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Double photoionization of helium: Analysis of photoelectrons with
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The basic sixfold differential cross section d cr +/d'kd'k (SDCS) of the double photoionization
process is derived within a "wave-function approach" (WFA) using a highly correlated ground-state
wave function and a double-continuum final state approximated by a symmetrized product of one-
electron Coulomb waves with k and k' asymptotic momenta. Relevant integrations of the SDCS are
shown to provide a complete description of the (y, 2e) process. The theory is illustrated by calcula-
tions for helium targets: total cross sections, kinetic energy spectra, and angular plots of photoelec-
trons are presented. Considering the total cross section, it is found first that the agreement between
the length and velocity result is worse than expected from the previous studies. In addition, the
present model provides kinetic energy distributions of photoelectrons having the symmetry required

by the Pauli principle. This is in contrast with earlier formulations of the WFA. For the SDCS,
calculations have been done with final states where Coulomb waves were provided with either fixed

charge (Z=2: unscreened nucleus) or variable effective charges. In the former case, it is found that
the event where electrons escape with the same energy, along the polarization direction, has a
significant probability. This deficiency is removed by use of angle-dependent effective charges since
final-state correlation is partly accounted for in this way.

I. INTRODUCTION

The understanding of correlation effects arising in the
dynamics of electrons escaping from a charged core is a
permanent goal in atomic and molecular physics. Double
photoionization (DPI) turns out to be a striking manifes-
tation of this electron correlation since the simultaneous
ejection of two electrons by a single photon would be for-
bidden if the independent-particle model were rigorously
valid. Consequently, DPI is experimentally much less
probable than single photoionization, usually by a factor
of 100 for light species. Fortunately, the recent advent of
intense and tunable synchrotron radiation has made pos-
sible the absolute measurement of total, i.e., integrated,
cross sections cr +(E ) as a function of the photon ener-r

1
gy E for atomic and molecular targets. Very recently,
and for the first time, two experiments have provided
analyses in the angular and energy variables of the frag-
ments ejected by DPI of atomic and molecular species:
Huetz et al. have measured the electrons ejected by the
DPI of krypton close to threshold, while Kosmann
et al. have investigated the angular distribution of H
ions resulting from the dissociative DPI of molecular hy-
drogen. At the same time, similar progress has been
made in electron-atom collisions, the first (e, 3e) experi-
ments having just been performed by Lahmam-Bennani
et al. with an argon target.

In face of this experimental interest in the double-
ejection processes, the derivation of theoretical models
that could predict the angular distribution of fragments
in (y, 2e) and (e, 3e) reactions becomes an urgent task.
This goal is highly attractive since, by analogy with the
(y, e) and (e,2e) processes, one can expect that the
differential cross sections will reveal dynamical informa-
tion which is unavailable from the total cross sections
alone. To this end, the present paper will deal with the
description of the theoretical angular distribution of elec-
trons ejected by photon impact, while a future paper will
consider double ionization by fast electrons. For the sake
of comparison, the formalisms derived in both papers will
be illustrated by calculations for helium targets.

In fact, very few approaches are available currently for
the theoretical description of multiple photoionization
processes. In the vicinity of the threshold, the use of the
Wannier-Rau-Peterkop (WRP) theory provides a very
convenient approach. The hallmark of this theory is the
predicted energy dependence of the cross section: e.g. , it
is found that the total DPI cross section of an atom
varies above threshold as 0. + ~E, where E is the ener-

gy available for the two outgoing electrons, and m is an
exponent depending on the charge Z of the residual ion.
The theoretical values m = 1.127 (for Z = 1 ) and
m =1.056 (for Z=2) are consistent with recent experi-
ments done with H and K targets and He targets, re-
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spectively. However, it should be noted that nearly
equally satisfactory fits of experimental data can be made
with the modulated linear law derived by Temkin with
his Coulomb-dipole model. The WRP theory also pro-
vides valuable information on the angular distributions, '

but unfortunately, the validity of the threshold laws
seems restricted to only a few eV above threshold. '"
For the study of DPI over a larger energy range, say 200
eV above threshold, two main routes have been opened so
far. The many-body perturbation theory (MBPT) has
provided very accurate results' but only for atomic tar-
gets, probably due to the computational difficulties that
would be highly increased by the noncentral molecular
symmetry. On the other hand, the "wave-function ap-
proach" (WFA), first devised by Byron and Joachain' (to
be referred to as BJ) for the DPI of helium atoms, has
been recently extended to the molecular hydrogen with
encouraging results by Le Rouzo. '"' The WFA rests
essentially on a few basic assumptions (dipole approxima-
tion, nonrelativistic energies, neglect of non-Coulombic
interactions, etc.) which are expected to be satisfied with
a sufficient accuracy in the photon energy range men-
tioned above. Consequently, the validity of the WFA
essentially depends on the quality of the wave functions
used to describe both the initial (bound) and final (double
continuum) states. Since highly accurate wave functions
have long been obtained for the ground state of the heli-
um atom, the major difficulty lies in the description of the
double continuum states created by the DPI process. It
is well known that the accurate description of the quan-
tum motion of three charged particles is a permanent
challenge for theoreticians. Analytical expressions of the
corresponding wave function are available near threshold
(WRP theory) and asymptotically, where all the interpar-
ticle distances are large. ' ' Since very little is known
about the double-continuum wave functions over the en-
tire space, the WFA usually makes use of final states
represented within the independent-particle mod-
el, ' ' ' although a partly correlated double-continuum
function has been used by Tiwary' in order to evaluate
the o +/o. + ratio for the DPI of helium.

