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In a generalized quantum-mechanical framework with fuzzy dynamical variables, there exists a
small radical length R <1077 cm, which is related to the physical impossibility of unlimited accu-
racy in measuring a particle’s position. It sheds light on the problem of a detailed and gradual tran-
sition, as the mass increases, from the probabilistic behavior of microscopic objects (mcR <<#) to
the deterministic behavior of macroscopic objects (mcR >>#), a problem unaddressable within the
framework of ordinary quantum mechanics. A generalized equation of motion for a particle with
an arbitrary mass m is postulated. It possesses a new local gauge symmetry and reduces to the
Schrodinger and the Hamilton-Jacobi equations in the limits of small m and large m, respectively.
For the double-slit experiment, the theory predicts that, as the mass increases with the momentum
fixed, the interference pattern will have roughly half the usual intensity and two bright spots when

mcR /fi~ 1.

I. INTRODUCTION

It is well known that the relation between quantum and
classical mechanics resembles that of wave and geometric
optics. Although one can discuss the “classical limit
#i—0” of the relation, say, Px —xP = —i#, it is difficult
to discuss and to test experimentally the gradual transi-
tion from the classical deterministic behavior to the
quantum probabilistic behavior when particles change
from macro-objects to micro-objects due to the decrease
of their masses. (Note that fundamental equations of
motion involve masses, but they do not explicitly involve
the size of objects.) The difficulty stems from the lack of
a basic length scale in the conventional quantum mechan-
ics, so that one simply does not have a quantity which in-
volves mass and can be compared with the Planck con-
stant #i. In sharp contrast, the relation between relativis-
tic mechanics and classical mechanics can be easily dis-
cussed because of the existence of v and ¢ which can be
directly compared. In this case, the departure of a parti-
cle, moving with a velocity v, from the classical mechan-
ics can be discussed in terms of the parameter v /c.

In a previous paper,' we discussed a generalized quan-
tum mechanics in which there exists a very small radical
length R and, hence, we naturally have a dimensionless
parameter mcR /#, similar to the parameter v /c in the
relativistic mechanics. The presence of such a parameter
mcR /# enables us to discuss a generalized equation of
motion which can describe both the quantum behavior of
micro-object (mcR /% <<1) and the classical behavior of
macro-object (mcR /#%>>1). Furthermore, we can also
explore the transition between quantum and classical
mechanics when the parameter mcR /# is about one, for
which the objects are neither microscopic nor macro-
scopic. The formalism of quantum mechanics based on
such a generalized equation of motion is more in har-
mony with the fact that, in principle, classical mechanics
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is required for the formulation of basic concepts related
to the microscopic physical world.? (See Sec. VI.)

We may remark that the radical length R is introduced
to discuss possible modifications of physics at short dis-
tances or at extremely high energies.! It turns out that,
in a generalized quantum-mechanical framework, the
radical length R enables us to avoid the unphysical coor-
dinate eigenstates which cannot be normalized and,
therefore, do not have probabilistic meaning. As a result,
the coordinate x of a quantum particle becomes a fuzzy
dynamical variable because of the basic assumption

Ax,.=R . 1)

This implies that a quantum particle’s position by itself
cannot be measured with unlimited accuracy, even if we
do not measure its momentum at the same time. A phys-
ical argument for (1) is as follows: The position state of a
quantum particle must be determined by the Schrodinger
equation with a suitable potential rather than by some
other assumption. Classically, a particle can be localized
at a certain position x, by an idealized 8-function poten-
tial —V,8(x —x,). However, the corresponding position
for a quantum particle with a mass m is determined by
the Schrodinger equation with the same §-function poten-
tial. One finds that its position is not exactly at x,.
Rather, it is described by the wave function

@(x)= A exp[ — |x —x,|/(2'?R)], R =#%/2""*mV, ,
(2)

which has a position uncertainty Ax =~R. This result in-
dicates that a quantum particle can never be forced to lo-
cate precisely at one point, although a classical particle
can be forced to be at a certain point.! This amounts to
abandoning the concept of the coordinate eigenstate or
the & function 8(x) for a particle’s position. The natural
mathematical framework for this inherent fuzziness is
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Klauder’s continuous representation®* in Hilbert space,
which excludes the usual eigenstates {x| and {p|.

II. A FUZZY CRITERION FOR MICROSCOPIC
AND MACROSCOPIC OBJECTS

Evidently, a ping-pong ball (mppg~10~3 kg) is a
“macroscopic object whose motion can be described by
the Newtonian laws, while an electron (m, ~ 1073 kg) is
a microscopic object described by the Schrodinger equa-
tion. However, it appears that there is no clear-cut
boundary between microscopic and mesoscopic objects.
A particle which is neither microscopic nor macroscopic
may be termed a “mesoscopic object.” Since the mass of
an object appears in both Newton’s and Schrodinger’s
equations of motion, it is reasonable and convenient to
use mcR /% as the criterion for a microscopic object. We
may remark that the size of an object is not a convenient
criterion because it does not appear explicitly in basic
equations of motion.

