91
—37.584 81—35.280 06
—26.000 13
—25.526 86
—8.424 185
—6.440 767
—5.977 144
—2.711 006
—2.635 577
—1.009 779
—0.491 736 3
—0.439 636 7

'Computed by using the 23s21p14d GTF basis set.

TABLE VIII. DFC and DFB orbital energies of Xe (in a.u.).

Orbital energies'

trees for 2s, &2 and approximately 0.45 hartrees for the
2p, &2 orbital. These level shifts due to the inclusion of
the Breit-interaction term in the SCF procedure are
much smaller in magnitude for outer-shell orbitals. In
higher-Z systems, the major effects of the inclusion of the
Breit interaction in the SCF process are the reorganiza-
tion of the orbitals and a large shift in the inner-shell or-
bital energies.

Table IX contains our variational Breit-interaction en-
ergies for He, Ar, and Xe evaluated by using two
different values of the speed of light. Also shown are the
first-order Breit-interaction energies evaluated perturba-
tively by using finite-difference numerical methods. '

The results show that the variational Breit-interaction en-
ergies computed with the GTF basis-set expansion agree
well with the perturbative Breit-interaction energies. For
all the species considered, however, the perturbative Breit
energies are seen to be slightly larger in magnitude than
the variationally determined Breit-interaction energies.
This small difference may be attributed to the inclusion of
higher-order (a, . . . ) contributions in the self-consistent
treatment of the Breit interaction that are absent in the
first-order perturbation treatment.

of 14s 12p, 17s 15p, 20s 15p 10d, and 23s 2 1p 14d well-
tempered GTF's of Huzinaga were used. The speed of
light used in these calculations was 137.0370 a.u.

Table VII shows the total DFC and DFB SCF energies
of the alkali-metal atoms Be, Mg, Ca, and Sr. The varia-
tional Breit-interaction energies are tabulated in the third
column. In the fourth column, the DFC energies ob-
tained by using the finite-difference Dirac-Fock program
are tabulated for comparison. For Be, the results are
those obtained by using a moderately large basis set of 16
even-tempered GTF's taken from Table II. For Mg, Ca,
and Sr, basis sets of 17s11p, 20s14p, and 22s15p10d
well-tempered GTF's (Ref. 27) were used. The speed of
light used in these calculations was 137.0370 a.u. The
variational Breit-interaction energies obtained in all these
calculations are accurate to at least five figures.

Table VIII contains two sets of orbital energies of Xe
obtained in the DFC and DFB SCF calculations. One
can see that the 1s&&2 orbital energy obtained by DFB
SCF is higher by 3 hartrees than that computed by DFC
SCF. The level-shift decreases to approximately 0.3 har-

IV. CONCLUSION

Theoretical methods developed to describe the struc-
ture of many-electron atoms must be able to yield wave
functions that can be refined to account for relativistic,
electron-correlation, and QED effects to high accuracy.
They must be computationally e%cient because they will
have to eventually describe electronic effects in very-
high-Z neutral atoms. Finally they should be capable of
being extended in a straightforward way to the study of
molecules. The present study has employed one such ap-
proach, i.e., the solution of the Dirac-Fock-Breit SCF
equations by expansion in basis sets of Gaussian func-
tions.

It is usually assumed that Breit-energy contributions
are small, but even for moderate nuclear charge, the
transverse interaction is now known to contribute a sub-
stantial part of the correction to mean-field approxima-
tions and must be included in any approach that aims to
treat relativistic effects to an accuracy of order a .

The frequency-independent Breit interaction, which
gives the leading correction to the instantaneous

TABLE IX. Variational Breit energy E~($') and perturbative Breit energy E~(P) computed with
two di6'erent values of the speed of light, c =137.0369895 and c =137.0390. Square brackets denote
powers of ten.

Egg ()'
c = 137.035 989 5

Eg(+)'
c = 137.0390

E~(P)'

He
Ar
Xe

0.637 756[ —4]
0.132 325 0
5.769 845

0.637 774[ —4]
0.132 364 6
5.775 315

0.637 728 [ —4]
0.132 319 1

5.769 580

0.65 [ —4]
0.132 36
5.775 09

'Present study.
First-order Breit energy evaluated by using cxRAsp (Ref. 5).

'First-order Breit energy (Ref. 8).
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Coulomb interaction in quantum electrodynamics, is a
two-body potential of the same general form as the in-
stantaneous Coulomb interaction, and this term may be
easily incorporated in the SCF procedure of basis-set ex-
pansion Dirac-Fock calculations. The interference be-
tween the Coulomb and Breit terms, which causes the
large orbital reorganization and one-electron energy shift
for large Z, can easily be taken into account in the matrix
Dirac-Fock-Breit SCF procedure.

As the present study has demonstrated, the Gaussian
basis expansion method has the advantage that large
GTF basis sets can achieve high accuracy without en-
countering the numerical near-linear dependency prob-
lem reported with Slater basis sets. ' ' ' ' The GTF
basis-set calculations can be regarded as a highly accu-
rate and versatile approximation in relativistic atomic-
and molecular-structure calculations. The finite basis-set

methods, using both local' ' ' and global basis func-
tions, ' * are being developed for relativistic many-
body calculations, which gives us hope that the radiative
QED corrections may be evaluated as a routine part of
atomic-structure calculations.
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