It should be stressed that, so far, both the MBPT and
the WFA have only been applied to the calculation of
DPI cross sections integrated over the angular variables,
except for a preliminary work by Smirnov et al, who
studied the electron correlations in (y, 2e ) and (e, 3e) re-
actions at high energies via the WFA provided with or-
thogonalized plane-waves. In this paper we investigate
the differential cross sections for the (y, 2e) process. In
order to extract the analysis of ejected electrons in the
angular and energy variables, we have reexamined the
WFA, and we propose a new formalism where the two
ejected electrons, with k and k' as asymptotic momenta,
are described by a symmetrized product of complex
Coulomb waves for appropriate central charge Z. Note
that this kind of wave function has been used by Tweed '

for the study of the double ionization of H, He, and Li
by electron impact.

In Sec. II, we present the general formalism of the new
WFA. The basic equation of our approach is Eq. (22).
This gives the essential sixfold differential cross section

d o +/d kd k' (SDCS) from which all other observables
of the DPI process can be derived. As an illustration, we
deduce the expression of the total cross section, and we
show that some distributions of electron kinetic energy
previously reported in the literature were not physically
satisfactory. In Sec. III, computational details are given,
especially concerning the description of the ground-state
wave function for helium. In Sec. IV, our formalism is il-
lustrated by calculations concerning the reaction

He(l 'So)+y~He ++e (k)+e (k'),

which, though relatively simple, is expected to display
the main features of the basic DPI process, without the
difficulties associated with structured cores. In order to
take into account the dynamical screening of the nucleus
by the escaping electrons, we also explore in this section
the possible advantages that could result in using effective
charges of the form Z(k, k'). Several choices of variable
nuclear charge have been reported in the literature and
have been employed for (e, 3e ) and (e, 2e ) studies. '

II. GENERAL FORMALISM

A. The wave-function approach

We consider a DPI experiment where linearly polar-
ized photons collide with helium atoms in their ground
state. For a photon energy greater than the double-
ionization threshold (I + =79.0 eV), the collision can re-
sult in the simultaneous ejection of two electrons having
the asymptotic momenta k and k' in the laboratory
frame. Our purpose is to evaluate the probability of this
event, i.e., to derive the basic differential cross section
d cr +/d kd k'. The expression of the differential cross
section depends on the six variables used to express k and
k'. In what follows, in order to allow easier comparisons
with previous work, we shall used the energy E=k /2 (in
hartrees ) as a variable, instead of the modulus k of the
momentum k=(k, k). With this convention, the sixfold
differential cross section will read d 0. + /dods'd kd k ',
and will measure the basic probability of a double ioniza-
tion where one electron is ejected with the energy E (in
the element dE) along the direction k', (in the element of
solid angle d k), while the other electron is ejected with
c.

' and k', in the ranges dc. ' and d k ', respectively. Obvi-
ously, for an atomic target, the electronic energies c., E'

are not independent, so that one of them can be
suppressed from the beginning. This convention, togeth-
er with the use of the notation dk for the two-variable
solid-angle elements, has led to call triple differential
cross section (TDCS) d o. +/dEdkdk' what we refer to
as SDCS in the present work. We prefer to introduce the
energy-conservation law via a Dirac distribution (see
below) rather than suppressing one energy since this no-
tation has been found more convenient for diatomic tar-
gets. '4

The SDCS is the basic observable of the collision since
by convenient integrations, it provides a complete
knowledge of the DPI process: (i) integrating twice over
the energies c, and c.

' yields the angular distribution of the
pair of ejected electrons; (ii) integrating further over the
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direction k of one ejected electron allows the analysis of
the angular distribution of the remaining electron along
lines analogous to single photoionization (see, e.g. , the
role of the asymmetry parameter /3); (iii) integrating only
over the four angles k and k ' provides the analysis of the
photoelectrons in kinetic energy; and finally (iv) sixfold
integration leads to the total cross section a +(Er ).

Under the usual "electric dipole approximation, " the
differential cross section is proportional to the squared
modulus of the dipole-matrix element lM(k, k') con-
necting the ground-state wave function '%, (1Solr&, rz)
and the final-state wave function '%'&(k, k'lr„rz). The
dipole-matrix elements are usually obtained, either in the
length form (ML ) or in the velocity form (Mv), as in-
tegrals over all the positions r, and r2 of the electrons.

ML (k, k') = ( 'I' f(k, k')lz, +z, l
'I';(1&0)),

My)k, k') = ('@)(k,k') + ")I;))SD)) .
Bz& BZ2

(2a)

(2b)

The final-state wave functions and the dipole operators
appearing in Eqs. (2) are conveniently expressed in the
laboratory frame since the wave vectors of electrons and
the polarization of the incident radiation refer to the
space-fixed axis. After averaging over all the possible
orientations of the target, it may be shown that the basic
differential cross section for DPI by photons with energy
E is

For incident light linearly polarized along the z axis of
the laboratory frame, these matrix elements are

d'~z+(k, k lE, ) = (4~ aa o )E lML (k, k')
l 5( E+E'+I + E)—

dc dc. 'd~k d~k'

=(4m. aao) lM&(k, k')l 5(E+E'+I + E&), —1

(3a)

(3b)

where a is the fine-structure constant, ao is the Bohr ra-
dius, and the Dirac distributions ensure conservation of
the total energy. As is well known, the results provided
by Eqs. (3) would be identical if both wave functions
entering in Eqs. (2) were exact. Alternatively, the
discrepancy between the length and velocity cross sec-
tions gives a qualitative estimate of the accuracy of wave
functions.

