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We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal

Growth 100, 313 {1990)]to three dimensions and included reevaporation after accommodation and

growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the

critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly

with the mean free path in the vapor. However, the three-dimensional (3D) the systems show in-

creased shape stability compared to corresponding 2D cases. Extrapolation of the model results to
mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude

agreement of the predicted critical size with experimental findings. The stability region for macros-

copically smooth (faceted) surfaces in the parameter space of temperature and supersaturation de-

pends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth

morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The
atomic surface roughness increases with increase in growth temperature and supersaturation. That
is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through

thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be

advantageously used at low temperatures and supersaturations, is insufficient to describe the growth

dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces

with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low

temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing

temperature or supersaturation. When the mean free path in the nutrient is comparable to the lat-

tice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a

growth spiral in its center region. At elevated temperatures and supersaturations, 2D nucleation-

controlled growth can dominate in corner and edge regions of a facet, while the spiral growth mode

prevails in its center. Thus, in addition to confirming the experimental observation that the critical
size of a growing crystal depends on the prevailing growth mechanism, we are able to obtain de-

tailed insight into the processes leading to the loss of face and facet stability.

I. INTRODUCTION

Since the first application of the Monte Carlo (MC)
method to simulations of crystal growth by Chernov and
Lewis' its use has become widespread. MC studies were
concerned with equilibrium and growth morphologies of
crystals, surface-roughening transitions and
growth-rate dependence on supersaturation and tempera-
ture. ' '" For reviews see Refs. 12 and 13. These studies
were primarily focused on interfacial kinetics and have
occasionally included surface diffusion. " A solid-on-
solid (SOS) restriction (no overhangs)' was often in-
voked. The inhuence of bulk diffusion, i.e., the transport
of growth units through the nutrient to the interface, has
received less attention until very recently. ' ' In the
event that surface diffusion and interfacial kinetics
govern the growth morphology, these simplifications are
not severe limitations. However, in reality, bulk trans-
port often plays a decisive role in limiting morphological
stability. " "

Recently, we have studied the morphological evolution
of growing crystals in two dimensions by considering
both bulk transport and anisotropic interface kinet-
ics. ' ' For the bulk transport, we employed the
diffusion-limited-aggregation model of Wit ten and

Sander. In the formulation of the interface kinetics we
followed largely Gilmer and Bennema's work. ' "
Through a systematic variation of the simulation parame-
ters (temperature, bond strength, and supersaturation),
the whole range of growth morphologies from fully facet-
ed to side-branched dendritic growth was recovered. Our
results show that the diffusion in the bulk nutrient and
the anisotropy in the interface kinetics act morphologi-
cally destabilizing and stabilizing, respectively. For a
given set of simulation parameters and symmetry of the
lattice, there is a critical size beyond which a crystal can-
not retain its stable, macroscopically faceted growth
shape. This critical size scales linearly with the mean free
path in the vapor.

In our previous studies' ' we ignored the fact that
after attachment, the particles still have a finite probabili-
ty to leave the attachment site. This approximation is
valid when the system is far from equilibrium, i.e., the
Aux of particles impinging on the crystal surface largely
exceeds that of the evaporating particles. However, close
to equilibrium, the rates of impingement and evaporation
are comparable. Then a more realistic description of
crystal growth must account for the non-negligible
chance that interfacial particles either move (diffuse) on
the surface or evaporate back into the nutrient at any
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time after the initial accommodation on the surface.
The growth of perfect crystals proceeds typically

through two-dimensional-nucleation, which is extreme-28

ly slow at low temperatures and supersaturations. Yet, in
reality, most crystals possess considerable concentrations
of defects. Certain defects facilitate growth at low tern-
peratures and supersaturations. Frank found that a
screw dislocation can provide an inexhaustible source of
growth steps. Growth on dislocation-induced steps has
since been observed experimentally by many work-
ers, and various theories for this growth mechanism
have been proposed. ' However, due to the com-
plexity of the problem, no exact solutions have been ob-
tained. Typical simplifications include the uniform spac-
ing of growth steps and the neglect of nutrient bulk
diffusion and surface diffusion. Although there have been
some Monte Carlo simulations of dislocation-facilitated

rowth ' owing to the computational limitations at
that time, the transport aspects of the problem were not
taken into account.

In this paper we expand our previous studies' ' to
three dimensions and investigate the role of two-
dimensional (2D) nucleation growth and dislocation-
induced growth in the morphological evolution of grow-
ing crystals. Instead of the multiple-registration scheme

15 16used in the earlier work to reduce microscopic noise,
we employ realistic reevaporation conditions for interfa-
cial particles. The model and simulation procedure are
described in Sec. II. Results on the inhuence of tempera-
ture and supersaturation on the surface morphology of
perfect crystals are presented in Sec. IIIA. Based on a
criterion originally proposed by Burton-Cabrera and
Frank, the thermal and kinetic roughening transitions
are quantified. In addition, the scaling between the criti-
cal stable size of a faceted crystal and the mean free path
of the vapor is studied in three dimensions. In Sec. III B
we devote our effort to surfaces with dislocations and pay
special attention to the shape and spacing of steps of
growth spirals. We conclude the paper with results on
the competition between normal growth at the corners
and dislocation-facilitated growth at the center of a facet.

At molecular length scales, an individual growth unit
undergoes generally several basic processes before becom-
ing part of the growing crystal. After detachment from
the source, a growth unit is transported by bulk diffusion
towards the growing interface. The actual transport ki-
netics is determined by the interaction of growth units (or
their precursors) and other species that form the nutrient.
Usually, when a growth unit reaches the interface, it is
not immediately incorporated into the growing crystal.
It will adsorb and diffuse on the interface in an attempt to
find an energetically favorable "final" attachment site, or

PLANAR SOURCE

II. MODEL AND SIMULATION PROCEDURE

A. The model

Two difFerent geometries, planar and spherical, are
used to study the effect of bulk transport-induced nonuni-
formity in nutrient distribution on growth morphology.
In the planar cases [Fig. 1(a)], the nutrient is contained
between parallel crystal and source planes, which are
infinite in lateral extent. In order to save computational
time, we only consider a portion of the whole system and
apply periodic boundary conditions in the x and y direc-
tions. In the other cases [Fig. 1(b)] a cubic seed is located
at the center of a spherical source. Ideally, the separa-
tion between the growing crystal and the source should
be infinite. But, again, to save computational time we
choose a finite separation, yet one wide enough that the
growth shape remains unbiased. ' As a crystal grows,
the distance between crystal surface and source is kept
constant.

