
PHYSICAL REVIEW A VOLUME 43, NUMBER 6 15 MARCH 1991

Random sequential filling of a finite line
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We present a detailed analysis of the finite-size and boundary effects for one-dimensional irrever-
sible monolayer adsorption of dimers on a lattice, within the rate-equation approach. Asymptotic
expressions for short- and long-time coverages are derived for periodic and free boundary condi-
tions.

Random, irreversible, consecutive placement of non-
overlapping objects onto uniform surfaces results in
nonequilibriurn, less than close-packed deposits whose ki-
netic behavior and final distribution of gaps are known
exactly in one-dimensional, infinite systems. ' Protein
adsorption on solid surfaces ' and particle adhesion in
colloids" are examples of experimental realizations of
such processes, the latter reported to exhibit multilayer
phenomena, theoretical models of which have just begun
to appear in the literature. " ' Similar problems arise in
one dimension in the chemistry of polymer-group reac-
tions. ' Analytical solvability of one-dimensional mod-
els has often offered much insight into the mechanism
and control of these deposition processes as well as pro-
viding a reference to explore new techniques in higher di-
mensions, where most new results are numerical. '

Corrections due to the size of the system and the
choice of boundary conditions are generally important in
implementing efficient algorithms in high dimensions as
well as testing the agreement of their conjectures with re-
sults from series analysis and hierarchical truncation pro-
cedures. Some discussion of finite-size effects in one di-
mension can be found in Ref. 4 and a solution for the
coverage of an open lattice chain by dimers is derived in
Ref. 5. However, no explicit discussion of the boundary
effects and leading size corrections is available, even in
one dimension. In two dimensions, computer simulations
have always reported rather small size effects, for systems
with typical length larger than ten lattice spacings, ' de-
creasing with the ratio of the size of the adsorbed objects
over the size of the substrate. ' The purpose of this Brief

I

Report is to present a thorough assessment of these
effects in one dimension and, at the same time, develop a
systematic formulation of the rate-equation approach for
finite systems. Detailed exact expressions are only de-
rived for the deposition of dimers. The coverage (fraction
of the N lattice spacings long line covered with objects)
expands in powers of the time variable, for short times,
with leading deviations from the infinite-line behavior as
small as 1/N in the linear term, for free boundary condi-
tions, and 2 /N! in the Nth power, for periodic boundary
conditions. For long times, the coverage approaches its
saturation (jamming) value exponentially. The jamming
value and the first coefficient of the expansion in ex-
ponentials of time differ from the corresponding infinite-
line parameters by terms of order 2 /N!, for both bound-
ary conditions.

On one-dimensional lattices with sites either filled or
empty, we call a sequence of m adjacent empty sites an
m-gap. For adsorption of k-mers (k ~1) on an infinite
line, one can define probabilities P(m, t;k) to find, at
time t, gaps of m lattice spacings (m ~ 1), possibly part of
larger voids. ' The infinite hierarchy of rate equations
one obtains for P(rn, t;k) contains only terms that ac-
count for the destruction of those gaps and therefore
reduction of P(m, t;k), usually starting with
P(m, O;k)=l. The coverage B„(t;k) is then obtained
directly from P(l, t;k)=1 B„(t;k).—The adsorption of
a k-mer results in decreasing P(m, t;k) provided it fills at
least one site of an m-gap without overlapping previously
deposited k-mers. The resulting rate equations for
P(m, t;k) are

dP(m, t;k)
dt

m —1

(k —m+1)P(k, t;k)+2 g P(k+j, t;k), m ~k
j=1
k —

1

(m —k+1)P(m, t;k)+2 g P(m+j, t;k), m ~k .
j=1

The time has been reduced by the frequency of attempts to deposit an object. The solutions of (1), starting with an emp-
ty line [P(m, O;k)=1], have the form

P(m, t;k)= '

m —1

1 —J (k —m+1)+2 g e i" e "F(u;k)du, m ~k
j=1

e '- "+'"P(t k) m-~-k (2)
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where F(t;k) is independent of m and given by

k —1 I
—jt

F(t;k)=exp —2 g J
(3)

ancl

N
T(m, t;k)= g (l —m+1)Q(l, t;k)

1=m

N —1

T(m, t;k)= g (l —m +1)Q(l, t;k)
1=m

(4)

with F(0;k)=F(t;1)=1. The k dependence of 8„(t;k)
and 8 ( ~;k) is of interest in itself, ' both for finite k and
in the continuum limit k —+ oo.

On a line of length X & ~, these probabilities lose
meaning. For 1 m N, we define the total number of
gaps of exactly size m as Q (m, t;k), for free boundary
conditions (FBC's), and Q(m, t;k), for periodic boundary
conditions (PBC's), as well as the total number of m-gaps
(possibly part of larger gaps) as T(m, t;k) and T(m, t;k)
for FBC's and PBC's, respectively. They vanish if
m )X. The two quantities, for each type of boundary
conditions, are simply related:

erages are obtained in the limit when t —+ ~. The size of
the adsorbed particles enters only while writing the rate
equations for Q and Q (and thereby for T and T). Note
that these are discrete functions of time and obtaining a
continuous rate equation already involves an averaging
over a large ensemble of identical deposits. For k ~ 2, the
only case that we study below, the rate-equation solutions
are obtained easily in closed form and are suitable for
asymptotic analysis. We have not been able to write the
solutions for general k in a simple form. However, the
leading size and boundary corrections should not depend
strongly on the choice of k, as long as k «N.