By definition, the WFA requires explicit knowledge of
the initial- and final-state wave functions. An essential
contribution of the work of BJ was to point out the neces-
sity of including the electron correlation in the helium
ground-state wave function. This point was soon
confirmed by Brown, ' who used a better wave function
for the helium ground state. Following these authors, we
shall adopt here highly correlated wave functions whose
description is deferred to Sec. III.

The singlet final-state wave functions will be described
within the independent-particle model: if the electrons
are placed in two different orbitals having definite mo-
menta k and k' in the laboratory frame, the final-state
wave functions read

'0'/(k, k lri, rz)

1—[g(klr, )f(k'lrz)+@(k'lr, )g(klrz)] .V'2

It is well known that the spin part of two-electron wave
functions can be factored out. Since, in addition, the very
small spin-dependent interactions are neglected here, the
spin can be ignored in the rest of this paper. Its sole
manifestation is that the spatial parts of all wave func-
tions are invariant under the exchange of the electron po-
sitions r, and r2, and that only singlet-singlet transitions

are allowed. The one-electron orbitals used to construct
the final states are essentially pure Coulomb waves
g(k, Zlr). These waves are the eigensolutions of the
Schrodinger equation describing a continuum electron
(i.e., with e ~ 0) moving in the Coulomb field created by a
charge Z. For photoionization, the relevant Coulomb
waves are normalized using the incoming wave boundary
condition. With this normalization, the Coulomb wave
has the asymptotic behavior of a plane wave (with a loga-
rithmic distorted phase) plus an incoming spherical wave.
It takes the form

itj(k, Zlr) = e "~ I (1—iz))
v'T

Xe'"'F(iz), 1, i(kr+k. r—)), (5)

where il= —Z/k and 1 and F are the well-known 1 and
conAuent hypergeometric functions, respectively. For
fixed central charge Z, Coulomb waves given in Eq. (5)
are normalized according to

(q(k, Z)lg(k', Z)) =5(. ..)5- -, .

Note that if Z =0, the Coulomb waves reduce to the fa-
miliar plane waves e'"' within the relevant normalization
factor &k /(2m) ~ . Since pure plane waves suffer from
major shortcomings, using orthogonalized plane waves
has been suggested. Both approximations are discussed
in a future paper.

As mentioned in the Introduction, the use of Uariable
effective charges allows for screening of the residual ion.
Let Z(k, k') be the effective charge seen by an electron
having momentum k while the other electron has
momentum k'. The final-state wave function will then
read
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'4f (k, k'~ r, , rz) = [f(k,Z(k, k')
~ r, )

1

2

X g(k', Z(k', k) ~rz)+(r, ~r2)] .

(7)

er, they can be expanded in terms of partial waves
P(s, l, m, Z~r) with well-defined quantum numbers 1 and
m. These spherical Coulomb waves have the form

P(E, l, m, Z~r)=R, &(r)Y& (r),

It is readily verified that interchange of electrons 1 and 2
still amounts to the interchange of the momenta k and k'.
In other words, satisfying the Pauli principle implies the
invariance of the final state upon the permutation of the
momenta. For brievity, we shall use Z and Z' in place of
Z(k, k') and Z(k', k), respectively.

B. The partial-wave analysis

with

R,((r) = FI(ri~k )

where F&(q~kr) is the regular spherical Coulomb func-
tion of order l. Note that spherical Coulomb waves are
normalized according to

The evaluation of the partial cross sections presented
in Sec. IIA could be done by direct integration of the
dipole-matrix elements. This method has been applied in
a future paper dealing with the (e, 3e ) process. Alterna-
tively, we here perform a partial-wave analysis of the
wave functions. It will be shown that this technique pro-
vides a deeper insight into the (y, 2e) reaction, and will
also allow us to make a closer contact with previous work
involving the MFA. It has been pointed out that
partial-wave analysis is not an eScient way to compute
the (e, 2e ) differential cross sections. This is not true for
DPI because the dipolar selection rules considerably
reduce the useful part of the final-state wave function.

Coulomb waves [Eq. (5)] are not eigenvectors of the
one-particle angular-momentum operators I and l„ i.e.,
they have no definite quantum numbers l and m. Howev-

(P(s, l, m, Z)~P(s', I', m', Z)) =5~, , ~5i i5 (10)

~,(q) =argr(l+ I+iq) . (12)

Replacing the one-electron orbitals appearing in Eq. (7)
by the partial-wave expansion given in Eq. (11) leads to

when the central charge Z is the same for both wave
functions. The expansion of one-electron Coulomb waves
[Eq. (5)] in terms of spherical waves is

g(k, Z~r)
+1

i'e ' Y; (k)P(c, , l, m, Z~r),
1=0m = —/

where the Coulomb phase shift is given by

I

4f (k, k lr& r2) =P P i ' e ' '
Y&* (k) Y&'~ (k') —[R,&(r& )R,,I, (r2 ) Y&~ (r& ) Yi ~,(r2)+( 1~2)] (13)

where (1~2) means the preceding terms with 1 and 2 interchanged. In problems involving two directions it is cus-
tomary to introduce the so-called bipolar harmonics, i.e., the eigenstates of the total angular-momentum operators L
and I.,

5'L'M(r„rz)= g (1 m l, m'lL, M)Yi (ri)Yi
m, m'

where (l, m, l', m'~L, M) denotes the Clebsch-Gordan coefficients. Then, by use of standard manipulations of the alge-
bra of angular momenta, Eq. (13) can be cast into the form

I

q'f(k k'Ir„r2) = g pi'+'e ' " ' " [P'I'M(k, k')]* [R, i(r, )R,, i, (r2)PI'M(r„r2)+(1~2)]
L, M I, 1' 2

(15)