With the help of the parameter mcR /%, we can now
discuss the basic commutation relation as the mass m
varies from ~0 to ~ . Instead of Px —xP = —i#, let

us assume
Prx —xPr=—i#Q, Q=f(mcR/#), (3)

where the “true momentum” P, which is defined for an
object with an arbitrary mass m, depends on mcR /4.
The function f (mcR /#) should satisfy

f(mcR /%)—1 as m—0,
f(mcR /A)—0 as m— oo .

4)

We stress that if the limit Px —xP—0 exists for macro-
scopic objects, then the true momentum Py in (3) should
be a mixture of the quantum momentum P (a ¢ number)
and the classical momentum P, (a ¢ number):

P,=QP+CP, ,
Q=f(mcR /%#)Z0, C=1—0Q=0.

(5)

We postulate to interpret the true momentum Py in (5) as
follows: For an object, the “‘quantum fraction” Q is the
probability of finding it behaving like a quantum particle
and the “classical fraction” C is that of finding it behav-
ing like a classical particle. Such an interpretation is
clearly consistent with the two limits in (4). In analogy to
(5), true energy is E;=QFE +CE_.

Because of the probabilistic nature of f (mcR /#) and
the limiting properties (4), it is reasonable to assume that
f (mcR /#) satisfies

df (A)=—f(A)dA, A=mcR /%, 6)

in analogy to the law of inherent probability in the ra-
dioactive decay. It follows from (6) that

f(mcR /#%)=exp(—mcR /#) . (7

For the purpose of discussions, let us assume R ~10~2°
cm.’ If particles have masses m $10%m,, where
m,=1.6X 10~%7 kg is the proton mass, we have
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f(mcR /#) 2 exp(—5X1073) . (8)

These are quantum particles for all practical purposes.
On the other hand, if particles have masses m 2 10° kg,
we have

f(mcR /#) Sexp(—3x10') . 9)

They are classical particles.®

It is interesting to see whether the radical length R in
fuzzy quantum mechanics could be identified with the
Planck length ~107 3 cm. In this case, a particle with a
mass m ~10~° kg will behave like a quantum particle be-
cause

mcR /~3X1072 . (10)

This appears to be unlikely.’

We remark that, theoretically, the “quantum fraction”
Q may be some other functions of mcR /#%.8 For example,
if A in (6) is identified with (mcR /#)”!, then one gets a
different function exp(—#/mcR). In this case, one can
make the identifications Q =1—exp(—#/mcR) and
C =exp(—#/mcR). However, predictions of experimen-
tal results to be discussed later are insensitive to the
specific forms of the function f.

III. GENERALIZED EQUATION OF MOTION
FOR OBJECTS WITH ARBITRARY MASSES

Based on the idea of the true momentum (5), we postu-
late a generalized equation of motion for a physical object
having an arbitrary mass m >0 and moving in a potential
field 4#=(A4°% A)=(4,, A):

Qlih-a — A, |+CE, |®
ot
=L [Q(—i#V— A)+CP_ *®, (11)
2mQ
where
__9s_ 1 a2 _
E, o = 2 (Pe— AP+ 4o, P.=VS .

S is Hamilton’s principal function.® When 4* do not in-
volve time explicitly, we can write the solution ® in the
form!©

®=1pexp[ —iCS/Q#], S=—E,t+ fT’( P(r)dr’,
(12)

where T'(r) denotes that the integration is carried out
over the actual trajectory of motion of the classical object
and the end point of T(r) is r itself. The trajectory T (r)
is determined by the Hamilton-Jacobi equation in (11).
The equation for 1 is!!

iﬁi_Ao

D P
2 Y= (— AV — AP (13)

for any Q. According to the idea of quantum fraction in
(5), we must have a new normalization condition for the
wave function v,
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[ lwnPdir=0 . (14)

Thus the probabilistic nature of a particular will gradual-
ly fade away as its mass increases.'?

We have the basic equation (11) which describes the
motion of microscopic, mesoscopic, and macroscopic ob-
jects. Evidently, (11) reduces to the Schrodinger equation
in the limit mcR /%—0. Nevertheless, we stress that the
Schrodinger equation (13) holds for all values of the
quantum fraction Q and that the basic equation (11) in-
volves S which satisfies the Hamilton-Jacobi equation
—3S /3t=(VS— A)’/2m + A, for all values of the clas-
sical fraction C.!° These indicate that the two equations
are, in principle, equally fundamental. In other words,
the probability property [¥(r,?)] of micro-objects and the
deterministic property [1(¢)] of macro-objects are equally
fundamental in the physical world within the present for-
malism. Their manifestation in different objects depends
on its mass (or the quantum fraction Q), as shown in (14).

