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This paper reports on studies of wetting phase behavior and interfacial structure of square-well
fluid adsorbed at square-well walls. Choosing a particular wetting isotherm at bulk liquid-vapor
coexistence, we present our final and complete comparison between molecular-dynamics (MD)
simulation and weighted-density-approximation (WDA) density-functional theory. The properties
of wall-liquid, wall-vapor, and liquid-vapor interfaces are measured and used to determine contact
angles and to locate the positions and order of interfacial phase transitions (wetting and drying).
Due to the presence of a suitable collective mode, it was possible to directly observe the collective
dynamics of the fluctuation-induced first-order drying transition in MD simulation. A practical im-
plementation of contact-angle measurement by generalized WDA density-functional theory is de-
tailed, enabling one to input the bulk equation of state as a boundary condition. An attempt is
made to gauge the generality of our results by comparison with simulation data from other systems

and with alternative versions of WDA theory.

I. INTRODUCTION

In a previous paper, ! hereinafter referred to as paper I,
we reported on a comparison between molecular-dyna-
mics (MD) simulation data’ and weighted-density-
approximation (WDA) density-functional theory,® for the
nature of states of adsorption at a wall-liquid interface in
the presence of bulk liquid-vapor coexistence. The com-
parison yielded good agreement for the density profile
structure and interfacial free energy (or contact angle 6)
whenever the wall was at least moderately wet
(cos6> —0.5). However, this agreement broke down
completely in the approach to the drying transition at
low values of the wall-fluid attractive well depth (g ).
Namely, WDA theory predicted critical drying (a
second-order interfacial phase transition) at much lower
€y than the position of the apparently first-order drying
transition observed with MD simulation. Since this
conflict appeared to indicate the existence of interesting
physics not present in the mean-field WDA theory, it was
concluded that a more complete comparison of the dry-
ing transition region was called for. In particular, (i) ex-
tensive additional simulation data were needed to pin
down the order of the transition and to investigate the
nature of associated fluctuation events, and (ii) a careful
WDA study of transitions to dry walls required a general-
ization of WDA theory to enable the accurate modeling
of both wall-liquid and wall-vapor interfaces simultane-
ously (see Sec. II below). A short report of part of this
additional work has recently been published,* focusing on
observations of dramatic collective fluctuations accom-
panying the first-order drying transition seen in MD
simulation. This present paper describes in detail the
methods and results of these extended investigations.
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In Sec. II below we propose a generalization of WDA
density-functional theory applied to wall-fluid wetting
phenomena, to enable the direct input of the desired bulk
equation of state. This is followed by a discussion of
some of our conclusions concerning the nature of the
WDA theory, based partly on experience obtained from
projects not reported on here. In Sec. III we present a
large amount of new MD simulation data on a particular
isotherm of square-well fluid at a square-well wall, includ-
ing a more detailed pictorial description of the collective
phenomena reported earlier.* In addition, new results
from both simulation and WDA theory are used to
present a complete comparison covering the entire spec-
trum from complete drying to complete wetting. The pa-
per concludes with a discussion (Sec. IV) in the context of
previous and current work on simple molecular models of
wall-fluid wetting phenomena.

II. WDA THEORY OF WALL-FLUID
INTERFACIAL PHASE TRANSITIONS

Here, we use the phrase “WDA theory” to denote a
class of mean-field excess-free-energy functionals defined
in terms of a separation of the bulk equation of state into
a hard-sphere term (HS) and an attractive interaction
term (a) and two associated coarse-grained density
profiles (Pys, P, ):

Fpl= [ d1p()[Athys(Pus(1)+A%, (5, (1N, (la)
p:(D)= [d2p(2)w;(12,5,(1)), i€ (HS,a)} (1b)

where Ay =Ayys+ Ay, denotes the excess free energy
per particle of a homogeneous fluid (of density p) and the
w;(12,p) are density-dependent weight functions (usually
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restricted to homogeneous fluid forms). More general
coarse-grained density-functional theories have been pro-
posed,’ including a rigorous formulation for inhomogene-
ous one-dimensional systems,6 but versions of the class
(1) have proved to yield both practical and accurate
routes to a now extensive list of inhomogeneous fluid
problems. The impressive success of WDA theory ap-
plied to wall-liquid interfaces lies in the ability of the
coarse-grained density profiles to smooth strong oscillato-
ry structure present in the true profile whenever dense
fluids pack up against a solid surface or a boundary wall.
For systems at bulk liquid-vapor coexistence, this situa-
tion corresponds to fairly wet substrate-fluid interfaces
(cos6>0). When applied to wall-fluid interfaces WDA
theory is defined by a grand ensemble potential functional
(Q) of the form

Q=F*[p]+kT [ d1p(1){In[A%p(1)]—1}
+ [d1p()v(1)—p] (1)

where A denotes the translational de Broglie wavelength,
(u, T) are the bulk thermodynamic fields (chemical poten-
tial, temperature), and v (1) is an external field used to
define the wall-fluid interaction (hence the use of the term
wall, rather than solid). Solutions of WDA theory are
obtained by minimizing Q with respect to density fluctua-
tions, which in practice means numerically solving an in-
tegral equation for the density profile obtained from func-
tional differentiation of Eq. (1) with respect to p. In ear-
lier versions of WDA theory much effort was placed on
the HS contribution to the grand potential; in particular,
expressions for the hard-sphere weight function were de-
rived by demanding that the homogeneous fluid hard-
sphere direct correlation function be accurately modeled
by the second functional derivative of (1a) with respect to
p- This emphasis on the hard-core correlations was a nat-
ural consequence of the development of WDA theory to
address dense fluid packing problems at confining boun-
daries. In contrast, the attractive fluid-fluid correlations
have tended to be treated in strict mean field:

Ay, (p)=—1ap, a5~fdrua(r) , (2a)
p.(1)=—(1/a) [ d2p(2)u,(r,) (2b)

where u,(r) denotes the attractive part of the intermolec-
ular pair potential [see Eq. (2) of paper I for the precise
definition of u,(r)]. A more accurate approach, but qual-
itatively similar, is to use an equation of state obtained
from bulk fluid perturbation theory;*® e.g.,