The form of the final-state wave function is now very convenient for proceeding further in the evaluation of the dipole-
matrix elements: since the ground state is spherically symmetric, the dipole operators [Eqs. (2)] select the sole Po part
(L = 1, M =0) in the infinite expansions over L and M [Eq. (15)]. Moreover, the selection rules for the Clebsch-Gordan
coefficients (1,m, 1', m '~ 1,0) suppress all the bipolar harmonics, except those of the form P&'0 ' and Pio ". As a conse-
quence, the Po part of '4'f (k, k') which is relevant for DPI is finally given by

'Vf(PO, k, k'~r„rz)= g i '+'[e ' '+' P",o+'(k, k') '@f(Po,slZ, E'(1+1)Z'~r, ,rz)+(k~k')],
1=0

where it is understood that the symbol k~k means that energies, directions and consequently e6'ective charges are to
be interchanged. In Eq. (16), '&f(PO, ElZ, E'(1+1)Z'~ri, r2) is the M =0 component of the function
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+I
'C»(PM, elZ, e'(i+1)Z'~r„rz)= — g (i, m, l+1,M —m ~1,M)[P(E, l, m, Z~r))P(E', l+1,M —m, Z'~r2)+(r)~rz)] .

2 m= —I

(17)

It is important to mention that for Z=Z'=const, i.e., for a fixed nuclear charge, Eq. (17) exactly represents the
double-continuum functions used previously for the calculations of the integrated cross sections of the DPI of He (Refs.
13 and 18) and H2. ' ' We shall establish a closer connection with these previous works in Sec. II C.

Inserting now the relevant part of the final-state wave function [Eq. (16)] into the dipole-matrix elements of Eqs. (2)
leads to

M (k k')= g ( i )
'+—' ' ' ' P"+'(k k')JR '

~ +(k+-+k')
l=o

where A, ' denotes the matrix elements introduced by BJ

~clz c'(I + 1)Z' ( 4f (Po ElZ, e'( l + 1 )Z ) lz 1 +z21 '+; ( 1~0 ) &

(18)

(19a)

,Iz;(I+,, )z = @f(Por ElZr E'(1+1)Z') +V 1 a a
Z1 ZP

')I(; (1S0 ) (19b)

In view of future integrations, it is useful to have all arguments k and k' of the P's in the same order. By use of the re-
lation

cy II + 1(k k r
) cy I + 1!(k r k )

Eq. (18) is readily transformed into

(2O)

)2l+1[ ( I ~ I+) & )cyl/+1(k kr)~L, V + '( I ~ I+) ~ )cyl+ll(k kr)~L, V ]
1=0

(21)

In order to express any n-fold diA'erentia1 cross section, one has finall to evaluate the squared modulus of the dipole-
matrix elements [Eq. (21)]. Tedious but straightforward algebra leads to

~ML, v(»k')~ = & '(~ iz, '(I+i)z )'(&1'o+') +(~.('I+1)z, Iz ) (Ko ")
1=0

+2 cos[~l( )) ~1+1( ) ) ~i+I( I) ~l( 1 )]~clz, c'(I+1)z'~~c(I+1)z,c'IZ'+10 +)0I L, V L, V II+1 I+11

I L V L V II I'I'+2 g g ( 1 ) ' Cos[NI( l )+Kl+ )('9 ) Wl'() ) Dl'+1( ) ) ]Aclz, c'(I + ()Z'Acl'Z, c'(I'+ 1 lz'Plo Plo
I =0 I'= I + 1

+C [~i( l)+~I+)(9 ) ~I'+1( l) ~I'( ) )]~clz,c'(I+1)Z'~c(l'+l)z, c'I'Z'+10 +)0I L, V L, V II +1 I'+ 1l'

+ SC[NOI 1(+9)+~I( ) ) ~l'( 1) ~l'+1( ) )]~c(1+1)z,c'IZ'~cl'Z, c'(I'+llz'+10 +10L, V L, V I + 11 I'I'+ 1

+cos[(71 +( i))+(7(1i)) ol( +)))icr—I (i.)')—]

/ Art L, V

/I'LL,

V RZI+1Iqi'I'+1I'
~""c{I + 1)Z, E'IZ'"~" c.{I'+ 1)Z,c'I'Z™10 ~ 10

where for the sake of compactness, the arguments of the
5's (always k and k', in this order) have been suppressed.
Introducing the expression of Eq. (22) into Eqs. (3) leads
finally to the SDCS. Equation (22) is thus the basic re-
sult of the present formalism. It indicates how the angu-
lar distribution of electrons in double-ejection processes

is expressed in terms of matrix elements IM ' previously
evaluated in the WFA for the computation of integrated
cross sections. The angular variables, i.e., the directions
k and k', appear only in the bipolar harmonics which, in
turn, are weighted by the matrix elements A, ' depend-
ing on the electron energies. However, it should be em-
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phasized that when direction-dependent effective charges
are used, the angular variables are implicitely present in
the matrix elements At '

C. The integrated cross section

Since before this paper the WFA has essentially been
applied to the calculation of integrated cross sections, it
is instructive to make a comparison with previous work
by deriving the expression for o +. The total cross sec-
tion is obviously obtained by the sixfold integration of the
SDCS [Eqs. (3) together with Eq. (22)] over all energies

o +(E )= ' f—d o +(k, k'lE ) .

