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First-passage-time calculation of the conductivity of continuum models of multiphase composites
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We formulate a Brownian-motion simulation technique to compute exactly the eAective con-
ductivity o, of general continuum (off-lattice) models of n-phase heterogeneous media having
phase conductivities oi, . . . , o„, where o; can be finite or infinite. The appropriate first-
passage-time equations at the multiphase interface are derived to reduce significantly the compu-
tation time. The method is illustrated by calculating o., for regular and random arrays of d-
dimensional, nonoverlapping spheres (d =2 and 3) for a wide range of conductivity ratios (includ-
ing perfectly insulating and superconducting particles) and volume fractions.

The problem of predicting the effective conductivity
(and, by mathematical analogy, the dielectric constant,
magnetic permeability, and diffusion coefficient) of multi-
phase composites has received considerable theoretical at-
tention in recent years. ' Comparatively speaking, there
is a dearth of work on "exact" simulations of the property
of interest, especially for continuum models (e.g. , random
distributions of particles in a matrix). Such "computer
experiments" could provide unambiguous tests on theories
which, except for specially prepared artificial media, are
never exact.

Conventional simulations approaches for continuum
inodels (e.g. , finite differences and finite elements) are
severely limited by high computational costs and thus
questions concerning finite-size effects and accuracy are
typically left unresolved.

In this Rapid Communication, we develop a Brownian
motion simulation technique that efhciently yields the
effective conductivity o, of general continuum models of
macroscopically isotropic, d-dimensional, n-phase com-
posite media having conductivities cr~, . . . , cr„(where
0 ~ cr; (~ Vi) and volume fractions P|, . . . , P„. This is
done by keeping track of the mean-square displacement
and mean time associated with Brownian trajectories in
the limit of large times. Unlike recent random-walk algo-
rithms which simulate the detailed zig-zag motion of the
walker with small, finite step sizes, the present formula-
tion facilitates the calculation by utilizing the appropriate
first-passage-time equations in the homogeneous phases
and multiphase interface. It has been demonstrated by
Torquato and Kim that in the related diffusion-con-
trolled trapping problem, the use of first-passage-time
equations results in an execution time that is at least 1 or-
der of magnitude faster than procedures which simulate
the detailed zig-zag motion of the random walker. First-
passage-time analysis also has the advantage that bound-
ary conditions at the interface (the critical part of the cal-
culation) are exact and do not have to be arrived at by
physical reasoning or conjecture.

The essence of the first-passage-time methodology is
to construct the largest concentric sphere of radius R
(around a randomly chosen point in phase i) which just
touches the multiphase interface. The mean time r taken
for the Brownian particle (initially at the imaginary
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FIG. 1. Small neighborhood of the interface boundary be-
tween phases 1 and 2.

sphere center) to first strike a randomly chosen point on
the sphere surface is simply given by

R.(R)= „2do'i

(In other words, when walking in the homogeneous re-
gions there is no need to spend unnecessary computing
time "wandering in the wilderness" by simulating the
detailed motion of the random walker with finite step
sizes. ) The process is repeated, each time keeping track of
R and thus r, until the walker comes within a very small
distance of the multiphase interface. At this juncture, one
must compute the mean time associated with crossing the
boundary, r„and the probability of crossing the bound-
ary, both of which depend upon the phase conductivities
and the local geometry. (These interface quantities are
obtained by solving boundary-value problems described
below. ) At some future time, the Brownian particle will
again walk entirely in one phase and the above procedure
is repeated. The effective conductivity cr, scaled by the
conductivity of the reference medium taken to be phase I,
can be shown to be given by
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Here t ~(R) denotes the mean first hitting time for a walk-
er in a homogeneous sphere of radius R and conductivity
cr~, summations over i is for Brownian paths in homogene-
ous regions, summations over j is for paths crossing the in-
terface, and angular brackets denote ensemble averages.

First-passage-time equations which apply in a very
small neighborhood of the interface between two phases,
say phase 1 and phase 2 (see Fig. 1), are given by

0.6— —First Passage Time Equation
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FIG. 2. First-passage-time equation (solid lines) and the
boundary-element data (circles) for r, /r~ vs the scaled distance
r/R from the interface for selected a a2/o~ in the d=2 case.
Ratio of radius of curvature to first Aight radius is 10.

o.;V z, = —1 inA;,
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Here p~(x) [pz(x)] is the probability that the walker ini-

tially at x near xo, the center of the imaginary sphere of
radius R, hits 8Q~ [8Q2] for the first time without hitting
8Q2 [8Q~], r, ( )xis the mean hitting time for the walker
initially at x to hit 8Q ( =8Q ~+8Q2) for the first time, I
denotes the interface surface, n; is the unit outward nor-
mal from region Q;, .

1; signifies the approach to I
from the region Q;, and a =cr2/cr~. In the simulation, the
interface quantities p], p2, and z, are computed when the
walker comes within a prescribed small distance ab of the
interface, where a is the local radius of curvature and
b«1.

The solutions of Eqs. (3)-(5) for an interface with an
infinite radius of curvature (straight line for d =2 or plane
for d=3) is straightforward and for d ~ 2 is given by an
infinite series involving d-dimensional spherical harmon-
ics. We seek, however, a solution for curved interfaces
since this will result in more accurate calculations and be-
cause the radius R in practice does not have to be as small
as it would have to be in the zero-curvature case, thus re-
ducing the computation time. The general solution is in-
tractable analytically but we have devised an approximate
analytical solution (based upon the zero-curvature solu-
tion) which turns out to give excellent agreement with a
numerical evaluation of Eqs. (3)-(5) using the bound-
ary-element method. Figure 2 shows an example of this
comparison for the mean hitting time z, for d =2 in a case
of large curvature. The general solutions are lengthy and
hence are not given here.