GROWING CRYSTAL CE

FIG. 1. Schematics of simulation geometries. (a) Planar case:
lateral dimensions 60 X 60 lattice constants, with periodic
boundary condition in the x and y directions. Space between
crystal surface and source contains nutrient through which
growth units diffuse to the crystal surface. (b) Spherical case:

growing crystal in center of spherical source. Pyramidal section
is used with periodic boundary conditions in azimuthal direc-
tion for simulation of 3D growth morphology at low tempera-
tures; see text.
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it will even return to the nutrient before it finds such a
site. The latter happens, for instance, when the growth
unit is misoriented and cannot form stable bonds with the
crystal. Alternatively, the growth unit may impinge onto
a site with too few neighbors to prevent it from being
dislodged by thermal vibrations before it becomes ad-
sorbed. A growth unit may even become dislodged after
having arrived at an energetically favorable site. The
probability that any of these processes occur is deter-
mined by the local configuration (arrangement of bond-
forming neighbors) of the interface sites that the unit
happens to visit. Though a complete model of such com-
plex scenarios is not practical at this point, we have for-
mulated a Monte Carlo model which retains the essential
physics of both nutrient bulk transport and interface ki-
netics, including surface diffusion and reevaporation,
without resorting to the SOS approximation.

We assume that the gaseous nutrient phase consists of
two components: a growth species A, highly diluted in
an inert gas B, such that the B concentration is essential-
ly uniform and A-A interactions can be ignored. Com-
ponent B randomizes the motion of A. Convection is ig-
nored. The chemical potential is taken to be a linear
function of the growth species concentration only. This
results in a Fickian transport equation and, thus, a ran-
dom walk may be used to describe diffusion in the nu-
trient phase in the form' '

C

U(r, sr)= —g U(r+a, (s —l)r),
C

where U(r, s~) is the probability that a walker can be
found at location r after s steps (with a time interval r) of
jump length (mean free path) ~a ~. The normalization pa-
rameter c represents the total number of the possible
jump sites.

To approximate the complex processes following the
arrival of a growth unit on the interface, we make the fol-
lowing assumptions: The impingrnent rate K+ can be
obtained, based on ideal gas kinetics, from the chemical-
potential difference Ap between interfacial vapor and
average surface site in the form'

where v is a lattice vibration factor and, in a nearest-
neighbor approximation, E, is simply the product of the
pair-interaction (bond) energy P of a unit with a nearest
neighbor, and n; is the number of occupied neighbor sites
of site i.

For surface diffusion we assume that the diffusion rate
depends on the occupation condition of both the site i
that the particle occupies and the potential jump site j.
Hence, we express the jump rate as

K, =v, exp. ( —hE, Ik T), . (4)

where v, is a surface vibration factor, and the activation
energy

5;+P(n; n) f—or n, ) n
V =

6; for n;~n.
In reality, the term 6; depends on the specific
configuration i-j. For simplicity we have assumed that
for a given i-j the 5 term is independent of jump direc-
tion, hence the notation 6;. As a consequence of this as-
sumed direction independence, the 6; terms cancel in the
following formulations of transition probabilities and
thus do not have to be calculated.

In real situations, impingment, surface diffusion, and
evaporation take place at the same time with different
magnitude. But in the MC simulation we consider one
event at a time. Therefore, it is necessary to determine
the sequence in which the events are to be considered.
To this end we define an overall evaporation probability
as

(6)

processes are sensitive to the local configuration of the
site from which a unit is to be dislodged. Hence, follow-
ing Gilmer and Bennema, "we write the evaporation rate
K; in the site-dependent form

K; =v exp( —E; IkT),

K+ =K, exp(hp/kT), , (2)
where K is the average "evaporation rate"

where K, is the temperature-dependent equilibrium
value of K+. Note that in reality the overall driving
force for the diffusion of 2 towards the crystal and subse-
quent interfacial attachment is the difference in chemical
potential between the crystal surface and the source.
Since we have accounted for bulk diffusion via a
random-walk process, the chemical potential of the
source does not appear explicitly in our model. The Ap
in Eq. (2) is therefore governed by the difference between
the bulk-dependent vapor concentration at the interface
and the equilibrium concentration at the same tempera-
ture. It should not be confused with the chemical-
potential difFerence (bulk supersaturation, undercooling,
etc. ) used to control experimental crystal growth. This
important point is discussed in more detail in Refs. 15
and 16 and also below.

The rates of both the evaporation and surface diffusion

K;m, .

and the summation is over all m interfacial particles. By
considering a local equilibrium condition for the kink site
on a simple-cubic lattice, Eq. (6) becomes

B
8 +exp(b plkT)exp( 3glkT)—

with

m

8 = g exp( iP/kT) . —
m

At equilibrium (hp/kT =0), Eq. (8) yields P =0.5; i.e.,
there are approximately equal amounts of particles eva-
porating from and impinging onto the crystal surface. At
positive supersaturations (Ap/kT)0), P is less than
0.5; i.e., impingment exceeds evaporation. Correspond-
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PS
l

exp( b tM Ik T)exp [ —( 3—n; )P Ik T]
1+exp(Ap/kT)exp[ —(3 n; )PI—kT]

(9)

ingly, for negative supersaturations (Ap/kT (0), the P
will be larger than 0.5, and more interfacial particles will
evaporate and the crystal will shrink. These effects will
not only be manifested in the growth and shrinkage rates,
respectively, but will also inhuence the surface morpholo-
gy

After having decided the sequence of events, the indivi-
dual probability for the various events needs to be deter-
mined. This depends on the specific site considered. For
impingement, the probability, according to Eqs. (2) and
(3), is P =It'+I(IC++It; ). For a simple cubic crystal,
this can be written as (for a derivation in 2D see Ref. 15)

es
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]
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The jump probability from site i to a neighboring unoccu-
pied site j (on the surface or in the nutrient), following
Ref. 15 is

randomly choose
starting location

at source

jump on surface

generate a random number
to decide jump direction

calculate PP and
generate a random

number R

yes

where c' is the number of unoccupied nearest-neighbor
sites of site i. Clearly, a larger n. results in a higher prob-
ability that a molecule will jump to site j on the interface.