More explicitly, this yields

(23)

and directions. However, since the final-state wave func-
tion, and therefore the differential cross section, are in-
variant under the interchange of k and k', straightfor-
ward angular integration over (4ir) steradians would
count the same physical configuration twice. So, the
correctly normalized total cross section is one half of the
integral of the physically meaningful differential cross
section

rr'+(Er)=(4''otao)Er —'
,' f de—de'5(e+s'+I'+ E~)f—d'kd'k lML v(k, k')l (24)

where Er or I/E corresponds to the length (M~) or velocity (Mv) matrix elements, respectively. Now we can
proceed to the fourfold integration over d k and d k '. By use of the orthonormality of bipolar harmonics

1112 1112

1' 1 2' 2

the integration of the complicated Eq. (22) is readily reduced to

(25)

f 2 2d'kd'k 'lML, v«k') l'= & [(~p/z', c'(I+1)z) +(~c(I+))z,v'Iz)'].
1=0

(26)

provided that the effective charges are fixed (Z =Z'=const). The considerable simplification, arising from the angular
integration, is a striking illustration of the fact that the differential cross section is built up from a large number of very
sensitive interference terms which vanish in the integrated cross section. The last step is now to integrate twice over the
energy variables. For the DPI of an atomic target, the energy conservation ensures that the total electronic energy E
is a constant:

E=E —I2+=c+t," . (27)

As a consequence the double integration over the energies reduces to a single integration over, say c, while c is replaced
by E —c. This gives

00

o' +(E ) =(47r rxao )E g f ds —[(JR I'z (g )(I+i)z) +(JN('I+i)z (~ , )Iz ) ]
1=0

(28)

using the fact that, after integration, both terms between
square brackets in Eq. (28) give the same contribution,
this equation can be transcribed into

QO

o +(Er)=(4' a.ao)Ey~ g f de(Ai I'z, (F. )(I+i)z)—r
I —0 0

(29)

Equation (29) is the expression derived by BJ and used
in the previous applications of the WFA to DPI of heli-
um' ' ' and molecular hydrogen. ' ' To conclude, it is
worth mentioning that this earlier version of the WFA
provided the correct expression for the total cross section
[Eq. (29)], but was unable to give difFerential spectra in
energy and angular variables; furthermore, angular distri-
butions were not available, since the angular variables
had been discarded from the beginning in BJ's model.
Moreover, it should be stressed that the integrand of Eq.

(29) does not provide a physically acceptable distribution
of photoelectron kinetic energy do. +/dc, , since this in-
tegrand is not symmetrical under the exchange of elec-
tron energies c and E —c, as required by the Pauli princi-
ple. In contrast, it is evident that in Eq. (28), the in-
tegrand exhibits the correct symmetry and so represents
the proper kinetic-energy distribution. Of course, spectra
in accordance with the symmetry requirement can always
be extracted from the earlier unsymmetrical spectra, say
f(e), by use of the transformation —,'[f(e)+f(E—e)].
However, since the correct energy spectra naturally
occurs here, the formalism given in this paper is likely, in
practice, to be more convenient than the previous one.

III. COMPUTATIONS

We turn now to the practical implementation of the
theory presented in Sec. II. Computationally, the basic
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moments calculated via Eq. (21) were introduced into the
formulas giving the differential cross sections in both
length and velocity forms [Eqs. (3)]. Phase shifts and bi-
polar harmonics are readily expressed and coded, so
that the main difficulty is the evaluation of the matrix ele-
ments Jkf, given in Eqs. (19). In the case of molecular hy-
drogen, these matrix elements were evaluated numerical-
ly. ' Here, the central symmetry of the atomic problem
allows the derivation of a closed analytical expression for
the JR's (Ref. 30) which has been thoroughly checked
against the results provided by the previous numerical
route described in Ref. 14. Our implementation follows
the lines given in the work of BJ and of Tweed, ' but
significant improvements have been achieved which are
described below.

Firstly, consider the choice of the ground-state wave
function. From symmetry considerations, it is easily
shown that the wave function of any 'So state of a two-
electron atom can be written as

(30)

where Po'o is a bipolar harmonic defined in Eq. (14), and
%& is a two-electron radial function symmetrical in the
exchange of r, and r~. Wave functions of the self-
consistent-field (SCF), configuration interaction (CI) and
multiconfiguration self-consistent-field (MCSCF) types
can be easily cast into the form of Eq. (30).

BJ obtained a ground-state wave function of helium
with three "relative partial waves" corresponding to the
ss, pp, and dd couplings of the electrons [l =0, 1, and 2 in
Eq. (30)]. Their 45-parameter wave function gives an en-
ergy of —2. 9020 hartrees, which indicates that 95.9% of
the correlation energy ' is accounted for. In fact, since
more compact and more highly correlated wave functions
are available in the literature, we found it convenient to
consider further functions of the CI and MCSCF types.
In the preliminary stages of this work, several tests'
were made with the CI function proposed by Nesbet and
Watson. However, the results presented here were ob-
tained with a function fully optimized via the MCSCF
method. This function involves four "waves" up to the
ff coupling (l =0, 1,2, 3) and gives an energy of
—2.902 89 hartrees, so that 98.0% of the correlation en-
ergy is taken into account. In Sec. IV, the role played by
the various components ss, pp, dd, and ff in the con-
struction of the angular distribution of ejected electrons
will be discussed. So it is worth mentioning that the ss,
pp, dd, and ff "waves" account for 41, 51, 5, and 1% of
the correlation energy, respectively. This shows that the
radial correlation (41%) is less than the angular one, and
that the angular correlation is mainly of the pp type. In-
spection of these percentages along with the weights of
each wave in the normalized ground-state function, i.e.,
0.996 (l=0), 4.0X10 (I = 1), 1.7X10 (I =2), and
l. 7 X 10 (I = 3), reveals that the dd wave contributes to
the correlation energy (5%) much more significantly than
what would be expected from its very feeble weight
( ~0.02%). In fact, it will be shown that this wave, left
out by BJ in the calculation of transition moments, con-

tributes significantly to the cross sections, especially
when the length form is used.