In order to assess the accuracy of our algorithm, we
have computed the effective conductivity o, for the d-

dimensional cubic lattice of spheres (d=2 and 3) of ra-
dius a and conductivity o2 in a reference medium (ma-
trix) of conductivity cr~, for both finite and infinite values
of the conductivity ratio a=cr2/cr& and a wide range of
particle volume fraction p2 values. For such idealized
models, exact numerical results are available. ' We set
b=0.0001, employed 2000-6000 random walks, and let
the dimensionless total mean-square displacement A' /a
vary from 10 to 100, depending on the value of p2 and a.
Our simulation results were found to be in excellent
agreement with the previous exact results for both finite
and infinite values of a, with a maximum error of less than
1%. Each datum for cr, required, on average, only 8 CPU
minutes on a CRAY Y-MP or 1 CPU hour on a VAX sta-
tion 3100. For the special case of superconducting parti-
cles (a=~), we studied the behavior of o, when the par-
ticles are very near their percolation-threshold or close-
packing values (i.e., P2 =x/4 for d =2 and p2 =x/6 for
d =3) and found that the simulation predicted the proper
singular behavior in this critical region. Figure 3 com-
pares some of our data with the exact results. Additional
data (including insulating particles a =0) are given else-
where.

We also apply our algorithm to obtain cr, for random
distributions of nonoverlapping (i.e., spatially correlated)
d-dimensional spheres (d =2 and 3) of conductivity o2 in
a matrix of conductivity cr~, useful models for which there
are still very few exact results, especially at large a and p2.
We generated equili6rium configurations of N d-dimen-
sional hard spheres of radius a in a cubical cell with
periodic boundary conditions using a standard Metropolis
algorithm. ' For d=2, we studied the volume fraction
range 0~&2(0.7; p2 0.7 corresponds to a value very
close to the fluid-solid phase transition" and is about 86%
of the random close-packing value' p2. For d=3, we ex-
amined the range 0~ &2~0.6. Above the fluid-solid
phase transition' &2= 0.49, the system for d =3 is in the
metastable glassy state and generation of realizations be-
comes quite subtle. For p2 0.5 and 0.6, we employed the
careful procedure of Miller and Torquato' to obtain
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FIG. 3. o, /cr~ for a square array of disks (d=2) and a
simple-cubic array of spheres (d =3) as a function of the disk
area fraction p2 at selected a =o2/cr~. Dashed and solid lines are
the exact results (Ref. I) and circles and crosses are our data.
For d 2, the datum for a = near the percolation threshold is
not shown.

hard-sphere realizations. Note that &2=0.6 corresponds
to approximately 95% of the random close-packing
value' p2 for d=3. Generation of configurations at p2
(for d=2 and 3) is quite complex and hence was not car-
ried out in the present work.

We employed 100-1000 random walks per realization,
and averaged over 100-600 realizations, set 8=0.0001,
and let the scaled total mean-square displacement A' /a
vary from 10 to 100, depending upon p2 and a. We stud-
ied the effect of system size and found that with N =100
and 125, finite-size effects were negligible for d =2 and 3,
respectively. For d =2 and 3, each datum for cr„accurate
to within 2%, required on average about 1 and 5 CPU
hours on a CRAY Y-MP. It is important to emphasize,
however, that a reduction of the number of realizations by
an order of magnitude reduces the computing time pro-
portionally but with little loss in accuracy (i.e., approxi-
mately 5% accuracy level). Compared to previous tech-
niques, our algorithm yields the effective conductivity ac-
curately with a very fast execution time.

Figure 4 cotnpares our hard-disk simulation data for a,
with a=10 and to evaluations of Milton's four-point
lower bound by Torquato and Lado. The bound incorpo-
rates nontrivial information about the microstructure
through a parameter gq.

' The upper bounds are not
shown since it is now well established ' ' that micro-
structure-sensitive lower bounds will provide a good esti-
mate of o, when a)& 1, provided that the medium does not
possess large conducting clusters. This indeed is borne out
in Fig. 4. Additional data for a=0 and 50 are given in
Ref. 9.

2

FIG. 4. o, /a~ for an equilibrium distribution of hard disks
(d=2) as a function of the disk area fraction p2 at selected
a =+2/o~. Dotted lines are four-point lower bounds (Refs. 2 and
5) and circles are our data.

In Fig. 5, we depict our hard-sphere simulation data for
a, with a =10 and ee. Included in the figure is an analyti-
cal approximation due to Torquato' and the evaluation of
Milton's three-point lower bound by Miller and Torqua-
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FIG. 5. o, /o~ for an equilibrium distribution of hard spheres

(d 3) as a function of the sphere volume fraction ti2 at selected
a=o2/ai. Solid and dotted lines are Torquato's approximation
(Ref. 16) and three-point lower bounds (Refs. 2 and 14), re-
spectively, and circles are our data.
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to. ' Both analytical expressions involve the microstruc-
tural parameter g2. Torquato's expression is seen general-
ly to provide an excellent estimate of the effective conduc-
tivity for a wide range of conditions. Note that the well-
known Clausius-Mossotti formula underestimates the
data, especially for a)) 1 and large pz. For example, for
d 3, a =~ and Pz =0.6; this formula is about 51% below
the datum. Data for a =0 are also given in Ref. 9.

We are in the process of computing o, for distributions
of d-dimensional overlapping (i.e., spatially uncorrelated)
spheres' (also known as the "Swiss-cheese model"' ).

Since our algorithm can accurately yield behavior near
the percolation threshold, we are also computing transport
percolation exponents ' for these models.
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