AP, (Ba(1)=14 [ d2p(2)u (r1;)gus(r12,Pa(z1))

where u (r) is now the total intermolecular potential and
gus denotes a hard-sphere radial distribution function.
For the study of wetting phenomena in the presence of
bulk liquid-vapor coexistence the WDA methods de-
scribed above all possess a qualitative flaw, to varying de-
grees of quantitative significance. Namely, the simplified
choices made for the attractive interaction contribution,
Ay, all impose an unwanted approximate bulk equation
of state. From this it follows that one cannot enforce

desired values for both the saturated liquid density (p; )
and vapor density (p, ), simultaneously. For the compar-
ison of paper I, the WDA temperature was chosen to fix
pr at the value observed by simulation, but then p,, was
significantly different from the desired simulation value
which in turn affected the wall-vapor surface free energy.
Clearly, to model a contact-angle measurement properly
one needs to be able to obtain wall-liquid (WL) and wall-
vapor ( WV) surface free energies at specified values of the
bulk fluid boundary conditions. In fact, when written in
the condensed form of Eq. (1) it is obvious that WDA
theory is precisely of this class of theory; i.e., formally, T,
u, and Ay(p) are all boundary conditions. Accordingly,
we have investigated various choices for the attractive
contribution to Eq. (1), with the view of using WDA
theory in conjunction with a choice of Ay fitted to bulk
simulation data. Ideally, one would adopt the same ap-
proach used for the hard-sphere term in the free energy;
namely, fix Ay and determine p [i.e., w(12,p)] from
knowledge of the two-body direct correlation function of
homogeneous fluid. However, there does not yet exist
sufficient readily available data on two-body correlations
in model fluids with attractive pair interactions to make
such a procedure feasible in general. One exception to
this is the weak-gas limit of a pair-potential fluid; i.e., us-
ing Eq. (1) to calculate

52 _
- —kT u(r)/kT _ 1
Sp()p(2) o0 <T@ )

we find, when u (r) contains a hard-sphere contribution
forr <o,

—u (r)/kT
e ° —1)

ua(r)/kT_

wy(r,p,) — —r =N 3)

P_’OfdrH(r—cr)(e_ 1)

where H denotes the Heaviside step function; H (x)
=(0,1) for (x <0,x >0). However, the use of (3) in
WDA theory is not appropriate to systems containing in-
homogeneous regions of dense fluid. In particular, this
choice of p, led to excessive amounts of oscillatory struc-
ture being present in wall-liquid interfaces and even led
to nonphysical liquid-vapor profiles displaying spurious
oscillatory structure on the liquid side of the interface.
Further investigations showed that WDA theory is high-
ly sensitive to the choice of attractive weight function.
For example, when applied to a simple liquid-vapor inter-
face, where the two coarse-grained densities must be
qualitatively similar to p(z), the choice p, =pys led to a
totally unphysical result for p(z) in that it contained a
large peak within the liquid side of the interface.” Thus
it is essential that the details of the attractive coarse-
grained density (i.e., its gradient, interfacial width, etc.)
be appropriate to the correlations present in true models.
The success of WDA theory based on a strict mean-field
attractive contribution, (2), is therefore a reflection of the
well-known empirical observation that thermodynamic
properties of dense fluids are remarkably well modeled by
assuming a strict mean-field character (g=1) for the at-
tractive intermolecular correlations. Thus in the absence
of precise knowledge concerning the true correlations it
would be foolish to depart from the choice (2b) for p,,
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outside the weak-gas limit. Given this result, the one
remaining question to answer is how sensitive is WDA
theory to the chosen form of Ay,? Here, we were im-
pressed by the stability of WDA theory based on (2b) to
the choice of bulk equation of state. For example, pro-
vided one makes comparisons at a fixed value of the bulk
liquid density p; , we observed that results for wall-liquid
density profiles are remarkably insensitive to the choice
of Ay,. Thus we conclude that no harm is done by using
a bulk equation of state fitted to simulation data, at least
when WDA theory is applied to the study of wall-fluid in-
terfaces. Finally, to ensure the best possible description
of dry walls, we invoked a simple switch to enable p, to
change over to the weak-gas result (3) in the low-density
limit. Namely, we set

w, (r,p)=f (PwME(r)+[1—f(p)JwNC(r) 4)

where the superscript MF refers to choice (2b), super-
script WG refers to (3), and the switching function f(p)
was taken to be f(p)=p/(p+0.05), with p in hard-core
units. This simple form for f(p) was used because when
combined with (4) and (1b) the resulting p, is determined
by a quadratic equation involving pMF and p)°. Simi-
larly, this choice of f(p) leads to a straightforward in-
tegral equation upon functional differential of the grand
potential, i.e., yields a readily implemented generalization
of Eq. (5) of paper I.

Our choice of bulk equation of state was determined by
the division inherent in Eq. (1) and by the need to be able
to fit simulation isotherms possessing a relatively modest
amount of MD data. In fact, the following method
turned out to be surprisingly robust and easy to imple-
ment. We set

AY(p)/kT = Atys(p) /KT +Cp+ Cyrp*+Cip°
+Cp*+Csp° (5)

where the HS term was taken to be Carnahan and
Starling’s result, as in Ref. 3(a). For a specific isotherm,
the coefficient C, was fixed by enforcing the correct
second virial coefficient, which ensured that our equation
of state was a good approximation along the gas phase
branch (p <py). Two of the remaining four coefficients
on the right side of Eq. (5) were fixed by the conditions
for bulk liquid-vapor equilibrium @.e., p; =py, U, =py)
at the simulation values of the coexisting densities
(pr,py). This left just two conditions with which to fit
the liquid branch of the isotherm; namely, we fitted (5) to
two reasonably spaced values of p (p) obtained from pre-
viously published simulation data on the isotherm of in-
terest.® The above procedure generated a good fit to the
entire gas and liquid branches and in addition produced a
simple van der Waals-like loop inside the two-phase re-
gion. Note, this latter property is required in order to be
able to implement a mean-field theory such as Eq. (1). A
similar analysis has also been made for two isotherms of
cut and shifted Lennard-Jones (LJ) fluid. In all cases, the
resulting bulk equation of state was a completely success-
ful fit to simulation data and in addition joined the gas
and liquid branches together with a perfectly reasonable

van der Waals loop.