All the ground-state wave functions mentioned above
are constructed with Slater-type one-electron orbitals. In
this case, the radial parts of the ground-state wave func-
tions read

%&(r&,rz)=g A '[r, 'r. z'e ' 'e ' '+(r, ~vi)], (31)

I,lz= I R,l(r)e "r"dr . (32)

These integrals have been considered by several au-
thors. As a general rule, some integrals having special
values of the integers l and p are obtained in closed form,
while the more complicated ones follow by recursion rela-
tions or by parametric differentiations with respect to the
parameters c. or a. These procedures are somewhat
cumbersome and are not computationaly convenient for
very accurate wave functions involving high quantum
numbers. In order to avoid this problem, we have de-
rived a closed analytical expression for the calculation of
the I,Iz integrals. Finally, the analytical integration
over the angles r& and rz leads, after some tedious but ele-
mentary Racah algebra, to the formulae for the matrix
elements JR [Eqs. (19)] either in the length or in the ve-
locity formulations. These expressions turn out to be
finite linear combinations of products of two I integrals.
The first few matrix elements have been given by BJ in
the case where all exponents a are equal in the radial
wave functions of Eq. (31).

The computational route described above has been
coded and thoroughly checked: first, the total cross sec-
tions have been compared with the results of BJ and with
our previous calculations' obtained via a purely numeri-
cal route. On the other hand, the SDCS's derived via the
present partial-wave approach have been compared with
those resulting from the straightforward method
developed in a future paper devoted to the double ion-
ization of helium by electron impact. Since in the limit of
vanishing momentum transfer, the generalized oscillator
strength for the (e, 3e ) reaction reduces to the optical os-
cillator strength for the (y, 2e) process, we were able to
proceed to the mutual control of our quite independent
codes. Numerous tests have been made with moderately
accurate CI ground-state wave functions of the ss,
ss+pp, and ss +pp +dd (Ref. 36) types associated with

where the coefficients A "can be deduced from the wave
functions reported in the literature. It should be noted
that the form defined in Eq. (31) is more general than the
previous ones' ' ' in that the exponential terms of a given
pair (i,j) here have different exponents. This improve-
ment is known to give more highly correlated wave func-
tions, but the price to be paid is a significant increase of
the computational time required for the calculations of
the matrix elements Ai, especially when effective charges
are employed.

Examination of the equations given in Sec. II reveals
that the computation of the matrix elements A, amounts
to the evaluation of basic radial integrals involving spher-
ical Coulomb functions [Eq. (9)]



43 DOUBLE PHOTOIONIZATION OF HELIUM: ANALYSIS OF. . . 325

plane waves, with orthogonalized plane waves or with
Coulomb waves for fixed and variable charges.

IV. RESULTS AND DISCUSSION

The formalism given in Sec. II was first applied to the
calculation of the total cross section for the double pho-
toionization of helium within the model used by BJ in
their pioneering work. ' Using the 45-parameter
ground-state wave function optimized by these authors
and representing the ejected electrons by two Coulomb
waves for the fixed central charge Z =2, we have per-
formed the calculations of 0. +, in both length and veloci-
ty formulation, as a function of the total electronic ener-

gy E. The results so obtained are represented by the
thick curves in Fig. 1, where they can be compared with
the cross sections of BJ (thin curves) recomputed by us.
The striking discrepancy existing between the length
form cross sections can be easily identified as the result of
the truncation that BJ made in their ground-state wave
function. In fact, for such a ss +pp +dd initial state, the
total cross section given in Eq. (29) can be rigorously ex-
panded as

0 +=o,
~ (ss;pp)+o d (pp;dd)+crdf+(dd) . (33)

Equation (33) indicates that the contributions of the sp,
pd, and df final-state partial waves [l =0, 1,2 in Eq (16)].
are incoherently summed. On the other hand, due to the
one-electron dipolar selection rules, each l(l+ 1) partial

'PP)+ d (PP) . (34)

From Fig. 1, it can be seen that when all the terms of the
ground-state function are included, the length curve is
enhanced and its flattening disappears, while the velocity
curve is slightly lowered. Unfortunately, in doing so, the
ratio ol+/o v+, which should be 1 ideally, is worsened
and takes now the value 2.6 instead of the value 1.8 for
the incomplete calculation of BJ.

Having seen that even very small contributions to the
ground-state wave function could play a significant role
in DPI cross sections, we finally consider the highly accu-
rate MCSCF function described in Sec. III. From the en-
ergetical point of view, 2.1% of correlation energy are
gained with respect to the function used by BJ. The total
cross sections for both these initial functions are shown in
Fig. 2, together with the experimental data of Bizau

wave interacts both with the /1 and the (I + l)(l +1)
parts of the initial state [Eq. (30)]. These two interactions
are coherently added and give the contribution
a&~&+, ~(ll;(1+1)(l +1)). However, note that the last
term in Eq. (33) involves only a dd part since there is no f
orbital in the considered initial function. The cross sec-
tions we have computed follow exactly the form given in
Eq. (33), whereas BJ have discarded the dd contributions,
probably because they could not do better with the limit-
ed computing facilities available at the time. This trunca-
tion of the ground-state wave function could at first sight
appear reasonable, as the dd part of the ground state con-
tributes for only 0.017% to the norm (see Sec. III).
Hence, these authors have used the truncated expansion
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FIG. 1. The total cross section cr + for double photoioniza-
tion of helium as a function of the total electronic energy (1
kb = 10 ' cm ). The thin curves correspond to the calculations
of Ref. 13, recomputed by us, whereas the thick curves
represent the converged results within the same model (this
work). Upper (lower) curves refer to the length (velocity) for-
mulations.

