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EI'ective density matrix for free-electron-laser radiation
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The effective density matrix of the radiation field in the free-electron laser is computed under
realistic initial conditions for the electrons and photons. The field is predicted to be a superposi-
tion of a coherent state and a chaotic state. The width of the distribution in the coherent-state
expansion is given by the sum of classical and quantum-mechanical initial fluctuations of the elec-
tron beam.

As the free-electron-laser (FEL) physics matures to the
point where it is possible to reliably model the growth of
the radiation field, it becomes appropriate to seek a more
complete description of this field in terms of its density
matrix. Even though few measurements have been report-
ed to date, ' such a description gives an experimentally
verifiable characterization of FEL light. For example, the
measurements of photon statistics or coherence properties
of FEL radiation would probe the density matrix.

While a quantum-mechanical description of the FEL is
not necessary to compute the density matrix of the radia-
tion field, it provides the most natural setting to do that.
Furthermore, several recent proposals envision a FEL
operating in the I-A regime where the purely quantum
eff'ects may be detectable. Finally, the quantum-mech-
anical calculations presented for the FEL may be directly
applicable to processes which are intrinsically nonclassical
(channeling, for example).

The calculation presented below for the density matrix
of the radiation field generalizes on several previous at-
tempts. ' We obtain the full density matrix, rather
than, for example, calculating only the second moment of
the number operator, we take into account realistic initial
conditions for the electron beam, and our model includes
the exponential growth regime of the FEL radiation.

In what follows we consider the single-pass model,
which is the relevant setup at short wavelengths, and we
build on the quantum mechanical description of the FEL
developed in Ref. 11. For the linearized one-dimensional
single-mode problem with a circularly polarized wiggler,
the solution for the annihilation operator of the radiation
field in the Heisenberg picture is given by

a(z) =f
~ (z)x(0)+f2(z)y(0)+f3(z)a(0),
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[As the modes decouple in linear theory, the solution given

by Eqs. (1) and (2), with a different interpretation of the
parameter 8', is also applicable in the many-mode case. ]
In Eqs. (2a)-(2c), the indices i,j,k are not the same and
X s are solutions to the eigenvalue equation
X3 —BX +2pk+1 =0. Without the corrections of O(p),
Eqs. (2a)-(2c) have been given in Ref. 5. x(0) and y(0)
are the initial values of non-Hermitian operators for the
electron collective variables
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where Bp~. =pl —
ppj, 8p~ =pl —ptr, and ptt and pol are the

equilibrium expectation values of the electron momentum
(resonant momentum) and the phase relative to the radia-
tion field, respectively; pl

= (k p+ k„)z~
—tppt —

corot, yp.
=coo(1 yR/yo); m yR =ptr+M and analogously for yp

(pp is the expectation value of the average initial electron
momentum); M is the effective mass, M =m +e A„,

is the strength of the wiggler vector potential, and a„
is the dimensionless quantity a„=eA /m; 8 is the detun-
ing,
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with Q~ =(4xnoe /myo) 't (Ref. 12); z is the dimension-
less time, z=2co p(yet/yo) t; ko and k„are the wave
numbers of the radiation and wiggler field, respectively,
coo ko, ro„=k„;N is the total number of electrons, and
V the quantization volume. By the linearization assump-
tion P J satisfies g~- e "=0 for n = + 1, + 2, . . . . (We
note that linearization is performed about the equilibrium
which corresponds to the absence of the radiation field,
monoenergetic electron beam of momentum pR, and a
uniforin distribution of electrons in phase satisfying
gz- je

' ' =0. For ~n ~

~ 2 the linearization assumption
is the usual approximation' which holds for a large num-
ber of electrons. ) We have set jj'i =c =1, but we will re-
cover the powers of A and c in the final result in order to
manifestly separate classical from quantum-mechanical
effects. x, y, and a evaluated at the same time satisfy the
following commutation relations: [a,a ~] = 1,
[x,y t] = [x t,y] =i, and all of the other commutators van-
ish. The commutator between a(z) and at(z) implies
i[fj(z)fz (z) fj (z)f—z(z)]+ ~f3(z)

~

=1, which can be
directly verified. It can now be seen that in terms of di-
mensional variables the first factor in equations (2a)-(2c)
is e '"', i.e., the free-field time evolution of a.