Full details of the derivation of our latest version of
WDA theory and the associated numerical solution pro-
cedures are essentially as given in paper I. In particular,
the functional differentiation used to obtain Eq. (5) of pa-
per I is immediately applicable to the generalized func-
tional Eq. (1). No changes were made to the numerical
solution methods; for example, see paper I for a discus-
sion of the WDA procedure one adopts to identify the or-
der of interfacial phase transitions and, in the case of
first-order wetting transitions, to map out the metastable
and unstable free energy versus order parameter loops. It
is also worth drawing attention to the links with statisti-
cal mechanical sum rules. Namely, paper I highlights the
fact that WDA theory is a faithful implementation of the
compressibility route to the statistical mechanics of inho-
mogeneous fluids, apart from the exception of a few
pathological choices of weight function. This is impor-
tant because the compressibility route focuses attention
on the key “thermodynamic” fields relevant to interfacial
physics; i.e., u and the set of parameters defining the
external field v. Isothermal derivatives of the grand po-
tential with respect to these fields generate valuable sum
rules for free-energy derivatives and interfacial compres-
sibilities.? In addition, paper I shows explicitly that
WDA theory satisfies hydrostatic equilibrium; as it must
do since the compressibility route can be used to derive
the virial route to statistical mechanics, via potential dis-
tribution theory.® Thus, in the presence of strong exter-
nal fields, such as are used in the study of wall-fluid inter-
faces, WDA solutions are tightly constrained by statisti-
cal mechanics to yield physically relevant interfacial
structure. We have made extensive use of this statistical
mechanics both to test the numerical stability of our
WDA methods (as described in paper I) and to provide a
framework for direct comparison with MD simulation
data (Sec. III).

To conclude this section, let us attempt to summarize
what we have learned about the nature of WDA theories
of contact-angle measurement, both from this current
study and from projects concerning LJ fluids at LJ
walls.!© The picture that has emerged is that WDA
theory is essentially determined by the boundary condi-
tions; i.e., v(z) and p; and/or py. For example, the gen-
eralized theory described above gave little change to the
results presented in paper I for the properties of wall-
liquid interfaces,'! because p; was the same in both stud-
ies. Invariably, comparison with MD simulation shows
that WDA theory is an accurate route to the structure
and free energy of wall-fluid interfaces, provided large-
scale collective fluctuation events have not intervened to
alter the qualitative nature of the interface observed in
simulation. The final component needed to generate a
contact angle is the liquid-vapor (LV) interfacial tension

('}’LV)Z
¥ Lycos@=(Q%), — Q) )/ 4 6
where Q' denotes a surface-excess grand potential

defined by a Gibbs dividing surface of area A. Here, the
significance of boundary conditions to WDA theory is
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particularly striking. Namely, all WDA theories applied
to liquid-vapor interfaces with the same boundary values
pr and p, will essentially yield the same result for yyy.
One consequence of this fact is that when using WDA
theory in conjunction with a bulk equation of state fitted
to real data (i.e., simulation) the results for v, will be
markedly higher than found in pure mean-field WDA
theory at the same temperature (at least beyond the triple
point region) because realistic equations of state possess
much flatter liquid-vapor coexistence curves in the T-p
plane. That is, the critical exponent 3 is about 0.32 rath-
er than the mean-field value of 1 and this widening of the
coexistence region persists almost all the way to the triple
point. The interfacial thickness is also directly related to
WDA values of y;y; the steeper the interfacial gradient
the higher the liquid-vapor surface tension. Our experi-
ence has therefore forced us to conclude that there is lit-
tle justification in the appealing picture that a WDA
liquid-vapor profile is just an MD simulation profile
without capillary-wave fluctuations;* instead, one finds
that depending on the choice of bulk equation of state
(i.e., on the value of p; —py) WDA theory predicts
liquid-vapor surface tensions (with corresponding interfa-
cial thicknesses) that are sometimes smaller (larger) and
sometimes larger (smaller) than observed in MD simula-
tion. The overall conclusion is that for a specific wetting
isotherm generalized WDA theory can generally be relied
on to give an accurate account of WL and WV properties
but that this need not be accompanied by a good descrip-
tion of the associated LV interface.

III. SQUARE-WELL FLUID
AT A SQUARE-WELL WALL

A. Drying transition revisited

When the generalized WDA theory described above
was applied to the square-well wetting isotherm at kT =¢
(e the fluid-fluid attractive well depth), we observed
essentially the same comparison with MD data as report-
ed in paper I. In particular, the improvement achieved in
the description of WDA theory WV interfaces did not
alter the striking disagreement over the position and ap-
parent order of the drying transition. Accordingly, we
decided next to carry out an extensive MD simulation
study of the drying transition region to see if we could
understand the origin of this disagreement. Altogether,
in this region alone we collected simulation averages to-
taling 28.7 ns of real time measured in argon units.'?
Here, we adopted identical simulation procedures to
those described in Ref. 2 and reviewed in paper I, to col-
lect density profiles [p(z)] and pressure tensor component
profiles [py(z),p(2)]; in planar geometry the transverse
component of a pressure tensor [pr(z)] provides a direct
route to free-energy density [see Eq. (8) below]. Very
briefly, the simulations were carried out at fixed T =¢/k
and fixed N=512, using systems half filled with liquid
and half filled with vapor. To study drying we took an
external field v(z) consisting of a square-well wall (of
depth £, and range o/2) on the left side of the system
and a hard wall boundary at the far side. These walls

each had an area of 48.60380% and were separated by
32.10 of fluid.