FIG. 2. The total cross section o. + for double photoioniza-
tion of helium as a function of the photon energy (1 kb = 10
cm ). The thick curves have been computed with the highly
correlated MCSCF ground-state wave function, whereas the
thin curves are for the ground state of BJ (the converged curves
in Fig. 1). Experimental data points are from Bizau et aI. (Ref.
38).
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FIG. 3. The distribution of electron kinetic energy (velocity
formulation) do- +/dc as a function of the ratio c./E: c is the
energy of an electron and E is the total available electronic en-

ergy. The distributions have been normalized to 1 for v=0.
For DPI of helium by 100-, 109-, 200-, and 300-eV impacting
photons, E takes the values 21, 30, 121, and 221 eV, and the ac-
tual maxima (for v=0) are 14.4, 0.73, 6.1, and 0.23 kb/hartree,
respectively.

et al. From this figure, one sees that the inclusion of
correlation in the initial state enhances both the length
and velocity cross sections in the region of the maximum.
The ratio crL /cri, is scarcely modified (2.7 versus 2.6),
but the positions of the L, and V maxima become closer
(120 and 106 eV, respectively). Considering now the ex-
perimental data, it can be seen that the length formula-
tion is better close to the maximum, whereas the velocity
formulation gives the correct behavior at high photon en-
ergy (E ~300 eV), in accordance with the theoretical
considerations of BJ.

In Fig. 3, some plots of electron kinetic-energy distri-
butions do +/d E are made for photon energies 100, 109,
200, and 300 eV. These are the velocity results obtained
with the MCSCF ground state and with Z=2 Coulomb
waves. As explained in Sec. II, these plots have the prop-
er symmetry, in accordance with the experimental re-
sults, whereas the earlier version of the WFA leads to
unsymmetrical kinetic-energy distributions. From Fig. 3
it is apparent that the mean value of der +/de increases
rapidly as the threshold region (E + 79 eV) is ap-
proached in order that the integrated cross sections
remain finite. At the same time, the kinetic-energy distri-
bution tends to become Oat. This trend is in accordance
with the WRP theory which predicts that, near thresh-
old, there is a constant probability that each electron car-
ries ofT' any fraction of the available energy. On the con-
trary, highly energetic photons favor the unequal sharing
of the excess energy between the two photoelectrons. For

instance, with 300-eV photons, the probability of the
event where one electron takes most of the available ener-

gy (E =220 eV) while the other escapes slowly is about
eight times greater than the probability for having both
electrons ejected with the same energy E/2= 110 eV.

We turn now to the SDCS calculated from Eqs. (3) and
Eq. (22). We restrict ourselves to in-plane ionization for
which e, the polarization direction, and k, k', the asymp-
totic momenta of photoelectrons, are coplanar. We con-
sider two energy pairs (c,, E') =(15,15) and (5,25) eV to be
referred to as symmetric and asymmetric cases. Both
correspond to the photon energy E =I ++30 eV = 109
eV, which means that the pairs pertain to the region
where the total cross section, in either the length or the
velocity formulations, is large (see Fig. 2). Taking e as
the polar axis, and given a fixed direction for k, the SDCS
can be plotted as a function of the direction k'. Such po-
lar plots are displayed in Figs. 4 and 5 for the symmetric
and asymmetric cases, respectively. From left to right,
the three fixed directions k are at 0, 45, and 90 deg with
respect to the field direction. The upper and lower
graphs refer to the length and velocity formulation, re-
spectively. These plots have been obtained with pure
Coulomb waves for Z=2 central charge and with the
MCSCF ground-state wave function. In order to deter-
mine the relative inhuence of radial and angular correla-
tion, we have plotted in Figs. 4 and 5 the SDCS obtained
with the exact MCSCF ground state (thick curve) and
those corresponding to the sole ss part of the MCSCF
wave function (thin curve). As expected, it can be seen
that without angular correlation, i.e., with only the ss
part of the initial wave function, electrons are likely to be
ejected along the polarization direction. Moreover, the
shapes of the SDCS computed via the velocity formula-
tion are rather insensitive to the introduction of ground-
state angular correlation. This could make the velocity
formulation somewhat questionable. On the contrary, in
the length formulation, accounting for the pp+dd +ff
couplings in the initial wave function dramatically
modifies the directions and intensities of the SDCS's
lobes. In this case, electrons are no longer ejected near to
the field direction, but escape in rather different direc-
tions. For instance, when one electron is detected at
right angles to the polarization, one finds that the second
one is likely to be observed along two symmetrical direc-
tions at 130 deg from the first electron. Curiously, this is
a configuration very similar to that predicted by the
WRP theory, at low energy. When the first electron is
detected at 45 deg from the electric field, the fixed-charge
model predicts that the second electron is ejected near
the e or k directions, depending on the formulation of the
dipole approximation. Finally, the event where one elec-
tron is detected along the direction field is found to be the
most probable among all the coplanar configurations. In
this case, all calculations predict that the second electron
tends to escape in the same direction. For the symmetric
case (8=s'= l5 eV) this means that electrons would be in
the same spatial position simultaneously. Since the elec-
trons have opposite spins (the final state is a singlet), the
exclusion principle does not prevent this configuration.
However, it should be remembered that the electronic
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FIG. 4. The sixfold diff'erential cross section (SDCS)
d o. +/dEdc'd kd k' for DPI ofhelium in coplanar geometries.
Electron energies are c=c' = 15 eV. SDCS's are plotted as func-
tions of the direction k' of one electron, for three fixed direc-
tions k (0', 45', and 90') of the other one (the polar axis is the
direction e). Coulomb waves have the fixed charge Z =2.
Thick curves refer to the MCSCF ground-state wave function
(ss+pp+dd+ff), thin curves are for the sole ss part. Upper
(lower) plots correspond to the length (velocity) dipole formula-
tion. The radius of each circle is the maximum of the calculated
SDCS. In kb/hartree units, these radii are 0.82, 0.47, and 0.18
(L formulation), and 0.21, 0.15, and 0.05 ( V formulation).

repulsion 1 lr, 2 between the ejected electrons is neglected
in our model. Taking this correlation into account would
necessarily modify this prediction.

