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Statistical properties of dynamically generated anomalous diffusion
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We consider a one-dimensional Lorenz-type mapping with slowly decaying correlation function,
which produces anomalous diffusion with squared displacement growing faster then linearly. The
statistical properties of the process are investigated by means of diffusion-index calculation. A sim-

ple approximation for probability distribution gives a good estimate for these indices.

It is well known that the dynamical models with chaot-
ic behavior may give rise to the processes of random-walk
type, ' obeying the diffusion law

(r')-t .

In this paper we investigate statistical properties of
dynamically generated anomalous diffusion where the
averaged square of displacement grows faster than the
linear law [Eq. (1)]:

(r') -t'+t', 0&P(1 .

1x = [1+f (x)]' for &x &0,
2z 2z

x =f(x)+ [1—f(x)]' for 1&x &
1

2z 2z
'

f ( —x)= —f (x) .

Here the index z is the main parameter determining the
correlation properties of the mapping. It is not very
difficult to check that the mapping (6) has the uniform in-
variant probability density [that is why we used the im-

Dynamically generated anomalous diffusion was investi-
gated for some statistical models. The deviation from
the linear law is closely connected with the correlation
properties of random walks. Indeed, the averaged square
of displacement may be expressed through the integral of
the velocity autocorrelation function c (t):

(r')-t J c(t)dt (3)
0

and if the integral in (3) diverges then the anomalous
diffusion occurs. The power-law tail of correlation func-
tion is known to exist in some Hamiltonian systems '

and the corresponding dynamically generated anomalous
diffusion is described in Refs. 5—9.

In this paper we investigate dynamically generated
anomalous diffisuion originating from the simplest
dynamical system —the one-dimensional mapping. Some
models of this type were previously studied in Refs. 10
and 11. Consider a dynamical system 1.0

f(x)

X

x, +,=f (x, ),

sf+ I =X~+~f

(4)

X

0.5

where x ~f (x) is a symmetrical Lorenz-type mapping of
the interval [—1,1] [see Fig. 1(a)]. The crucial point is
that in order to obtain power-law behavior of the correla-
tions in this map, we must impose specific power-law be-
havior of the mapping both near the discontinuity point
f (x)= + 1+const, X ~x~' ' for x =0 and near the ends of
the interval f (x)=+1+const2X(+1+x)' for ~x~ =1,
where z & 1. The weakly unstable points x =+1 are re-
sponsible for the intermittent behavior in this map. We
used the mapping, which analytically may be represented
in the following implicit form:

0.0 ~++ p~+~~+t+ + ++ + ++ ++ +

+'*g
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FIG. 1. (a) The Lorentz-type mapping and (b) the intermit-
tent motion, produced by it.
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plicit relations in (6)]

P(x)= ,', ——1&x &1, (7)

while the models studied in Refs. 10 and 11, have singu-
lar invariant density. One can easily see from Fig. 1(b)
that the dynamics of x is intermittent, and this causes
slow decay of correlations. In Ref. 12 it was shown that
for the mapping (6)

(t)- t i/(z —i)

In(W)

For z (2 the integral of correlation function diverges
and we obtain according to (3)

( 2) t2 —I/(z —1)

This formula does not allow one to reconstruct the proba-
bility distribution of the process y, . We will use the ap-
proach of Ref. 9 and will calculate the generalized
dift'usion indices according to the relation

(8)

It is clear that for ordinary random walks described by
the Gaussian distribution one has Dq =q/2. We obtained
the diffusion indices for the system (6) numerically for
different z (see Fig. 2). Below we would like to present a
simple theory describing the obtained di8'usion indices
behavior.

Consider a set of initial points Ixoj, distributed ac-
cording to the invariant density (7). The points lying in
the center of the interval [—1,1] wander in chaotic
manner, while those lying close to the boundaries move
"laminarly. " Suppose that a point x is close to —1.
Duration of the laminar phase starting at this point may
be estimated from (6): t =(x +1) '+'. Thus during the
time interval t there will remain Q=t '/' " points in
the laminar state. Thus we may approximate the proba-
bility distribution W'(y, t) of the quantity y by the sum of
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W(y, t)=[1—Q(t)]W (G yt) +Q(t)[5( y
—t)+5(y+t)] .

(9)

The numerically obtained probability distribution for y is
presented in Fig. 3; one can see at least qualitative agree-
ment with formula (9). Calculation of D using (8) and
(9) gives

2
q/2 ifq(

z —1
D

q

FIG. 3. The logarithm of probability distribution 8'(y, t) for
t= 128. The dashed line approximates the main part of the dis-
tribution by the Gaussian law.

two parts. One part is produced by chaotic wanderings
and is nearly Gaussian, while the second one produced by
the laminar motions may be approximated by the 6 func-
tions:
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FIG. 2. The diffusion indices obtained for the mapping Fig.
1 for z ranging from 1.2 to 3. The dashed straight lines have
slopes —' and 1.

FIG. 4. Comparison of the diffusion indices for q=10 with

the theoretical prediction (10).
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Formula (10) agrees qualitatively with the data of Fig.
2. For quantitative comparison we plotted in Fig. 4 the
values R =10 D]p versus z ranging from 1.3 to 3. These
points are compared with the theoretical prediction
R =(z —1) '. It should be emphasized that it follows
from (10) that for small z one has (y ) —t, this means
that dynamically generated anomalous diffusion reveals
only in the behavior of higher moments of displacement.

The approach described above was also applied for
statistics of anomalous diffusion generated by a Hamil-
tonian system —the so-called separatrix map:

D

10— /

/
/

x, +, =x, +sine, ,

8, +) =8, —A, ln~x, +, ~,

sf+ &
=X~+&~- I

2
I

4
I

10

In Refs. 3 and 4 it was shown that the correlations in the
mapping (x„8,)~(x, + „8,+, ) decay as c (t) —t
consequently we expect that (y ) —t ' . The diffusion
indices Dq for the system (11) are presented in Fig. 5.
One can see that here D does not look like a piecewise-
linear curve (10). This means that the statistical proper-
ties in the separatrix mapping cannot be described by our
simple theory.

FIG. 5. The dift'usion indices for the separatrix mapping (11).
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