Our account of the drying transition observed with
MD simulation has been published in letter form,* and it
is not our intention to repeat these observations here;
rather, we wish to take this opportunity to present a
more pictorial discussion of data briefly described in Ref.
4. Two key sets of results were presented in Ref. 4: (i)
simulation data on a metastable partially dry branch that
subsequently collapsed to complete drying and (ii) obser-
vations of dramatic collective fluctuations preceding and
initiating the drying transition. Figure 1 below shows the
wall-liquid density profiles belonging to the stable and
metastable states whose histories and adsorptions are list-
ed in Table I of Ref. 4. These five states are clustered
around the drying transition which lies within the range
0.925<¢€y,,/kT <0.95. Here, the lower limit is set by the
highest value of €y, at which we observed a collapse to
complete drying while the upper limit is a guess based on
indications that the £,,=0.925 system lies very close to
the transition point [see below and see also the analysis
based on Eq. (7) shown in Fig. 4 below]. Of the five par-
tially dry systems shown in Fig. 1, two subsequently un-
derwent transitions to completely dry states (the bottom
profile in Fig. 1) but only after long periods of metastable
behavior interspersed with transient large-scale fluctua-
tions in adsorption (an example is shown in Ref. 4); other
systems not appearing in Fig. 1 underwent transitions at
much earlier stages in their simulation.* When these his-
tories are taken into account the metastability so clearly
illustrated in Fig. 1 is conclusive evidence for the first-
order nature of the drying transition seen in our simula-
tion systems. A complementary view of this conclusion
may be based on a statistical-mechanical sum rule for the
slope of the wall-liquid surface-excess grand potential
(Q§)), which is particularly clear cut in our square-well

0.8

2
z/0o

FIG. 1. Wall-liquid density profiles at bulk liquid-vapor
coexistence for square-well fluid at a square-well wall, in the vi-
cinity of the drying transition belonging to the isotherm k7T =e¢.
The five partially dry profiles came from 1.2 ns averages within
metastable and stable periods of systems at &£, /k7=0.875,
0.925, 0.95, 0.95, and 0.97, respectively (see Table I of Ref. 4).
The two systems at lowest €y subsequently underwent transi-
tions to completely dry states; the bottom profile shown above.
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aﬂwL y . oy WM
Toe, Ao EemD ? d
0.8
where o /2 is the chosen range of our attractive square- WW
well external field (of depth e,). That is, the contrast be- 041
tween the values of the right side of Eq. (7) corresponding
to the stable and metastable profiles of Fig. 1 with that 0.8
belonging to a completely dry wall (the bottom curve of 0 4_/W
Fig. 1) is a direct signature of the first-order nature of the "5 ’
transition; namely, it implies a discontinuous derivative —~
of the free energy with respect to the relevant thermo- S 0.81
dynamic field.'® In contrast, WDA theory yields a con- Q 0.4
tinuous spectrum of density profiles as €5, is lowered to-
wards the drying transition, as appropriate to a second-
order transition (so-called critical drying). 081
The simulation system at €y, /kT=0.925, hereinafter 0.4 -
referred to as the €, /kT=0.925 system, was studied for M
an especially lengthy period; 48X 10° particle collisions 0.8 _{\
or 14.8 ns of argon time. This arose because, unlike with
three previous collapses observed at lower values of €y, 0.4
the ey, /kT=0.925 system initially yielded transitions to
dry walls which subsequently jumped back to the meta- 0 5 3 8 8 10

stable branch. A description of the lengthy history of
this system is as follows: (1) beginning from a starting
configuration generated at ey /kT=0.95, the ey /
kT=0.925 system was first equilibrated for a period of
0.92 ns; (2) there then followed a lengthy display of meta-
stable behavior lasting for 3.4 ns, occasionally interrupted
by fluctuations leading to the transient creation of an ad-
sorbed layer of gas of up to 1.5¢0 in thickness (such fluc-
tuations occurred on a time scale of around 0.2 ns); (3)
the ey, /kT=0.925 system was then observed to collapse
to a dry state in which the liquid film was separated from
the left-hand wall by 5.5¢0 of vapor; however, around 0.5
ns later, fluctuations in the center of mass of the 160 long
liquid film had returned the system to a state of relatively
high adsorption (the metastable branch); (4) there then
followed a second lengthy period of metastable behavior,
this time lasting for 3.7 ns; (6) at this point the
ew/kT=0.925 system underwent a spectacular dynamic
event, illustrated in Fig. 3 below, in which during a large
1.2 ns subaverage it spent about 0.5 ns in a relatively wet
state and a similar amount of time in a state with 6o of
vapor adsorbed at the wall, interspersed by two large col-
lective leaps of the liquid film; (7) further runs continued
totaling an additional metastable period of 5.5 ns, until
finally an unequivocal transition to a completely dry state
suddenly occurred (see Fig. 2 below).

For a more detailed picture of the nature of the large-
scale collective motions associated with the first-order
MD drying transition, let us focus on aspects (6) and (7)
of the history of the €, /kT=0.925 system. Figure 2
displays the very last 0.92 ns of the simulation life of this
system, ending with the final and complete transition to a
dry WL interface. Two aspects of the drying transition
are immediately apparent from Fig. 2; namely, the sud-
denness of the onset of the transition and the dramatic
speed of the subsequent motion of the liquid film. The
same behavior was seen in other systems whose wall-

z/0

FIG. 2. The final 0.29 ns of the simulation life of the
ew/kT=0.925 system. The profiles show six subaverages of
equal length ordered sequentially from top to bottom.

liquid profiles collapsed to dry walls and by being careful
to maintain identical double precision simulation pro-
cedures (for example, identical lookup tables) it was pos-
sible to repeat these transition events to collect profiles
over much shorter subaverages. From Fig. 2 and other
examples we observe a typical peak collective velocity of
about 0.032¢0 ps™!, which corresponds to the center of
mass of the liquid film moving lo during the time its con-
stituent particles have each undergone about 400 col-
lisions. Put another way, under these special cir-
cumstances each liquid atom is traveling on average 7%
faster in the direction away from the left-hand wall than
in other directions. Presumably, this collective velocity is
representative of the temperature, the number of parti-
cles, and the dimensions of our simulation systems. The
dramatic events captured in Fig. 3 highlight the ap-
parently chaotic nature of these large-scale collective
motions; i.e., the strong bimodal character of the pressure
profile is the result of two sudden jumps of the entire
liquid film. The first of these leaps created an adsorbed
layer of vapor 60 in thickness, which lasted for about 0.5
ns before the system jumped back again to a relatively
wet state. This ability to move back and forth across the
free-energy barrier is suggestive of a weak first-order
phase transition and is probably also indicative of the
presence of finite-size dynamics. In fact, from the work
of Binder and others, given an interfacial area of the
size used in our study one would expect a non-self-
averaging diffusive k<=0 mode to dominate the collective
motion of the liquid film whenever the adsorbed layer of
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0.2