The probability of evaporation for interfacial particles
can be expressed as

FIG. 2. Flow chart of simulation steps.

pe
E

exp( n; P lk T—)
i =1,2, . . . , m . (11)

mB

It can be seen from Eq. (11) that the probability of eva-
poration decreases exponentially with increasing number
of solid bonds, and thus is highly anisotropic. The most
probable sites for evaporation are those with the least
solid neighbors, such as admolecules with a single solid
bond. As the temperature and thus the surface roughness
is increased, the anisotropy of the evaporation is de-
creased.

B. Simulation procedure

A summary of the simulation steps is presented in Fig.
2. First the initial conditions are chosen: for growth
onto perfect crystals a smooth surface is set at a certain
distance (typically 50 lattice units b, for ~a~ =b) from the
source. In the planar case the surface is chosen as a
square lattice measuring 60b X60b, with periodic bound-
ary conditions in x and y (lateral) directions. For growth
onto dislocated crystals the lateral size is doubled in or-
der to provide space for the evolution of several turns of
a spiral. An initial dislocation is introduced by a vertical
slip of parts of the lattice. Note also that, as the crystal
grows, the source is moved outwards such that the sepa-
ration remains unchanged, as discussed in Ref. 15.

Following the setting of initial conditions and choice of
specific input parameter values, P is calculated from t)It,

T, Ap and the current crystal morphology. Comparison
of a random number R with P determines the event to

be considered. If R &P, a growth unit is released from
the source and bulk diffusion is simulated through an iso-
tropic sequence of random jumps of equal length (mean
free path) ~a ~. Only when the particle has come within a
distance ~a ~

from the crystal surface is a check imple-
mented that determines whether the interface has been
reached. The following steps, including the determina-
tion of average surface-diffusion lengths, are similar to
our previous simulations except that we do not impose
the multiple registration used in Refs. 15 and 16. A
growth unit is tracked until it has either escaped from the
system or is stuck onto the crystal surface.

If R &P, an evaporation event is selected. Then, all
P,' (i =l, . . .m) are calculated from the recorded posi-
tions and neighboring configurations. Another random
number R ' is generated. If by chance R ' falls into the ith
interval, the ith interfacial particle is chosen to move.
Then, governed by Eqs. (9), (10), and (11), the particle is
kept moving until it has attached to some interfacial site
or escaped to the source. If it sticks on site j, the local
P~"s around the new site j as well as the earlier site i
where the particle originated are recalculated. By using a
new random number, a new evaporation event is selected.
The evaporation route is pursued until some particle has
escaped to the source. When this happens the P is re-
calculated and a new event is selected.

The simulation is continued until a desired size or layer
thickness is reached. In a planar case, the simulation is
continued until 14400 or 10000 particles, respectively,
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have been added to a perfect or dislocated surface. In a
spherical case, the simulation is stopped after a crystal
has become unstable (the criterion for the instability will
be discussed later). Typical CPU times were around
3000—10000 s on a Cray X-MP/24 and 5-50 h on an
Ardent computer.

Our model has been designed for computational
efficiency. As outlined above [see Eqs. (6)—(8)], the event
to be considered is decided upon before the execution
based on physical criteria rather than random choice
only. In this way, any "unnecessary" operation is avoid-
ed. For example, evaporation will be executed whenever
a random number R is less than P, although the selec-
tion of the actual execution site is quite random. In the
earlier models, " the selection of a particle and calcula-
tion of the evaporation probability do not necessarily lead
to an actual execution of an evaporation process. Many
interfacial particles may have to be selected before a real
evaporation event takes place. This is particularly time
consuming under conditions of low temperature and su-
persaturation, in which the interface is rather smooth and
the probability of evaporation is very low.

Note that, unless stated otherwise, the simulations
were carried out with the magnitude of the mean free
path in the vapor equal to one lattice constant ~a ~

=b

initial and final sites but also on the actual path of the
particles. In contrast, our model, as discussed in Sec. II,
is more general and can be used in both equilibrium and
nonequilibrium situations.

To further demonstrate the effect of temperature on
the morphology of a growing crystal, we have plotted in
Fig. 4 the surface area normalized by the area of a per-
fectly smooth surface versus the number of attached par-
ticles (in units of completed layers). The four curves cor-
respond to cases (a) —(d) in Fig. 3. As can be seen from
Fig. 4, at the lowest temperature the surface area oscil-
lates periodically with minima on layer completion, alter-
nating with maxima at about half-filled layers. Thus