To this end, and as a Anal consideration, it is of interest
to examine the effect of variable charges Z(k, k') on the
angular distributions of photoelectron pairs. We have
given the Coulomb waves the effective charges described
in a future paper, and we have further orthogonalized
these one-electron waves to the ls (Z =2) hydrogenic or-

FIG. 6. As for Fig. 4, but Coulomb waves have the angular-
dependent eftective charge of Refs. 21 and 22 (c=c,'=15 eV).
In atomic units, the radii of circles are 2.0, 1.6, and 0.30 (upper,
L formulation), and 0.57, 0.48, and 0.11 (lower, V formulation).

bital. Since the 1s function is of short range, this pro-
cedure preserves the asymptotic behavior of the Coulomb
wave but makes it more adequate since, in an
independent-particle model, all one-electron orbitals are
orthogonal [note that this procedure was introduced by
Tweed ' in the (e, 3e) context]. In Figs. 6 and 7, the
SDCS's calculated with variable charges are displayed for
the same dynamical parameters as in Figs. 4 and 5. The
striking effect arising from the use of effective charges is
the interdiction of the double ejection of electrons having
the same momenta. This follows directly from the fact
that Z(k, k') ~—~, and so do. + ~0 when k —+k'. As a
consequence, the main lobes which had the intensities
0.82 and 0.21, for the L and V forms, respectively (see
Fig. 4), split into two symmetric lobes about the direc-
tions 30 deg and having the intensities 1.30 (1.) and

, k
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LENGTH FORMULATION
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FIR. 5. As for Fig. 4, but with electron energies c.=5 eV and
c,'=25 eV. In atomic units, the radii of circles are 0.90, 0.55,
and 0.16 {upper, L formulation), and 0.24, 0.18, and 0.09 (lower,
V formulation).

FIG. 7. As for Fig. 6, but with electron energies v= 5 eV and
c'=25 eV. In atomic units, the radii of circles are 0.88, 0.62,
and 0.25 {upper, L formulation), and 0.40, 0.27, and 0.11 (lower,
V formulation).
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0.35 ( V). Simultaneously, the SDCS's exibit a pair of in-
tense and narrow lobes that could be artifacts arising
from the orthogonalization process. Hence, for the
configuration k=k'o-e, which probably represents the
most stringent test of the model, the I./V ratio is scarce-
ly improved by use of variable charges in place of Z=2
(3.7 versus 3.9). The situation is better for the asym-
metric case and for other configurations, so that it
remains possible that eA'ective charges could be useful, on
average, for the WFA.

V. CONCLUSIONS

In this paper, a fresh look has been taken at the WFA,
which has been generalized in order to provide a complete
description of the (y, 2e) process [a similar problem for
the (e, 3e ) reaction will be considered in a future paper ).
Total cross section, photoelectron kinetic-energy distri-
bution, and the basic SDCS (two energies, four angles)
are derived within a formalism where the continuum
electrons are described by a product of two Coulomb
waves. In fact, this representation of the final states
could be the major limitation of the present work, since
the other model assumptions are quite reliable, and the
ground state of helium is described by a highly accurate
wave function taking into account more that 98% of the
correlation energy.

The first manifestation of the lack of correlation in the
final states is that the ratio crL+/o. ~+, which should be I

ideally, is worse than expected from the pioneering work
of BJ, whose calculations were not complete. Another
questionable prediction of the model is that, for fixed
efFective charges Z, the most probable event in the DPI
of helium by a linearly polarized light would be the ejec-
tion of both electrons in the direction of the electric field.
Although this result corresponds to an energy of 30 eV
above threshold, it is surprising to obtain a prediction in
disagreement with the result given by the WRP theory.

In fact, this is the consequence of the complete neglect of
electronic correlation in the double-continuum state. By
use of angle dependent e8'ective charges, the mutual
screening of the nucleus by the ejected electrons is intro-
duced. In this way, the final-state electronic correlation
is partly accounted for and electrons actually depart in
diferent directions.

Still within the WFA, we plan to improve the descrip-
tion of the DPI process by introducing correlation either
implicitely, e.g. , by use of better e8'ective charges, or ex-
plicitly, e.g. , via the variational R-matrix theory. An
alternative route, first suggested by Redmond, ' is to im-
prove the double-continuum wave function via a multipli-
cative factor representing the relative motion of the elec-
trons, i.e., a Coulomb wave for the interelectronic dis-
tance r&2. This three-body Coulomb wave function can
be used either directly, as done very recently by Brauner
et al. ,

' or in its partial-wave expansion proposed by Al-
tick, ' since Peterkop has proved that Redmond's and
Altick's forms are equivalent.

Note added in proof. The fact that the energy distribu-
tion of the two outgoing electrons is flat, within 20%, at
20 eV above threshold (see Fig. 3) has just been experi-
mentally confirmed by new coincidence measurements
made by Lablanquie et al. [P. Lablanquie, K. Ito, P. Mo-
rin, I. Nenner, and J. H. D. Eland, Z. Phys. D 16, 77
(1990)].
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