0.14

p(z)o*/kT

0 10 20 30
z/o
FIG. 3. The transverse component of the pressure tensor
during a 1.2 ns subaverage of the e, /kT=0.925 system. The
strong bimodal character of the pressure profile, note the pres-
ence of three liquid-vapor interfaces, captures the essence of
two dramatic collective events (see text).

gas is beyond about 50 thick. As well as the case shown
in Fig. 3, a k=0 mode was occasionally observed subse-
quent to an unequivocal transition to a completely dry
state; in particular, one liquid film did a little dance in the
center of the system whereby it suddenly reversed its
direction of motion and traveled 1.50 back towards the
attractive wall, before reversing its direction again one
last time to carry on and eventually collide with the far
boundary wall. It remains an open question as to how
great a role (if any) this k=0 diffusive mode plays in ini-
tiating the first-order drying transition observed in our
MD simulations.

Additional details of possible significance concerning
the collective dynamics of our systems include the follow-
ing: (i) we commonly noted that just prior to a collapse
the adsorption climbed briefly to a relatively high peak,
suggesting that the transition is actually initiated by a
fluctuation in the opposite direction which quickly falls
back to such an extent that the system cannot maintain
its metastable partially dry state; (ii) the interfacial area is
only just large enough to support observable capillary-
wave modes, but interestingly an analysis® of the WL in-
terface of the €, /kT=0.925 system just prior to its col-
lapse (the third profile in Fig. 2) showed evidence of a
[cos(27mx /L)+cos(2my /L)] capillary-wave-like distor-
tion that was not present under normal circumstances;
(iii) alteration in round-off errors to the double precision
arithmetic destroyed the repeatability of any specific col-
lective drying transition event; i.e., these instabilities are
not stable to numerical round-off error. 1

To sum up the above discussion, let us repeat our con-
clusion reported in Ref. 4 that the contrast between the
dynamical events observed in MD simulation and the
smooth second-order behavior seen in WDA theory sug-
gests that in our MD systems the transition to complete
drying is an example of a fluctuation-induced first-order
phase transition, possibly influenced by finite-size dynam-
ics.

B. Simulation data and comparison with WDA theory

Table I lists some of the most significant wall-liquid in-
terfacial data collected from our new simulation studies

TABLE 1. MD simulation data for wall-liquid interfaces
along the isotherm kT =g. System denotes a particular MD
simulation run or series of subaverages (see text). €y is the
wall-fluid attractive well depth. I'y; denotes adsorption at a
wall-liquid interface (Ref. 2); a representative error is +0.05.
Q' denotes surface-excess grand potential, directly measured
from pressure tensor profiles; a representative error is +0.06.
The final column gives data for the right-side of sum rule (7);
average error is +0.015. DT denotes data associated with the
drying transition point, obtained by combining results from five
systems clustered around €, /kT=0.93; here, the surface grand
potential value is that defined by complete drying together with
the WV and LV interfacial free energies (see text). DGp and
WGp distinguish the drying-group and wetting-group systems
at e /kT=1.5; see text.

System
ew /kT Tyro?  QYLo2/kTA  (3QY), /dey)o*/ A
DT, 0.93 —0.38 0.22 —0.24
1.0 —0.32 0.19 —0.27
1.125 —0.17 0.13 —0.34
1.25 —0.09 0.03 —0.38
1.375 —0.10 0.09 —0.39
DGp, 1.5 —0.07 —0.03 —0.44
WGp, 1.5, —0.03 0.03 —0.45
1.75 0.02 —0.01 —0.51
1.875 0.01 —0.10 —0.51
2.0 0.06 —0.30 —0.54
2.25 0.13 —0.33 —0.58
2.5 0.16 —0.44 —0.60

of square-well fluid adsorbed at square-well walls. The
systems belong to two distinct groups; namely, a drying
group (DGp) and a wetting group (WGp). At low values
of e, up to and including the DGp ey, /kT=1.5 system,
the simulation procedures were identical to those of our
previous studies.'’> Here, we were able to avoid the
necessity to simulate attractive wall-vapor interfaces (lit-
tle useful data could be collected here anyway due to the
small number of particles on the vapor side of a system)
because of the availability of a more accurate theoretical
route. However, this method rules out direct study of a
wetting transition at the WV interface. Accordingly, to
investigate the wetting side of the interfacial isotherm, we
modified our simulation procedures as follows: (i) the
external field was symmetrized so that both the right-
hand and left-hand walls were now square-well potentials;
then by using identical well depths and maintaining the
asymmetric WL-LV-WV nature of the profiles (as used in
the DGp simulations) we could simultaneously collect
data on all three interfaces; '° (ii) the length of the simula-
tion box was extended from 32.10 to 480, which would
be essential if a wetting transition was to occur on the
right-hand wall since then the system would need to be
able to accommodate two strongly structured WL inter-
faces together with two relatively high-temperature LV
interfaces; to maintain appropriate amounts of bulk fluid,
N was increased from 512 to 990 particles.

Table II lists data belonging to wall-vapor interfaces.
Here, direct data are restricted to the wetting group of
simulations. The comparison between the weak-gas
(WG) theoretical limit!? and WDA theory results for the
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TABLE II. Properties of wall-vapor interfaces along the iso-
therm kT =e. See caption to Table I. The column headed MD
shows direct simulation data, WG is the weak-gas limiting re-
sult (Ref. 17), and WDA denotes the density-functional theory
of Sec. II.