It is interesting to note that the generalized equation of
motion (11) is invariant under the transformation

S—S'=S—C %0Z(r,t),
O P'=PexpliZ(r,1)],

where Z (r,?) is an arbitrary function.

1IV. SIMPLE MOTIONS
OF MESOSCOPIC OBJECTS IN ONE DIMENSION

Let us first consider a free mesoscopic particle with a
mass m moving on the x axis. According to Eq. (11) with
A " =0, we have

1 . 2
O=,5 (TIOAV. +CP P

9
iQ#i—+CE,

where E,=P?/2m. The solution ® can be written in the
form

® =1 exp(iCE,t /Qh —iCS,/Q%#), so=f;‘( Pedx’,
(15)

where S, is Hamilton’s characteristic function which is
explicitly independent of time. The wave function ¢
satisfies

g 1
lﬁatd}- 2m

2
9
i ]¢. (16)

Its solution is given by
Y= A exp(—iEt /#+iPx /#), E=P*/2m , (17)

where P =P, for the plane waves. In analogy to (5), the
true energy E is given by

E;=QE+CE,=P?/2m=E, . (18)

Next, for a simple harmonic oscillator with the poten-
tial ¥ (x)=Kx?2/2, we have the generalized equation
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2
072 +CE, |o= |- |—ioa2-+cp
ot ¢ 2m ox ¢
+10Kx?|®, (19)
P,=[2m(E,—1Kx?*)]'?. (20)

The solution for ® is found to be
@, =y,exp(—iCS/Q#), S=—Et+ [ P.(x")dx’,
T(x)

@1
1/2
—99Q | g (ax)exp(—a’x2/2—iE,t /#),

Un= V2"

at=mK /%2, (22)

where the energy eigenvalue E, for ¢,, i#Q3vy,/
ot=QE,¢,, is

E,=(n+ 1o, o*=K/m . (23)
The true energy of this mesoscopic harmonic oscillator is
E;,=QE,+CE,=Q(n+Lfiw+CKx2, /2. (24)

The probability density for a mesoscopic oscillator
satisfies the “new normalization”:

J7 axle,P=[" |y, Pax=0 . @5)

In the classical limit (m — =), the factor aexp(—azx 2)
in |1/J,, |2 becomes a 8 function, which is not interesting
physically. However, we have Hamilton’s principal func-
tion

S=——Ect+f:( P(x")dx', E,=H.(P,x), (6)

which determines the motion of the macroscopic object.
We may remark that the classical case corresponds to
large phase in ®,.1°

V. EXPERIMENTAL TESTS
OF FUZZY TRANSITIONS

Let us consider the experimental implication of the
new plane wave ® of mesoscopic particles given by (15)
and (17):

d= A exp

—i(o—CE, /#Q)t

+i[kx—(CPc/ﬁQ)f:(x)dx'] ] vY)

Suppose one carries out the double-slit experimental with
particles having the same momentum P =#k =const.
One can vary the masses of particles and keep their mo-
menta fixed. In this case, the classical momentum P,
must be the same as the quantum momentum #k,
i.e,, P,=#k. As the mass changes, the ratio CP,/#Q
=kC/Q =k[1—exp(—mcR /#)]/exp(—mcR /#) also
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changes. On the screen at the position x, which can be
reached by the particles following the classical trajectory,
we have the phase

(k —CP, /%Q)x =xk (1—C/Q)=xk g . (28)

As m changes, we have different quantum fraction Q for
normalizing the wave function in (14) and have the
effective wave number Kk 4

k.g=k for mcR/fi<<1, (29a)
ke.s=0 for mcR /fi=In2 , (29b)
kegg=—Ck/Q=—V for mcR/A>1, (29¢)

where V represents a very large number. In (29a), one
has the usual interference pattern on the screen. For
(29¢), the screen has only two bright spots at a and b,
which correspond to the end points of classical trajec-
tories passing through the two splits. However, in (29b)
the wave function ® leads to two dark spots at @ and b
due to the destructive interference there; nevertheless, at
other positions it gives the usual interference pattern with
half the intensity of (29a). On the other hand, half of the
total particles (corresponding to the classical fraction
C=~1) follow the Hamilton-Jacobi equation and reach
spots a and b, so that effectively there are also two bright
spots at @ and b with half the intensity of (29c).

This is an interesting prediction of the present theory
for the double-slit experiment with mesoscopic particles
with different masses and the same momenta. It is an in-
teresting experimental test of this theory and, if
confirmed, one can determine the radical length R
without relying on high-energy experiments to find out
the presence of a very small fundamental length.