III. RESULTS AND DISCUSSION

A. Perfect surfaces

l. Effects of surface and bulk diffusion
at various temperatures

As references for the more complex cases to be treated
later and for comparison with earlier work, we have
first examined cases in which both bulk and surface
diffusion were neglected. Particles arriving at random lo-
cations of the crystal either stick or are discarded. Fig-
ure 3 shows the effect of growth temperature or bond
strength (i.e., PlkT) on the morphology of a planar crys-
tal surfaces at a constant low value of by/kT=0. 35. At
low temperature, as can be seen from Fig. 3(a), the grow-
ing crystal is atomically smooth with occasional 2D clus-
ters on the surface; i.e., growth occurs by 2D nucleation
only. As the temperature increases [Fig. 3(b)] the sur-
face becomes rougher and more 2D clusters with smaller
size are formed on the surface and even on top of large
clusters. On further increase in temperature the whole
surface becomes atomically rough [Fig. 3(d)], and large
size clusters can hardly be discerned. In this situation the
crystal grows more readily due to the disappearance of
the energy barrier for 2D nucleation. This thermal
roughening effect has been extensively studied before un-
der equilibrium conditions. ' ' The earlier studies
basically employed an algorithm for random pair ex-
change controlled by a Boltzmann factor exp( —b,E/kT).
At equilibrium, the validity of the algorithm is
guaranteed by the thermodynamic principle of path in-

dependence. For a nonequilibrium situation the random
pair exchange algorithm is no longer valid. The final re-
sult depends not only on the potential energy between the

FIG. 3. Effect of temperature and bond strength on crystal
surface morphologies at fixed supersaturation, bp!kT=0. 35.
Both surface and bulk difFusion are excluded. (a) P/kT=3. 9,
(b) P/kT=2. 0, (c) P/kT =1.6, (d) P/kT=1. 4.
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growth proceeds essentially layer by layer. %'hen, follow-
ing the formation of a 20 nucleus, a layer spreads, the
surface area increases until a half-filled-1ayer state is
reached and then decreases until that layer is completed.
However, when the temperature is increased and thus the
surface becomes rougher, the distinction between a half-
filled layer and completed layers is blurred; i.e., new lay-

FIG. 4. Normalized surface area as function of number of at-
tached particles (in units of full layer, i.e., 3600 particles). The
normalization is based on the area of a perfectly smooth sur-
face. The growth conditions are the same as in Fig. 3.

ers form before completion of the earlier layers. With in-
creasing roughness, the periodicity disappears and the
surface becomes delocalized.

Figure 5 illustrates the consequences of surface
diffusion. Bulk diffusion is not considered in these exam-
ples with P/kT = 1.6, Ap/kT =0.69. It can be seen that
with surface diffusion [Fig. 5(b)] the crystal surface is
much smoother than without surface diffusion [Fig. 5(a)].
The reason is that surface diffusion can provide an addi-
tional way for interfacial particles to relax to some ener-
getically more favorable (low-energy) sites, and hence
reduces the amplitude of the surface roughness. Of
course, as we have shown before, ' such a stabilizing con-
tribution is effective only at a length scale comparable to
the surface diffusion length, which, in turn, is sensitive to
the surface roughness. ' Generally speaking, the
smoother a surface is, the farther an interfacial particle
can diffuse during its lifetime on the surface. Hence, as
shown by the simulation results of Fig. 6, the surface
diffusion length decreases with increasing temperature.
In addition to the temperature effect, Fig. 6 also reveals a
strong dependence of surface diffusion length on supersa-
turation. This was not taken into account in earlier simu-
lations, " in which the surface diffusion length was con-
sidered as an externally adjustable parameter, indepen-
dent of temperature and supersaturation. By contrast, in
our model, surface diffusion is an integral part of the at-
tachment and evaporation processes.

Unlike surface diffusion, bulk diffusion acts destabiliz-
ing on the interface morphology. ' ' This is shown in
Fig. 7 for a case with surface diffusion, bp, /kT =3.0 and
PlkT=2. 3. For the three subfigures, the mean free path
in the nutrient was decreased from "infinite" [Fig. 7(a)] to
ten [Fig. 7(b)] and one crystal lattice constant [Fig. 7(c)],
respectively. The infinite mean free path corresponds to
direct jumps of growth units from the source onto the
crystal surface, as in the simulations leading to Figs. 3
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FIG. 5. Effect of surface diffusion on surface morphologies at
PlkT=1. 6 and hp/kT=0. 69 without consideration of bulk
diffusion. (a) Without surface diffusion', (b) with surface
diffusion.

FIG. 6. Dependence of average surface diffusion length on
(bond strength)/(temperature) at two different supersaturations,
Ap/kT =0.69 and 3.0.
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and 5. A mean free path of one lattice unit implies an ex-
tremely dense nutrient similar to a liquid. It is evident
from this figure that bulk diffusion, particularly in the
case of a short mean free path [Fig. 7(c)], destabilizes the
surface morphology. With increasing surface roughness,
not only is the stabilizing effect of surface diffusion weak,
but simultaneously the stabilizing anisotropy in surface
kinetics is decreased. Once a protrusion forms by
chance, it will be amplified by the bulk diffusion. At in-
termediate values of temperature and supersaturation,
there exists a competition between surface kinetics and
bulk diffusion. Only if the surface kinetics prevails can
crystal surfaces remain stable, i.e., faceted. ' More pro-
nounced destabilization from bulk diffusion at higher
temperatures will be shown later.

persaturation, the size of the 2D clusters decreases, and
the surface roughens, eventually leading to many depres-
sions and protrusions on the surface and even vacancies
in the crystal. As formulated in Sec. II A, an increase in
supersaturation causes an increase in impingement rate
[Eq. (2)] and hence a relative decrease in evaporation
probability [Eq. (6)]. When the supersaturation reaches
some critical value, the surface kinetics become relatively
less important and the growth process is controlled by
bulk diffusion. The ensuing loss of facet stability is fur-
ther illustrated in Fig, 9 by profiles of the interfacial layer
occupation numbers. The four profiles correspond to the
cases depicted in Fig. 8. One clearly sees that the interfa-
cial width grows with increasing supersaturation.