System Q%02 /kT A
ew/kT MD WG WDA
DT, 0.93 —0.025 —0.020
1.0 —0.028 —0.023
1.125 —0.034 —0.029
1.25 —0.041 —0.036
1.375 —0.049 —0.044
DGp, 1.5 —0.057 —0.053
DWGp, 1.5 —0.06 —0.057 —0.053
1.75 —0.01 —0.079 —0.078
1.875 —0.09 —0.091 —0.095
2.0 —0.14 —0.105 —0.115
2.25 —0.12 —0.140 —0.175
2.5 —0.11 —0.185 —0.265

same isotherm shows that the contribution to WV prop-
erties arising from many-body correlations may be ig-
nored on the drying side of a wetting isotherm (i.e., for
cosf <0). The wetting transition seen in WDA theory
is first order with a surface free-energy barrier of
0.023kT /o?, although accompanied by a large increase
in the WV adsorption just prior to the transition. Our
conclusion from a fairly extensive search by simulation is
that it is unlikely that one could ever directly observe a
first-order wetting transition with our MD simulation
methods. That is, none of our systems showed any
significant tendency to increase the WV adsorption
beyond the WG profile, even when the value of € be-
longing to the right-hand wall was increased to a ludi-
crous value. Here, the problem was not so much a lack
of transport through the gas phase but rather the single-
particle nature of this transport; i.e., the contrast between
the drying and wetting behavior observed in MD simula-
tion is presumably due to the absence of an appropriate
collective mode in our wetting systems. At the first-order
drying transition we clearly observed large-scale collec-
tive fluctuations in the WL adsorption capable of carry-
ing the system over the weak first-order barrier to com-
plete drying. However, with our choice of simulation
geometry the only route to complete wetting of a WV in-
terface is accretion of particles from the bulk liquid via
single-particle transport through the vapor phase, which
gave every indication of being a totally inadequate mech-
anism when confronted with a first-order barrier.!® Al-
though we were not able to study the dynamics of wet-
ting, this failure itself strongly indicates that the transi-
tion is first order.

All of the simulation data presented here are new re-
sults. In fact, three partial wetting systems presented in
Ref. 2 and paper I were repeated, to ensure consistency
throughout the isotherm and to increase the level of sta-
tistical accuracy. In Tables I and II, the drying group re-
sults were obtained from averages over 4 X 10° collisions
(1.2 ns in argon units), apart from those labeled DT, for
drying transition, which combine all the stable and meta-
stable systems whose density profiles appear in Fig. 1.
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For the wetting group we used runs of 6X 10° collisions
(0.9 ns) except for the &€y, /kT=2.25 and 2.5 systems
which were averaged for twice this period. Further simu-
lations at much higher values of €y, searching for but
failing to observe a dynamical wetting transition, are not
shown. Also absent from these tables are data from the
extensive series of simulations searching for drying tran-
sitions beyond the metastable states of DT. The new data
are everywhere consistent with our previously published
results,? for both interfacial properties and bulk fluid
properties. With regard to the latter: (i) The bulk LV
coexistence pressure belonging to the isotherm was mea-
sured as po/kT =0.0258+0.0006 from 22 ns of drying
group and drying transition simulations, and po3/
kT =0.026+0.002 from 7.2 ns of wetting group simula-
tions; in addition, we always collected the full profile of
the normal component of the pressure tensor [py(z)] to
check for hydrostatic equilibrium within wall-fluid inter-
faces and across the coexisting regions of bulk liquid and
vapor. (ii) Simulation values for the saturated liquid den-
sity were p; 0>=0.6495+0.0012 from 17.3 ns of drying
group and drying transition simulations, and
p0°=0.647+0.004 from 7.2 ns of wetting group simula-
tions. (iii) The wetting group yielded a direct MD mea-
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FIG. 4. Surface-excess grand potential per unit area of wall-
liquid interface of square-well fluid at a square-well wall, along
the isotherm kT =€ at bulk liquid-vapor coexistence. The
crosses show raw simulation data obtained from pressure tensor
component profiles (third column of Table I); a representative
error bar is given at top right corner. The solid curve follows
from a fit to the simulation data for sum rule (7); the final
column in Table I; combined with the observed position of the
drying transition and the measured liquid-vapor surface tension
(see text). The dashed curve is the prediction of WDA theory,
beginning top left at the position of the second-order WDA dry-
ing transition; a horizontal arrow marks the first-order wetting
transition seen at the WDA wall-vapor interface.
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sure of the vapor density; p,03=0.034+0.003, which is
in good agreement with known virial coefficients and the
bulk pressure measured throughout our systems. 8

Figure 4 summarizes the latest results for the surface-
excess grand potential of WL interfaces along our wetting
isotherm, spanning all states from complete drying to
complete wetting. The large statistical error present in
the raw MD data is representative of direct measure-
ments of free energy by simulation. Our experience aris-
ing from the large amount of simulations carried out in
this and related projects indicates that the ubiquitous na-
ture of this statistical error arises from characteristic
fluctuations of the partition function of the entire system.
The time scale involved here is large; in particular, it is
unrealistic to expect to be able to simulate for long
enough periods to significantly reduce this error in sys-
tems of our size. There is significantly less statistical er-
ror present in the derivative of a free-energy with respect
to a thermodynamic field; thus the most accurate route to
Q) should be via sum rule (7). An obvious way to im-
plement this latter approach is to use the results for the
right side of Eq. (7) in conjunction with the measured
value of the liquid-vapor surface tension and the observed
position of the drying transition; i.e., Q%) is a continuous
function of ey and at complete drying Qf) /4
=Q§), /A4 +y,y. This route, using the final column of
Table I fitted to a quadratic in €y, is shown as the solid
curve in Fig. 4. Clearly, the comparison with WDA
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FIG. 5. Wall-liquid density profiles at bulk liquid-vapor
coexistence for square-well fluid at a square-well wall, at select-
ed points along the isotherm kT =¢. From highest to lowest os-
cillatory amplitude, the profiles belong to systems at
ey /kT=25, 2.0, 1.5, 1.25, and 1.0, respectively. (a) WDA
theory results. (b) MD simulation data.