To examine the photon statistics of FEL radiation we
use the formalism of expanding the density matrix in
terms of coherent states, ' and -we pass to the Schro-
dinger picture in which the density matrix is a function of
time. We begin by computing the normal ordered charac-
teristic function, ' gjv(X) =&exp[Ra (z)]exp[ —X*a(z)]),
where the angular brackets stand for the expectation
value. It is assumed that initially the density matrix is a
product of the density matrix describing the field and the
one describing the electrons. The initial state of the field
is taken to be a coherent state with amplitude ao. (There
is no essential limitation in this choice for the initial state
of the field, as the ensuing calculations can easily be re-
peated for another, for example, thermal, initial distribu-
tion of photons. ) Then

(~) e~f3 eo " f3eo~ej (4)

where g" is the electron part of g~. Using the fact that
for any two operators A and 8 which both commute with
[A,B], e e =e"+ el"' jt, and employing the commuta-
tors for x, xt, y, andyt,

gej =e ' ' ' ' &exp[a(f*x +f*y )
—X*(fjx+fzy)]) . (5)

(We suppress the arguments of fj 2 3 which are under-
stood to be z and of x, y, and a which are evaluated at

z =0.) Written in terms of single electron momentum and
position operators, the argument of the second exponential
in Eq. (5) is

g [bz, ((J —&j')+ bp)(v, - —vj')],
j

where gj =
2 kfj*e ' "K', vj & Afze

' "K, and K and
K' are constants given by
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To proceed further we invoke the assumption of the ini-
tial statistical independence of the electrons' and write
the initial electron density matrix as a product of density
matrices for single electrons. In addition, we impose the
equality of the density matrices for single electrons.
Hence it is needed to compute (with the index j tem-
porarily suppressed),

g"=—
&exp lbz (& —&*)+bp(v —v') ])

=exp( —2i Im( Imv)&exp(2ibp lmv)exp(2ibz lmg)) .

The relation with g" is

N

g"=exp[ —
)X~ Im(f fz )]Qg,".

j~]
We model the initial electron state as follows: a statistical
mixture over b'p and bi of wave packets centered in
momentum at Bp and in position at bY. For the electron
wave functions we take the minimum uncertainty wave
packet with the width 6, in momentum,

y, -„-(bp)=, ,t, exp( —ibpbz )
1

2nd
r

(bp —bp) '
4h,

The density matrix is

p =„d(bi)d(BP ) ~bp, bi)R(bP, bz)&bp, bz jj,

where &bp~bP, bY) =yb- ~;(bp). Using

g" =exp( —2i Im( Im v)

x Tr [p exp(2ibp Im v)exp(2ibz Imp )],
an integration in the momentum representation yields

g =exp[ —2A (Imv) ]exp (Imp) d(8z)d(BP )R(bP, b'z)exp(2ibi lmg)exp(2iBP Imv) .
2w' 4

Next, we write R(bp, bz) =P(bp)Z(bz), i.e., the distri-
butions in bp and bz are independent (which can be ex-
pected to hold for the range of z over which y changes by
2n).

To find Z(bz), we proceed as follows: We want the dis-
tribution for the average of N random variables Bzz, each
one of which has a distribution D, (bij), centered at 0.

I

Further, using the estimate for the random electron distri-
bution in phase from Ref. 11, we write the second moment
of Z(bi) as 1/ko. Then the central limit theorem gives

ko —(bz) koZ bz = exp
42m
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Into this equation we insert the definitions of v~ and g'.
Then, summing the argument of the exponential over j,
using the linearization assumption QJ te

' '=0, and
approximating to O(1/y ) —, K' N by pRkO, and —, K N by
1/(kOpR), yields

g~(X) =exp(lf3 aO
—~ f3aO)exp( —IXI &n)th). (9)

Here, with powers of 6 included,

&n),h =Im(f t f2 )+ I f2I' „+
PR 0 PR 0

PR +PR""'
Akp 4p2

(10)

We now obtain the effective density operator for the ra-
diation field at time r. As Eq. (9) is the expression for

Tr[p. (0)p,. (0)U(r)e"' "'e '*'(0'Ut(r)],

where U(r) and Ut(r) are the usual time-evolution
operators, we trace out the electron variables to get

(z) fr[p (r)eon (0) —z'a(0)] (11)

The remaining trace runs only over the radiation field
(hence the subscript eff for effective). Next, we assume
that p„q,g(r) has a diagonal representation in terms of
coherent states, ' p„d,'= fd aIa&P(a)&aI, where d a
—=d(Rea)d(Ima), and we use'