2. Supersaturation sects

Increases in supersaturation can also affect the crystal
morphology through kinetic roughening. ' This is
also born out by our 2D simulations. ' ' The inAuence
of supersaturation on a 3D growth morphology is shown
in Fig. 8, in which the temperature and bond strength are
kept constant (PIkT =3.9). Both surface and bulk
diffusion are included. One sees that, with increasing su-

FIG. 7. Effect of the mean-free-path length in bulk diffusion
on surface morphologies at P/kT =2.3 and /sp/kT =3.0. Sur-
face diffusion is included. (a) ~a)= ~, (b) (a~ =10b, (c) ~a( = lb

FIG. 8. Effect of supersaturation on surface morphologies at
P/kT =3.9 and a mean free path of one lattice unit. (a)
Ap/kT=0. 69, (b) hp/kT =3 0, (c) hp/kT =5 0, (d)
Ap/kT =7.0.
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The above results reveal significant concentrations of
overhangs and vacancies in the crystal at higher supersa-
turations and temperatures. Hence, under these condi-
tions, the SOS (no overhang) assumption is unrealistic for
the description of crystal growth morphologies. Thus the
SOS assumption is only a good approximation at low
temperatures and supersaturations where the surface
morphology is controlled by surface kinetics rather than

bulk diffusion. Note, however, that the supersaturation
value required for significant kinetic roughening depends
on both bond strength and temperature. A crystal sur-
face can have the same roughness at different combina-
tions of supersaturation and temperature.

In order to illustrate the dependence of the anisotropy
in interface kinetics parameters on growth conditions, we
have plotted in Fig. 10 the sticking probabilities at sites
with various numbers of nearest neighbors as a function
of (temperature)/(bond strength) and supersaturation
[Eq. (9)j. For clarity only surfaces for P&, P3 (kink site),
and P5 are plotted in this figure. Note the temperature
independence of P3 that results from the assumption of
local equilibrium at the kink site underlying Eq. (9). Fig-
ure 10 well illustrates the strong dependence of the an-
isotropy in sticking probability (separation between Pi
and P5) on temperature and supersaturation. At low
values of these parameters, P', and P5 are nearly constant
and close to 0 and 1, respectively. This reflects the
difhculty of the attachment of isolated particles and the
ease with which holes (i.e., sites with more than three
solid nearest neighbors) are filled. One can also see from
this figure that the anisotropy in sticking probability can
be more effectively reduced by increasing the temperature
than by increasing the supersaturation. There is a rapid
decrease in the anisotropy of the sticking probability
around P/k T = 1.0—2.0 at low supersaturation. The
value of the anisotropy in sticking probability is a funda-
mental quantity for controlling the morphology of a crys-
tal surface. Only when the anisotropy is significant can a
crystal retain a stable, faceted form.

3. Surface roughness
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FICx. 10. Sticking probability P [Eq. (9)] as a function of
P/kT and AplkT For clarity, only P. '„P;, and P; are shown.

To further quantify the surface morphology features
we use a criterion originally introduced by Burton-
Cabrera and Frank (BCF) that defines the surface
roughness R, in terms of the surface energy E (i.e. , the
number of broken bonds times P) at temperature T and
the surface energy Eo for a perfectly smooth surface at
zero temperature, in the form

R, =
S (12)

This R, is a merely geometrical measure that depends
only on the number of broken lateral bonds per unit area.
The variation of R, with temperature obtained from a
simulation of an equilibrium situation (bp, /kT=O) is
plotted in Fig. 11. One can see that the surface rough-
ness monotonically increases with temperature with a
slope that is highly temperature dependent. There is also
a unique infiection point (location of maximum slope),
which, as better indicated by the plot of the derivative
dR, /dT( T) in the same figure, lies at kT//=0. 62. Since
R, is proportional to the surface energy, dR, /dT should
be proportional to the heat capacity or specific heat of
the surface. A singularity in heat capacity is characteris-
tic for a phase transition. But in MC simulation, the
singularity has been degraded owing to the effect of finite
system size. " ' Swendsen first used a maximum in heat
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In Fig. 12 we have delineated the temperature-

supersaturation combinations for surface roughening
transitions as obtained from our MC results and Eq. (12)
with the inflection point criterion for systems with vari-
ous combinations of surface and bulk diffusion condi-
tions. As reflected by the extent of the respective stabili-
ty regions (smooth versus rough), surfaces on which sur-
face diffusion is significant can retain atomic smoothness
up to higher temperatures and/or supersaturations than
without surface diffusion. Bulk diffusion, on the other
hand, reduces the smooth (stable) region in the P/kT
versus bp/kT plane, as we have seen more qualitatively
before.

0.00
0.3

I

0.4 0.5 0.6
kT/(t)

0.7 0.8 0.9

FIG. 11. Surface roughness and its derivative with respect to
temperature as function of P/kT at equilibrium (bp/kT=0).
The numbered arrows on the abscissa indicate roughening tem-
peratures obtained earlier by Refs. 7 and 9.

capacity in a MC simulation to define the roughening
transition temperature. He obtained for a simple cubic
lattice Tz =0.575$/k. Leamy and Gilmer found, by us-

ing a different criterion and employing the SOS restric-
tion, a roughening transition temperature Tz
=0.64$/k, which is surprisingly close to our value. This
indicates again that the SOS approximation is appropri-
ate for the description of surface morphology under equi-
librium conditions. However, as has been shown above,
the SOS assumption is not longer valid when growth be-
comes bulk diffusion controlled, i.e., the surface has be-
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FIG. 12. Stability diagram for smooth (stable) and rough (un-
stable) growth morphologies as a function of P/kT and Ap/kT.
SD: with surface diffusion; BD; with bulk diffusion.