theory is remarkably good as far as the slope of the free-
energy isotherm is concerned. From sum rule (7) we see
that this arises because the WL density profile structure is
well characterized by WDA theory; explicit results are
given in Fig. 5. For completeness, we show in Fig. 6 MD
simulation profiles of the transverse component of the
pressure tensor [p(z)], corresponding to the WL profiles
of Fig. 5(b); note, the negative of p;(z) (in our case, as
defined by Irving and Kirkwood!®) is also a grand canoni-
cal potential density:

Q/a=~[7 dzpy(2). (8)

Before leaving the results of Fig. 4 it should be noted
that we did not find the approach based on Eq. (7) to be
straightforward in practice, due to some ambiguity in the
measured value of y ;. In particular, values of ¥, mea-
sured outside the drying transition region appeared to be
consistently higher than that corresponding to the ob-
served position of the drying transition. Namely, (i) 22 ns
of drying group and metastable drying transition data,
directly measured from pressure tensor profile differ-
ences, gave ¥ ,02/kT =0.27+0.01; (i) 7.2 ns of wetting
group pressure tensor data gave y;,02/kT =0.27+0.04;
while (iii) 18.5 ns of drying transition data for the right
side of (8) implied, equating this with the grand potential
of a completely dry system, y;,02/kT =0.22+0.03.
The solid curve shown in Fig. 4 uses the average of these
two results; clearly, the highest value is the least compati-
ble within apparent statistical error with the direct MD
data, given the position of the drying transition obtained
from the behavior of the order parameter (i.e., the value
of ey where Q%) /4 =Q%), /4 +y,,). Analogous be-
havior has also been seen in Lennard-Jones systems be-
longing to a similar isotherm, but not at temperatures
much closer to the triple point.!®® It is conceivable that
this discrepancy might be due purely to statistical error
not sampled correctly even by the long simulation runs
employed in this project. Alternatively, one might be
tempted to invoke an influence arising from finite-size
collective dynamics; namely, is it possible that additional
diffusive motions of the finite-size liquid film, that must
surely contribute to the complete drying states of our sys-
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FIG. 6. MD simulation data for wall-liquid profiles of the
transverse component of Irving and Kirkwood’s pressure ten-
sor, obtained from the same systems appearing in Fig. 5(b).
Note the significance of Eq. (8) to these profiles.
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FIG. 7. Cosine of the contact angle as a function of the at-
tractive strength of wall-fluid potential, along the wetting iso-
therm kT =g at bulk liquid-vapor coexistence. The solid curve
labeled WDA shows the prediction of density-functional theory;
beginning with zero slope at a second-order drying transition
(cos@= —1) and ending with finite slope at a first-order wetting
transition (cos@=1). MD denotes simulation results (see text);
in our simulation systems both interfacial phase transitions
show first-order behavior. The dashed curve uses WDA theory
to estimate the probable outcome given unattainably long simu-
lation runs (see text).

tems, are sufficient to reduce y,,0%/kT from 0.27 to
0.22? If this latter mechanism were present then the solid
curve of Fig. 4 would need to be shifted down to lie very
close to the WDA prediction and the observed position of
our drying transition would lie at a higher value of €,
than appropriate to systems with macroscopic interfacial
area.

In Fig. 7 we show final results for the contact angle of
square-well fluid at a square-well wall, along the isotherm
kT =¢. In plotting our MD simulation curve we have as-
sumed the compromise value of y,, referred to above;
i.e., ¥ y0?/kT=0.245. The solid curve labeled MD fol-
lows from our WL free-energy results (the solid curve in
Fig. 4) in conjunction with WG theory for Q%) (given in
Table II). The latter choice is representative of the raw
simulation data on WYV interfaces because of the single-
particle nature of the transport of material across the va-
por region of our systems; i.e., the majority of our WV in-
terfaces never showed much progression beyond the WG
limit. The dashed curve in Fig. 7 indicates the effect of
replacing Q) with WDA data, which is likely to yield
better estimates close to complete wetting than our simu-
lation procedures; in particular, the dashed curve ends at
a first-order wetting transition fixed by taking Q) to be
the value belonging to WDA theory’s first-order wetting
transition.

IV. DISCUSSION

The above results and those of paper I, Ref. 4, and Ref.
2 present a consistent picture of the nature of wall-fluid
wetting phenomena and the comparison between MD
simulation and WDA theory. But, how general are these
conclusions likely to be?

A positive answer to this question is provided by a re-
cent study of cut and shifted LJ fluid adsorbed at a cut
and shifted 9-3 wall,'®® applying the same analysis
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pioneered in square-well systems. In particular, Ref.
10(b) uses MD simulation to map out five wetting iso-
therms spanning low temperatures relatively close to the
triple point up to an isotherm slightly closer to the bulk
critical point than the single temperature employed in
our square-well studies. In addition, a direct comparison
with WDA theory of LJ systems was made for both the
highest and the lowest wetting isotherms. Qualitative
differences between the observations of Ref. 10(b) and
those of our square-well studies would have to reflect a
sensitivity to the details of the shape of short-range wall-
fluid and fluid-fluid interactions, because the simulation
geometry and the WDA methods of the square-well pro-
ject were deliberately matched in the LY project. Howev-
er, the results obtained from LJ systems showed a re-
markable similarity with those of our square-well study;
i.e., no qualitative difference was observed with any MD
simulation data or WDA theory prediction. In particu-
lar, (i) both sets of simulations possessed analogous
dynamical events accompanying the first-order drying
transition, (ii) wetting transitions behaved similarly in
both classes of systems, and (iii) WDA theory always pre-
dicted critical drying at a lower value of €5, than the po-
sition of the first-order drying transition observed in
simulation.

Perhaps the most interesting single result reported here
and in Ref. 10(b) concerns the dynamical nature of the
drying transition seen in MD simulation. Namely, the
conclusion reported in Ref. 4 that we have directly ob-
served a fluctuation-induced first-order phase transition.
This class of weak first-order phase transition is charac-
terized, at least in renormalization-group (RG) studies,
by second-order mean-field behavior that changes order
when one includes the effect of a large-scale collective
mode that is missing or mistreated in mean-field theory.
Such transitions are regularly discovered in complex sys-
tems and in interfacial physics,?® and may provide a uni-
fying link between rigorous theories of phase transitions
of different order.?! The precise nature of the collective
mode observed in our simulations remains somewhat of
an open question; in particular, it is unclear how
significant a role the interesting phenomena of k=0
finite-size dynamics might be playing in our dry systems.
The conclusion here is that it would be valuable to pursue
these dynamical events via some nonlinear RG theory of
drying transitions at a wall-fluid interface, assuming that
the Landau limit agrees with our WDA theory prediction
of critical mean-field behavior.