P(a) = „exp(aX —a k)g~(k)d

A straightforward calculation then yields

P(a) = exp
1

~&n)th

a 3ap

&n&, h

(12)

This is an eminently reasonable result. The field produced
by a FEL is a superposition' of a coherent state of ampli-

For P(bP) we proceed in an analogous manner, but with
the center of each D'(Bp'), and hence of P(8p) at Bpo (so
that Bpo+pR is the average initial electron momentum).
The width of P(bp) is the thermal spread, denoted by dp.
Thus,

1 (&P —BPO)'P bp exp
2(~p)'

Substituting now the expressions for Z(Si) and P(bP )
into Eq. (7) yields

g~" =exp(2ibpOImv~)exp[ —2(Imvj) [(Ap) 2+6 ]]

&&exp —2(lmg ) +1 1

4a' k' (8)
W

tude f3aO, and of a chaotic state (pure noise), with the ex-
pectation value for the number operator given by &n&th.

The intensity of FEL radiation, on the other hand, is
&a a)(r) =

If3I IaOI +&n)th, as can be easily shown by us-
ing the expression above. We also note that as r 0,
ft,f2—0, and f3 1, which produces P(a) =b (a —aO),
in agreement with the assumption that the radiation field
is initially in a coherent state of amplitude ap.

The coherent part of the field is due to the amplification
of the initial coherent signal. The sources of the noisy
part can be identified term by term in Eq. (10): (i) non-
commutativity of 8p~ and Sz~ (quantum effect); (ii)
thermal spread of initial electron momentum distribution
(classical effect); (iii) width of electron wave packet in
momentum (quantum effect); (iv) random distributions of
electrons in phase-shot noise (classical effect); and (v)
width of electron wave packet in position (quantum
effect). [The classical sources of noise carry a factor of
I/O due to the definition offt 2, Eqs. (2a) and (2b) and of
the electron collective variables, Eqs. (3a) and (3b).] For
most FEL's of current experimental interest the classical
sources of fiuctuations can be expected to be dominant
over the other terms. " The product of the third and the
fifth terms of Eq. (10), on the other hand, gives the lower
limit of quantum fluctuations discussed in Ref. 1 1, in
agreement with our choice of the minimum uncertainty
wave packet.

In the results presented so far we have not specified the
value of 6,. While we do not invoke physical arguments to
do that, we notice which value minimizes &n),h (minimum
of quantum effects in &n),h). As Ift(r)I =p If2(r)I
for p«I, the minimum of Eq. (10) is reached at
6=(2 pRAkop)' . For typical experimental values for
FEL parameters, for this value of h„h, ((hp. For exam-
ple, pge = 100 MeV, A, = 1 cm, p = 1 & 10, a„=3.0,
hp/pR =0.05% gives b/dp=0. 01, which is probably too
small to be detected [both ~, and hp enter squared in Eq.
(10)]. This ratio can be, however, significantly altered for
more unusual FEL designs. For the I-A FEL we take
p~c = 1.6 GeV, A,„=0.1 cm, p = 1.3 x 10,a„=1.0, and
hp/pR =O. l%%uo. This yields ~/Ap =0.1, with experimental-
ly measurable consequences, such as the start-up time
from noise.

Equation (12) can be used to predict the coherence
properties of radiation produced by FEL's. Regarding
spatial coherence, the field is only first-order coherent (as
we treat a single-mode problem). Defining the degree of
nth-order coherence ' as

(n, n)
r'" "'(zt, . . . , z2„)

g ' (Zt, . . . , Z2n) ' t/2
2NQr" "( )

jmx f

where I "'" (zt, . . . , z2„) is the nth order correlation
function

r "'" (zt, . . ~, z2„) =Tr[p(0)A, (t,zt). . .A, (t,z, )A, + (t,z, +t). . .A, + (t,z2n)1,

and (+) and ( —) denote positive and negative frequency parts of the vector potential A„gives'6 for FEL radiation

.( —If3aol /&nth&)

(1+If3aoI /&nth))"
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Here L„(x) is the Laguerre polynomial. It is now clear
that in the limit ~f3aoP&&(n ht), ~g

""
~
=1, which is fully

coherent, whereas in the liinit (f3ao( «(nth), (g
"'"

( =n!,
which is thermal. Temporal coherence is a more delicate
question since P(a) is explicitly a function of time. For
two arbitrary points in time the field does not possess
first-order coherence, ~g ")(t~,tz)(&1 [the step leading
to Eq. (11) does not go through]. A calculation of this
quantity is given in Ref. 17. For t t