FIG. 13. Effect of noise reduction (multiple registration)
(Ref. 15) on surface morphologies at P/k T =3.9. (a)
bp/kT =0.69, without noise reduction; (b) hp/kT=0. 69, with
noise reduction; (c) Ap/kT =5.0, without noise reduction; (d)
hp/kT=5. 0, with noise reduction. No reevaporation in all
cases.
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4. Reevaporation beets

All of the above results were obtained with the new al-
gorithm that accounts for the possibility of reevaporation
of interfacial particles. To gauge the effect of reevapora-
tion with respect to the earlier noise-reduction algo-
rithm, ' ' Fig. 13 presents some results obtained without
reevaporation and either without or with the multiple-
registration scheme used in our earlier work. Otherwise
the growth conditions in Figs. 13(a) and 13(b) are the
same as in Fig. 8(a) (Ap/kT =0.69) while the conditions
in Figs. 13(c) and 13(d) are the same as in Fig. 8(c)
(hp/kT=5. 0), with P/kT=3. 9 for all. The multiple-
registration noise-reduction scheme' ' used for Figs.
13(b) and 13(d) requires ten registrations of incoming par-
ticles at a site i before that site is considered occupied.
Comparison of the corresponding cases in Figs. 8 and 13
shows that at low supersaturations the noise-reduction
scheme is somewhat more effective in smoothing the sur-
face than reevaporation. At high supersaturation, how-
ever, both schemes give nearly the same smoothness
[compare Figs. 8(c) and 13(d)]. Similar conclusions can
be drawn for the smoothing effect of the two schemes
upon variations of P!kT. Hence we conclude that at sit-
uations far from equilibrium or at high temperatures, the
noise-reduction scheme can give qualititatively similar re-
sults as the new evaporation scheme, for which, however,
the physical implications are much clearer.

5. Spherical source

The above results were based on the uniform nutrient
fiux conditions of the planar geometry of Fig. 1(a). But in
reality, nutrient Aux conditions are most often nonuni-
form. To further explore the effect of nonuniform supply
beyond the 2D results obtained in Refs. 15 and 16 with a
circular source, we have performed MC runs with growth
onto a cubic surface inside a spherical source; see Fig.
1(b). Figure 14 presents surface morphologies obtained
in this geometry with P/kT=2. 3 and hp/kT=0. 69.
The mean free path or jump length is one lattice con-
stant, i.e. , a

~

=b in Figs. 14(a) and 14(b), and five lattice
constants (~a~=5b) in Figs. 14(c) and 14(d). Similar to
the 2D findings in Refs. 15 and 16, one sees that loss of
stability of a facet is associated with the formation of
depression in its center and, correspondingly, preferred
growth at corners and edges. As discussed before, ' '
this occurs because the anisotropy in surface kinetics can
compensate for the nonuniformity in nutrient supply only
up to a certain critical size of the crystal. This nonuni-
formity decreases with increasing mean free path of the
diffusing nutrient particles. Hence, as is shown by Fig.
14, the critical crystal size increases with increasing mean
free path. To quantify the critical size we have plotted in
Fig. 15 the normalized total surface area of the growing
cubic crystal versus the size of the crystal. The surface
area is normalized by the total surface area (six faces)
6M of a perfectly smooth cubic crystal consisting of M
growth units. As long as the surface area follows the
6M behavior, a crystal is considered morphologically
stable. When a crystal begins to lose its stable faceted
form, its normalized total surface area increases. Some-
what arbitrarily, we define the critical size as the one at
which the surface area exceeds that of a smooth surface
by 15%%uo. Thus we find that the crystals depicted in Fig.
14 have critical sizes of about 27b and 52b, respectively,

2.0

FIG. 14. Growth morphology of three-dimensional cubic
crystal in a spherical source at P/kT =2.3 and Ap/kT =0.69.
Noise reduction through multiple registration. (a) and (b),
~a

~

= lb; (c) and (d), a
~
=5b. (a) On addition of 6340 particles

to nucleus with 21 X 21 X 21; (b) further addition of 31 056 parti-
cles to (a); (c) on addition of 28828 particles to nucleus with
47 X 47 X 47; (d) further addition of 52 542 particles to (c).
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FIG. 15. Normalized total surface area as function of crystal
size for a growing cubic crystal. The growth conditions are the
same as in Fig. 14.
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FIG. 16. Dependence of critical size on mean free path at
bp/kT=0. 69 and various P/kT for both 2D (Ref. 16) and 3D
results.

kept constant (bp/kT=0. 69) while the P/kT was de-
creased successively from 5.3, 4.6, 3.0, to 2.0. One sees
that at low temperature or high bond strength [Fig. 18(a)]
the steps of the resulting growth spiral are quite smooth
and the shape is highly polygonized, leaving essentially
only low-index steps exposed. As the temperature in-
creased [Figs. 18(b)—18(d)] not only do the steps roughen,
but also the shape of the spiral becomes rounder and
eventually indiscernible as 2D nucleation becomes pro-
nounced. These morphological changes are a result of
the increase in surface roughness with growth tempera-
ture. At low temperatures [Fig. 18(a)], growth occurs
only via attachment to the spiral steps, since the rough-
ness of the remainder of the facet is too low to result in
significant sticking probabilities. Furthermore, due to
the low roughness of the steps, the step attachment kinet-
ics is highly anisotropic, leading to rather straight step
shapes. As temperature is increased, the steps and
remainder of the face roughen. This results in a reduc-
tion of the anisotropy in step attachment kinetics and,
thus, rounding of the steps. Simultaneously, with in-
creasing face roughness, the energy barrier for 2D nu-
cleation is reduced. On further temperature increase, 2D
nucleation-assisted growth becomes increasingly impor-
tant, until it dominates at PlkT =2.0.

f« la I
=b and la I

= sb.
In Fig. 16 we have summarized our 3D results for the

dependence of the critical size on mean free path at fixed
by/kT and various Plk?'s, together with the earlier 2D
results. ' One can see that the critical size increases with
decreasing temperature. At fixed temperature and super-
saturation, the critical size scales linearly with the mean
free path in the parameter range considered. The 3D
simulations yield larger slopes than the corresponding 2D
cases; i.e., the 3D cases are morphologically more stable.
This results from the fact that, on average, there are
more solid neighbors associated with interfacial particles
in three dimensions and, thus, the (stabilizing) anisotropy
in interface kinetics is more pronounced. Although com-
putational time limitations do not allow for the direct
simulation of the critical size at the mean free path used
in morphological stability experiments, Fig. 16 en-
courages us to scale linearly to these conditions. This
leads to an order-of-magnitude agreement between exper-
imental and modeling results for the critical size, with the
3D results approaching the experimental findings closer
than the 2D results. '