If the only recent work involving simulation studies or
WDA theories of wetting phenomena at wall-fluid inter-
faces was restricted to those projects discussed above and
in Ref. 10 (i.e., concerning work by the present authors)
then we could end here by concluding that we now pos-
sess a consistent and robust understanding of wetting and
drying in wall-fluid systems with short-range interactions.
Unfortunately, this is not the case and we are forced in-
stead of conclude with the following cautionary tale, that
in particular concerns the drying transition region.

Firstly, the reader’s attention should be drawn to a
series of projects studying wetting phenomena of LJ fluid
at LJ walls; hereinafter referred to as the Sikkenk et al.
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simulations, '° or the Nijmeijer et al. simulations.”> The
earlier work'® has largely been withdrawn,?? at least as
far as the drying transition is concerned, due mainly to
shortcuts used in attempts to get around problems arising
from hardware restrictions inherent in the use of a special
purpose LJ computer. Thus let us confine our present
comments to the latest conclusions of Nijmeijer et al., as
found in particular in Ref. 22(b). Overall, there is close
similarity between the wetting isotherms reported by us
[including Ref. 10(b)] and the results of Ref. 22. Howev-
er, a clear qualitative difference arises in the nature of the
drying transition and associated fluctuation phenomena.
In particular, the latest conclusion of Nijmeijer et al.
concerning the drying transition is that they have all
along been observing a second-order transition (critical
drying). There is therefore a significant difference in the
fluctuation phenomena observed by us and by Nijmeijer
et al.; i.e., the latter do not report the existence of a
metastable partially dry branch as found here and in Ref.
10(b) and thus sum rule (7) no longer implies first-order
drying. However, throughout their studies Sikkenk
et al. and Nijmeijer et al. have observed k=0 motion of
the liquid film that has often been suggestive of first-order
metastability, although apparently not of sufficient domi-
nance to force the authors into recognizing the existence
of a metastable branch. There are four differences be-
tween the two classes of simulation that may be responsi-
ble for the above discrepancy. (1) Differences between
the wall-fluid interactions; the latest work of Nijmeijer
et al. uses a lattice based external field representing the
outer three layers of a rigid LJ solid. (2) Finite-size
rounding; hardware restrictions led Sikkenk et al. and
Nijmeijer et al. to use a simulation box with too small a
distance between the substrate walls than is appropriate
to the relatively high temperature of their wetting iso-
therm. In fact, the results of a separate study of LV in-
terfaces, using the special purpose computer, clearly
show that their simulation box cannot accommodate two
full liquid-vapor interfaces for temperatures at and above
kT =0.9¢'%")>23 This raises the question of whether the
failure of Ref. 22(b) to observe a clear first-order drying
transition could be due to finite-size rounding of the tran-
sition, particularly as one might imagine that too small a
box length would dissuade the system from generating
two incomplete bulk regions of vapor and thus suppress
collapses of the type shown in Fig. 2 above. (3) Finite-
size dynamics; Sikkenk et al. and Nijmeijer et al. use an
interfacial area approximately 16 times that involved in
our work and that of Ref. 10(b), and the greater the mass
of the liquid film the less significant the k=0 mode will
be. Thus perhaps our drying transition fluctuations are
induced by finite-size dynamics that is suppressed in Ref.
22. (4) Incorrect dynamical procedures; when reporting
observations of critical drying Nijmeijer et al. emphasize
that their MD procedures include a regular zeroing of the
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center of mass momentum of the fluid film (every 5200
time steps). This is clearly a dubious procedure to adopt
in the possible presence of a fluctuation-induced first-
order phase transition.

Our experience with square-well systems and LJ sys-
tems both from simulation studies and WDA theories
does not support the notion that the drying transition is
sensitive to details of short-range wall-fluid interactions.
With regard to the remaining three possible explanations,
we note that (3) is more controversial than (2) because it
would amount to finite-size sharpening of a phase transi-
tion. Accordingly, we would suggest either (2) or (4) as
the most likely of the above four possibilities.

Let us now turn to the predictions of WDA theory; in
particular, we could not ignore a recent WDA study?* set
up to compare directly with the simulations of Sikkenk
et al.'® Reference 24 reported first-order behavior at the
WDA drying transition. The situation was even more
ironic because the WDA theory used by us has an ances-
try that began as an early WDA program written by
Tarazona (one of the authors of Ref. 24) for the specific
study of Yukawa fluid at an exponential wall (acknowl-
edged in paper I). In a first attempt to understand this
disagreement we applied our most recent WDA program
to the case of cut and shifted LJ fluid at three layers of
cut and shifted 10-4 solid averaged over the interfacial
plane, which is the closest one can get with a planar
external field to modeling the simulation systems of
Sikkenk et al. In complete analogy with all of our previ-
ous WDA studies we found no evidence of first-order
drying, to at least two orders of magnitude smaller than
the free-energy barrier reported in Ref. 24. Elsewhere
along the wetting isotherm we found similar behavior to
that reported in Ref. 24, although in our version the
first-order WDA wetting transition has a significantly
smaller free-energy barrier. However, this has been
cleared up following recent correspondence between the
present authors and those of Ref. 24. Velasco and Tara-
zona report (unpublished results) that a detailed study of
the drying transitions discussed in Ref. 24 shows that
they are second-order transitions; i.e., there is no evi-
dence for first-order drying at the level of accuracy avail-
able to WDA theory. The free-energy barrier reported in
Ref. 24 is actually an upper bound obtained in the ab-
sence of any minimization; at the time the authors were
only interested in showing that the WDA drying transi-
tion could not be as strong as suggested by the original
simulations of Sikkenk et al.
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