Next, let us consider a charged particle with a mass m
moving on the x-y plane with v=(vx,vy,0) and in a con-
stant magnetic field B in the z direction. We take the vec-
tor potentials A of the magnetic field as

A=(0,Bx,0), (A4,=0). (30)

The electromagnetic gauge invariant equation of motion
is [for the electromagnetic potential A*, we replace A*
in (11) by e4#/c]

2

mQ%+CEC ]q>=——1—— —iﬁQV—%—CPC—%QA @,

2mQ

=1l p_eap p= e
E, 2m(Pc cA)’ P, mv+CA. (31

The solution ® to (31) can be written in the form
®=yexp(—iCS/#Q), S=—E+ [  P(r)dr,
T(r)

where 1 satisfies

2
R =1 |p_e
thQattp—QHzp, H 2m P CA] . (32)

We can write H in the form
H=-L(P2+0?) (33)

2m
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where
f_’sz, O=(eB/c)x —P, .

Because P Q —Q P= —itieB /c, we find that the operator
QH has the following energy spectrum:

QE,=(n +1)Q%eB /mc .
The true energy E of the charged particle is given by
E;=QE,+CE.=Q(n+1)fieB/mc+Cmv?/2,  (34)

where v is its classical velocity. In the future, we hope
that the new result (34) can be tested experimentally by
varying the mass m of the charged particle moving in a
strong magnetic field.

VI. DISCUSSIONS AND REMARKS

For a free relativistic particle, the generalized equation
of motion takes the four-dimensional form!
2

—cX—i#iQV+CP,)? —0m2c* |®=0,

[iﬁQ% +CE,

(35)

where E2?/c?=p2+m?*? and c is the speed of light.
Similarly, the relativistic equation for a Dirac particle
can be written down formally:!3

iﬁQ%%—CEc—ca'( —i#iQV+CP,)—Qfmc? |¥=0 .

(36)

Equations (35) and (36) are invariant under the new trans-
formation S —S—C " 'Q#Z(r,1), ®—Pexp[iZ(r,1)], as
discussed in Sec. III. This transformation can be written
in the form of a local gauge transformation:

Ec_>Ec+c—‘Qﬁ%% ,

P, P —C 'Q#vVZ , (37
O —>Dexp(iZ) .

The physical implications of this new gauge symmetry
deserve to be further studied.

The generalized equation of motion appears to be
relevant to problems of measurements and more precise
formulation of quantum mechanics.!* In ordinary quan-
tum mechanics, there is only the wave function and no
other variables r(#) to express macroscopic definiteness.
This gives rise to problems concerning the role of “mea-
surements” and so on:'>'* To do experiments, the wave
function must be narrow as far as macroscopic variables
are concerned. But the Schrodinger equation does not
preserve such narrowness, so that there must be some
kind of “collapse” to enforce it. However, “what are
macroscopic objects” and ‘“how the collapse occurs” are
ambiguous in principle in the conventional framework.
In order to have a precise quantum mechanics, it was
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suggested by Bell that both ¥ and r(?) should refer to the
world as a whole.!*16

We note that the usual Heisenberg commutation rela-
tion is valid only from m =0. For the electron with the
mass m,=0.5 MeV/c?, there will be a small deviation
from Heisenberg’s relation. Nevertheless, the effective
deviation A#i/# is too small to be detected because
R <107 cm:

A#%/A=1—Q=2.5X10"7 for R=10""7 cm .

Within the present generalized framework of quantum
mechanics, there exists a very small radical length R,
whose length has yet to be determined. This radical
length enables us to define microscopic objects
(mcR /#i<<1), mesoscopic objects (mcR /#i~ 1), and mac-
roscopic objects (mcR /#i>>1), and to describe their
motions by the same basic equation. Furthermore, it
brings about an inherent fuzziness (i.e., Ax_;,=R) at
short distances on the microscopic level and a sharply
defined position r(#) on the macroscopic level. As we
have seen from the generalized equation of motion (11)
for all objects, as the mass becomes very large, the
momentum operators and the wave function become

unimportant and physically uninteresting. The classical
variables P, r(f) and the Hamilton-Jacobi equation
emerge to play main roles for describing the motion of
macroscopic objects. Thus the theory has both the pro-
babilistic feature for the microscopic world and the deter-
ministic feature for the macroscopic classical world. In
this way, we can avoid the puzzling idea that a macro-
scopic pointer in an apparatus can point simultaneously
in different directions.!* A very interesting consequence is
that the theory predicts new and unexpected phenomena
related tora fuzzy transition between quantum and classi-
cal mechanics. We use double-slit experiment and simple
harmonic oscillators (a charged particle moving in a con-
stant magnetic field) to illustrate such fuzzy transitions.
They can be and should be tested experimentally.
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