B. Surfaces with dislocations

1. Temperature beets

The development of a growth spiral from an initially
straight step that results from a screw dislocation with
Burgers vector of one lattice constant normal to the
(001) face is illustrated in Fig. 17. The (bond
strength)/(temperature) (i.e., PlkT) dependence of the
surface morphology with a single screw dislocation is
shown in Fig. 18. In this simulation, both surface and
bulk diffusion were ignored. The supersaturation was

FIG. 17. Time evolution of growth step originating at single
dislocation P/kT=5. 0 and bp, /kT=0. 69. (a) Initial straight
step; (b) after attachment of 1000 particles; (c) after attachment
of 5000 particles. Planar source.
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These results confIrm that it is reasonable to neglect
2D nucleation in simulations of dislocation-assisted
growth morphologies at low temperature and supersa-
turation, where the sticking probability P, (see Fig. 10) is
very small. This allows for a drastic reduction in compu-
tational times required. Hence, throughout the follow-
ing simulations of dislocation-assisted growth, the attach-
ment of isolated particles, i.e., with one bond to the sur-
face, is suppressed.

Figure 19 was obtained by considering a pair of screw
dislocations with opposite sign, i.e., a Frank-Reed step
source. In order to save computer time and memory,
the separation between the centers of the dislocations was
chosen to be only 7b. In reality, this separation may be
much larger. When the two growth spirals turn in oppo-

site directions and meet, closed loops are formed periodi-
cally. During this sequence of simulations the supersa-
turation was kept constant while PlkT was decreased
from 5.3 to 4.6 and 3.9, respectively, and surface and
bulk diffusion were ignored. Again, as the temperature
increases, the steps become rougher and the closed loops
become rounder and spaced more closely, analogous to
the temperature-dependent behavior displayed in Fig. 18.

2. Supersaturation sects

The effect of supersaturation on the growth morpholo-
gy of a face with a single screw dislocation is shown in
Fig. 20, in which the P/kT is kept at 5.3 while the
Ap/kT is increased successively from 0.69 to 2.0 and 3.0,
again ignoring surface and bulk diffusion. As can be
seen, increases in supersaturation also make steps
rougher and less polygonized, similar to the effect of
P/kT in Figs. 18 and 19. This morphological change is,
of course, due to kinetic roughening of the steps, in con-
trast to the thermal roughening occurring as the temper-
ature is increased. In addition, the terrace widths be-
tween adjacent spiral arms decrease with increasing su-
persaturation, consistent with the prediction of classical
theories

FIG. 18. (Bond strength)/(temperature) dependence of sur-
face morphology of face with a single dislocation.
Ap/kT =0.69. Both surface and bulk diffusion are ignored. (a)
P/kT=5. 3, (b) P/kT=4. 6, (c) P/kT=3. 0, (d) P/kT=2. 0.

FIG. 19. (Bond strength)/(temperature) dependence of sur-
face morphology of face with a pair of dislocations with oppo-
site sign. b p/k T =0.69. Attachment of isolated particles
suppressed, both surface and bulk diffusion are ignored. (a)
P/kT=5. 3, (b) P/kT=4. 6, (c) P/kT=3. 9.
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3. beets of surface and bulk diffusion

As has been discussed in Sec. IIIA, surface diffusion
can greatly smooth the morphology of perfect surfaces.
The effect of surface diffusion in the presence of a single
dislocation is demonstrated in Fig. 21. For this sequence,
nutrient bulk diffusion was ignored and the growth condi-
tions (i.e., PlkT and AplkT) were the same as those for
Fig. 20. We find, in comparison to Fig. 20, not only
smoother steps, but also more pronounced polygoniza-
tion. This is because with surface diffusion, more growth
units can reach rounded corners, where, due to the
higher kink density, the attachment probability is higher.
The spirals also become more polygonized due to the re-
sulting increase in anisotropy of step attachment kinetics.
This is at variance with the conclusion of Sunagawa and
Bennema, who expected that surface diffusion will
suppress the formation of close-packed or periodic-bond-
chain oriented steps.

Growth morphologies of a dislocated surface in the
presence of both surface and bulk diffusion are depicted
in Fig. 22. The growth conditions are the same as in
Figs. 20 and 21; i.e., PlkT is kept at 5.3 and the supersa-

turation is increased. It is evident from this figure that
bulk diffusion is also destabilizing for steps, as revealed,
for instance, by the lateral depressions at high supersa-
turation IFig. 22(c)]. But probably the most interesting
new feature revealed by this simulation is the variation of
the terrace width, with narrower terraces found near the
center of the spiral, particularly at higher supersaturation
[Fig. 22(c)]. This is at variance with earlier MC simula-
tions without bulk diffusion ' and classical
theories. ' Realizing that the above simulation is
based on a mean-free-path length (in the bulk) equal to a
lattice constant, the decrease in terrace width toward the
center of the spiral can be understood as a combined
effect of bulk and surface diffusion. Since the growth hil-
lock protrudes into the nutrient, steps and terraces close
to its center of the spiral are somewhat better supplied
with growth units by bulk diffusion. This leads to tighter
winding of the spiral. On the other hand, the surface
diffusion fields of terraces at the periphery of the spiral
overlap less than those near the center. Overall, this
leads to higher spreading velocities of the outer turns of
the spiral and, thus, to an increase in terrace width with
distance from the spiral's center. In real vapor systems,
where ~a ~

)&b, such behavior should not be expected. It
is more likely to occur in growth from condensed phases.

FIG. 20. Supersaturation dependence of surface morphology
with a single screw dislocation. PlkT =5.3. Both surface and
bulk diffusion are ignored. (a) Ap!kT =0.69, (b) AplkT =2.0,
(c) hp/kT =3.0.