—t 2 « I /
(2pro„~1m', ~), however, i.e., for time separations which
are much smaller than the characteristic evolution time of
the density marix, the radiation field is first-order
coherent. As in the case of spatial coherence, in this limit,
Eq. (12) predicts that none of the higher-order correlation
functions will factor out, i.e. , the FEL radiation possesses
only first-order temporal coherence. Finally, we mention
that Eq. (12) confirms the finding of Ref. 14 that for
reasonable initial conditions for the electron beam, FEL's
cannot produce radiation in a squeezed state. In such a
state g~(A, ) =exp(Xp —k*p*+ ~X~ g) for some p and
some real positive g. ' Consequently, P(a) is not defined.

We remark on the results announced by other authors.
In Refs. 7 and 8 perturbation theory in p~

—po is applied
to first order. (The limitation of this method is that it
generates secularities in time, and hence is valid only for

very short times; in particular exponential growth is not
captured. ) (n~p~n) is computed for the initial electron
beam where all electrons are in momentum eigenstates,
and where the radiation field is initially the vacuum. For
the coherent initial state of the field the photon number
variance, (n ) —(n), is computed. Thermal distribution
is found for (n~p~n), and a nonpreservation of the initial
coherent state. This is in agreement with Eq. (12); our re-
sult, however, describes, in addition, the amplification of
the spontaneous emission, as well as other higher-order
eA'ects that also have a thermal distribution. Reference 9
also claims a thermal distribution of photons during FEL
start-up. There the radiation field equation is solved as-
suming a given motion of the electrons. The result of Ref.
5, on the other hand, is the limiting case of our result
when hp =0, the shot noise is neglected, and h, is taken to
be ( —,

'
@kopje)

' . Finally, Ref. 10 studies the start-up of
an oscillator by applying fourth-order perturbation theory
in e A„j(pit+M ) 'i (rrjVroo) 'l (again secular in t).
Thermal statistics is found for (n(p~n).

This work was supported by the U. S. Department of
Energy, Grants No. DE-F602-86ER53222 and No. DE-
AS05-80ER 10666.

'M. C. Teich, T. Tanabe, T. C. Marshall, and J. Galayda, Phys.
Rev. Lett. 65, 3395 (1990).

2P. Dobiasch, P. Meystret and M. O. Scully, IEEE J. Quantum
Electron. QE-19, 1812 (1983).

BNL Report No. 52273, 1991.
4R. H. Pantell, Appl. Phys. Lett. 33, 571 (1978).
5R. Bonifacio and F. Casagrande, Opt. Commun. 50, 251

(1984).
A. Bhattacharjee and I. Gjaja, in Physics of Particle Aecelera

tors, Proceedings of the 1987 U.S. Particle Accelerator
School, edited by M. Month and M. Dienes, AIP Conf. Proc.
No. 184 (American Institute of Physics, New York, 1989),
pp. 1776-1797.

7W. Becker and J. K. McIver, Phys. Rev. A 27, 1030 (1983).
sW. Becker and J. K. McIver, Phys. Rev. A 28, 1838 (1983).
9A. T. Georges, in Free Electron Generators of Coherent Radi

ation, edited by C. Brau, S. F. Jacobs, and M. O. Scully,

SPIE Conference Proceedings No. 453 (International Society
for Optical Engineering, Bellingham, Washington, 1984), pp.
297-305.

'oJ. Gea-Banacloche, Phys. Rev. A 31, 1607 (1985).
' 'I. Gjaja and A. Bhattacharjee, Phys. Rev. A 37, 1009 (1988).
' R. Bonifacio, C. Pellegrini, and L. M. Narducci, Opt. Com-

mun. 50, 373 (1984).
' R. J. Glauber, in Laser Handbook, edited by F. T. Arecchi

and E. O. Schulz-Dubois (North-Holland, Amsterdam,
1972), pp. 1-43.

'4I. Gjaja and A. Bhattacharjee, Phys. Rev. A 36, 5486 (1987).
'sJ. Perina, Quantum Statistics of Linear and Nonlinear Opti

cal Phenomena (Reidel, Boston, 1984).
'sB. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076 (1967).
' J. Gea-Banacloche and M. O. Scully, Nucl. Instrum Methods

Phys. Res. Sect. A 237, 100 (1985).
'sH. P. Yuen, Phys. Rev. A 13, 2226 (1976).