The total number of gaps of exactly size m decreases if
a k-mer lands inside the gap (for m ~ k) but can increase
if the k-mer lands on a suSciently larger void whose
remaining empty sites form a sequence of size m. In gen-
eral, this can happen on either size of the larger gap,
whenever its size is not equal to 2m +k in which case the
k-mer has to land in the middle of the gap to create two
m-gaps. For periodic boundary conditions one has to
consider separately the cases N —m & k because
configurations in which the k-mer does not overlap the
m-gap are forbidden by the finite length N of the (closed)
line. For k= I and 2, we have

or

+[N —(N —1)5 ~]Q(N, t;k),

Q(m, t;k) = T(m, t;k) —2T(m + l, t;k)
+ T(m +2, t;k)

(5)

(6) and

dQ(m, t;k) = —(m —k+1)Q(m, t;k)
dt

N
+2 g Q(l t;k)

1=m+k

and

Q(m, t;k)=T(m, t;k)
—[2+(N —2)5 ~, ]T(m + l, t;k)
+[1+(N—1)5 ~ 2]T(m+2, t;k),

corresponding, of course, to

= —(m —k+1)Q(m, t;k)
dt

N —1

+2 g Q(l t;k)
1=m+k

+N[5 ~ k
—(k —1)5 ~)Q(N, t;k) .

(12)

a11Cl

T(m, t;k) —T(m + l, t;k)

N
T(m, t;k) —T(m+1, t;k)= g Q(l, t;k)

1=m
Combining Eqs. (11) and (12) with the time derivative of
(4) and (5), respectively, yields

= —(m —k+1)T(m, t;k)
dt

N —1

Q(l, t;k)+(m5 ~,+5 ~)Q(N, t;k) .
1=m

(9) and

k —1—2 g T(m+j, t;k)
j=l

(13)

The factor I —m +1 is just the total number of distinct
empty sequences of size m that can fit in a void of size l.
We start at t =0 with an empty line. Therefore,
Q(m, O;k)=Q(m, O;k)=5 ~ and T(m, O;k)=N —m
+1; T(m, O;k)=N (N —1)5 ~. The cove—rage is sim-
ply —(k —1)5 Jv T(N, t;k) . (14)

= —(m —k+1)T(m, t;k)
dt

k —1—2(1+m5 ~, ) g T(m+j, t;k)

g lQ(l, t;k)
B~(t;k)=1— T(l, t;k)

N
(10)

The solutions for k = I,

T(m, t;1)=(N —m +1)e (15)
with a similar definition for 8&(t;k). The jamming cov- ancl
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T(m, t;1)= [N —(N —1)5 ~]e (16)

reduce to T(1,t; 1)= T(1,t; 1)=Ne '. Therefore,
8~(t;1) =8~(t;1)=8 (t;1).

For k=2, successive integration, starting from
T(N, t;2) and T(N —l, t;2), gives

N —m

T(m, t;2)=e ' '" g ( —2)"(N —m —n +1)
n=0

XI„(t),
the same as Eq. (2.7) in Ref. 5, and

(17)

r

N —m —2 ( —)"4- —.+i( )Ne ' '" g ( —2)"I„(t)+(—2)
n=0 n =3 n t

T(m, t;2)= 2N —
m( 1 e (N —m +—1)t)

(N —m +1)! m&N —2

[N —(N —1)5 z]e ', m =N —I,N

with

Xi X

I„(t)= f e 'dx, I e 'dx2 I "
e "dx„

0

(1 —e ')"

Thus, for the coverages we obtain

N~tx. Figure I shows the coverages for N=5 and
N= ~. The size effects are unnoticeable in a coverage
plot for N & 10.

For k & ~, the coverage expands for t —+0 and t ~~,
in the variables t and e, respectively, with coefficients
that we define for 8&(t;k) [and similarly for 8~(t;k)] as
follows. For short times,

N —1

8„(t;2)=8„(t;2)+ g( ——2)"nI„(t)
n=0

8z( t; k) = g A ~"„'t"
n=0

(21)

and

+ g ( —2)"I„(t)
n=N

—t 1V

8~(t;2) =8„(t;2)+(—2)

+ g ( —2)"I„(t),
n=N

(19)

(20)

8tv(t k)= X Bt'v", ke "'
n=0

(22)

[with Bt'v k =8&( ~;k)]. Clearly, A& I
= A z', = A'"',

and Bz"', =B Iv', =B'"'„for all n From. (19) and (20) and
just until the first coeScients that differ from their N = ~
counterparts,

(with A&0& =0 if one starts with an empty lattice) and, for
long times, as

thereby recovering 8„(t;2)=1—e " ' ', when 2(1) — (1)
N2 oo, 2

g ( ) —g( ) . g ( — ) —g( — )
N, 2 oo, 2&' '

& N, 2 oo, 2

(
—2)

N, 2 oo, 2

(23)

and

B(o) B(0) (
—

)
1V&2 oo &2

1 (N, —2) —1

I

4

B (o) B~oi + ( 2 N 1

N 2 oo, 2 Alt

FICx. 1. The coverage of dimers on an infinite line (N = ~ }
and for N=5 with periodic (P) and free (F) boundary condi-
tions. The time variable was reduced by the frequency of depo-
sitions.

2 1

,
1 (N, —2) —1

(24)
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( 2)N+ 1

—2e 1(N, —2) —1+'f

g (&) —g(&) ( 2~N —1

N, 2 ~,2

where

1(N —2)/N! —1=—(e /&N ), for N))1 .

The overall size effects are milder for periodic bound-
ary conditions throughout the process. At long times,
the space available for new depositions is reduced to
small gaps, very likely away from the boundaries, and the
end corrections are essentially dominated by the size
efFects.

2e 1(N, —2) —1
1
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