FIG. 21. Effect of surface diffusion on surface morphology
with a single screw dislocation. Same growth conditions as in
Fig. 20. Bulk diffusion is neglected.
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4. Spherical source

All of the above results for dislocation-assisted growth
were obtained for the planar geometry of Fig. 1(a). To
demonstrate the competing effect of 2D nucleation
growth and dislocation growth in a nonuniform concen-
tration field, we have carried out a simulation for the 3D
geometry of Fig. 1(b) with the same growth conditions as
for Fig. 14(a). Among the six faces of the cubic crystal,
five are assumed to be perfect and only one has a pair of
dislocations with opposite sign. Surface diffusion is taken
into account. Figure 23 shows the crystal at a stage after
exceeding its critical stable size (see discussion in Sec.
III A). The subfigures show diFerent faces of the same
crystal, with (a) displaying three of the five faces without
dislocation and (b) the dislocated face on top. The dislo-
cation pair is seen to enhance the face stability. All five
originally perfect faces have developed central depres-
sions similar to that found in Fig. 23(a). This finding can
be understood in terms of the different supersaturation
dependence of the growth rate in 2D nucleation and
dislocation-assisted growth. Bulk diffusion results in a
lower supersaturation in the face center than at the edges
and corners. Yet, the face-center region, due to the pres-

ence of dislocation-induced surface steps, offers a higher
probability for the attachment of growth units than the
edge regions in which steps are generated only by 2D nu-
cleation. This increased attachment probability in the
center of the face can compensate for the leaner supply of
growth units into this region (see also Refs. 15 and 16).
This competition of growth steps originating at disloca-
tions in center regions of facets, with growth steps from
2D nucleation near corners, has been experimentally ob-
served by several workers; for references see Ref. 48.
Also, the better utilization of growth units (through the
anisotropy of kinetics coefficients) in regions that are less
readily supplied by the bulk diffusion field is the key point
of Chemo v's anisotropic stability theory for facet
growth.

To further illustrate the competition between 2D nu-
cleation growth and dislocation growth in a nonuniform
nutrient field, we have carried out a simulation at a much
lower temperature (PlkT=5. 3) than that used for Fig.
23. At the lower temperature, the surface roughness and,

FIG. 22. Effect of surface and bulk diffusion on surface mor-
phology with a single screw dislocation with same growth con-
ditions as in Fig. 20.

FIG. 23. Growth morphology of a cubic crystal in a spheri-
cal source. The growth conditions are the same as in Fig. 14(b).
Different faces on the same crystal, (a) all faces without defects,
(b) top face with pair of dislocations of opposite sign.
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thus, the sticking probability, are considerably reduced.
Hence, in order to not exceed prudent computational
times, we have modeled only the 3D evolution on one
face, with special periodic conditions on the lateral boun-
daries of the pyramid outlined in Fig. 1(b). Note that the
outer boundary condition in this configuration still corre-
sponds to a spherical source as in Fig. 23. In this simula-
tion, P/kT is kept at 5.3, and the supersaturation is in-
creased from 0.6 to 2.0 and 3.0, respectively. The simula-
tions include surface diffusion and unsuppressed attach-
ment of single particles. Figure 24 shows the results after
attachment of 20000 particles in all three cases. One sees
that at low supersaturation [Fig. 24(a)] growth occurs
only through attachment onto steps that originate at the
central dislocation pair. Under these growth conditions,
the supersaturation increase at the corners' is not high
enough to overcome the nucleation barrier for 2D nu-
cleation, which, due to the low surface roughness, is high.
The higher supersaturation at the corner, though, desta-
bilizes the dislocation-induced growth step loops, leading
to lateral protrusions towards the corners, similar to the
growth patterns obtained in the 2D situation. ' ' Such
star-shaped dislocation growth has been observed experi-
mentally; see, for example, Fig. 60 in Ref. 34. As the su-
persaturation is increased, the controlling effect of the
central dislocations decreases and 2D nucleation becomes

significant at the corners [Fig. 24(b)]. At an even higher
supersaturation [Fig. 24(c)], growth is essentially dom-
inated by 2D nucleation at the corners, in spite of the
dislocations at the face center.

IV. CLOSING REMARKS

The above simulations, as well as most earlier efforts to
model surface morphologies, are based on the
(supersaturation)/(temperature) and (bond strength)/
(temperature) parameters EIJ, /kT and P/kT, respectively.
These are highly idealized scaling parameters, which re-
quire utmost caution in attempts to quantitatiuely com-
pare the model predictions with actual experiments.

Specifically, it must be reemphasized that, as discussed
in Sec. IIA in connection with Eq. (2), the chemical-
potential difference or supersaturation used in these mod-
els is not equal to the bulk nutrient supersaturation typi-
cally determined by the experimentalist. This chemical-
potential difference is solely that part of the overall
difference that drives the attachement of growth units
once they have been transported to the interfacial region,
say to within a mean free path of the growing surface.
Though possible in principle, no unambiguous measure-
ments of this interfacial supersaturation have become
available as yet. However, all crystal growth theories, as
well as measurements of interfacial undercoolings in
faceted and nonfaceted regions of an interface that grows
from a melt, ' indicate that this interfacial chemical-
potential difference necessary to drive a certain attach-
ment (growth) rate depends on the local interface mor-
phology (kink and step density, etc.) and, thus, on the lo-
cally governing growth mechanism. This fact is ignored
by all modeling at this point by fixing the interfacial Ap
irrespective of the "underlying" surface morphology.

With respect to correlations of the bond or pair in-
teraction energies used in these models with values of ac-
tual systems, similar caution is required. In addition to
the fact that the simple, highly symmetric bond picture is
hardly an accurate representation for actual atomic
(quantum-mechanical) interactions, one must realize that
the magnitudes for bond strengths are traditionally de-
rived from averaged bulk properties, rather than the (re-
laxed) surface states that govern the attachment kinetics.
Some small improvement of this coarse description, based
on a "variable-bond model", has been made by our group
earlier. '

The above material shows that current kinetic crystal-
growth modeling can provide considerable physical in-
sight into the effect of various growth parameters. Yet, it
is also clear that much more experimental and theoretical
work is required before quantitative fidelity can be ex-
pected.
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