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Interaction of the Landau orbitals of atomic ions in a magnetic field with electronic motion
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For neutral particle systems in a homogeneous magnetic field, there exists a constant of motion,
the pseudomomentum, which allows a complete pseudoseparation of the center-of-mass motion.
For ions such a separation is not possible, and the Landau orbit of the center-of-mass and internal
(electronic) motion are intimately coupled. We investigate different physical situations for which
this interaction becomes strong at laboratory magnetic-field strengths. In particular, we find that
the Landau orbit itself can change substantially upon this interaction.

I. INTRODUCTION

The behavior of matter in strong magnetic fields be-
came in the past ten years a subject of great interest. In
solid-state physics, for example, both of the revolutionary
discoveries of the 1980s, the quantum Hall effect and the
high-temperature superconductors, are the result of or at
least intimately related to the action of a magnetic field
on matter. On the other hand, the discovery of strong
magnetic fields, unavailable in the laboratory, on astro-
physical objects like white dwarfs (=10"T) and neutron
stars ( = 10 T) was the motivation and the starting point
for a rapid development of our knowledge on the behav-
ior of atoms and molecules in the presence of a strong
magnetic field. In atomic physics the main object of in-
terest was the simplest of all atoms: the hydrogen
atom. ' " With the increasing knowledge and especially
the rapid improvement of the computational techniques
it was, within the past five years, possible to calculate the
eigenvalues and the eigenfunctions of the hydrogen atom
in the presence of a magnetic field up to the field-free ion-
ization threshold. For these Rydberg states of the hydro-
gen atom the magnetic energies become, already at labo-
ratory magnetic-field strengths, comparable or even
larger than the Coulomb binding energies. It was there-
fore possible to study the behavior of the hydrogen atom
in the intermediate- and high-field regions, which are
characterized by the ratio of the magnetic and Coulomb
energies, by decreasing the Coulomb binding energies,
i.e., by investigating highly excited states. The original
interest in the behavior of the hydrogen atom in a strong
magnetic field being motivated by astrophysical observa-
tions, it came now into the focus field of physics: the
quantum chaos. The hydrogen atom is one of the sim-
plest quantum-mechanical systems that allows an experi-
mental as well as theoretical investigation of the transi-
tion of regularity to irregularity.

The enormous increase in our knowledge of the behav-
ior of atoms and molecules in strong magnetic fields
should not obscure the fact that many of the fundamental
problems are still unsolved. One of these problems,
which is the subject of the present paper, is the mutual
inAuence of the center-of-mass and internal motion of an

atomic ion in a homogeneous magnetic field. Before go-
ing into the details of the treatment of the center-of-mass
motion of a charged atom let us recall the situation for a
neutral atom. In the neutral case there exist three exact
constants of motion, the components of the total pseu-
domomentum K, which commute among each other and
can be used to perform a pseudoseparation of the center-
of-mass motion of the atom. ' The residual infIuence
of the center-of-mass motion on the internal motion is de-
scribed by a motional Stark effect. The corresponding
constant electric field is induced by the collective motion
of the neutral atom in the magnetic field. The center of
mass follows, more or less, a straight line or, in the
language of quantum mechanics, the dependency of the
total wave function on the center-of-mass coordinate is
given by a plane wave. For a neutral particle system
there exists no possibility for the system to change its
state of collective motion. Once the constant total pseu-
domomentum is given it is fixed forever or intuitively
spoken: there exists no real interaction between the
center-of-mass and internal motion. Especially it is possi-
ble to eliminate the effects of the center-of-mass motion
on the internal motion by choosing the pseudomomen-
tum parallel to the magnetic-field axis. The above-
mentioned theoretical as well as experimental investiga-
tions of the hydrogen atom have used this fact in order to
get rid of the motional Stark effect. The additional elec-
tric field, which is perpendicular to the magnetic field,
provided for those investigations only an additional un-
desired complication.

For a charged-particle system the situation is com-
pletely different. Although the pseudomomentum is still
an exact constant of motion it cannot be used for a com-
plete pseudoseparation of the center-of-mass motion since
its components do not commute. As a consequence an
additional approximately conserved kinetic momentum
has been introduced in the literature. ' '" This quantity
can be used, together with the total pseudomomentum, to
perform a partial center-of-mass separation. ' ' The re-
sulting Hamiltonian has consequently been used to study
the corrections to the collective and internal motion, aris-
ing from the coupling terms of the Hamiltonian between
the center of mass and the internal degrees of free-
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dom. ' ' However, all these investigations were per-
formed only for the ground and first few excited states of
small atomic ions. The total ground state of the atom
means that the internal as well as collective motion, in-
cluding the couplings between them, are in the ground
state. Considerable corrections due to the couplings ap-
pear then only for astrophysical magnetic-field strengths,
i.e., for field strengths of the order of magnitude or larger
than 10 T.

Within the present paper we choose an alternative way
of performing a partial center-of-mass separation for an
atomic ion (see also Ref. 19) and pay particular attention
to excited states instead of to the ground state. We are
able to show that the coupling between the center-of-
mass and the internal motion becomes large at laboratory
magnetic-field strengths if either the collective motion or
both the collective and internal motion correspond to
highly excited states. As a consequence we expect a
variety of interesting new effects, whose detailed investi-
gations go beyond the scope of this paper and will be the
subject of future studies.

II. THEORY

Our starting point is the nonrelativistic Hamiltonian in
Cartesian coordinates for an atomic ion in a homogene-
ous magnetic field:

H,'= g (p,
' —e A,') + (P'+eZA') + V, (1)

2m, ' '
2MO

where we have omitted the rather trivial interaction of
the spins with the magnetic field. m, and Mo are the
electron and nuclear mass, respectively. e is the electron
charge, Z the nuclear charge number. Ip,'I and P' are
the canonical conjugated momenta of the electrons and
the nucleus, respectively. V contains all the Coulomb in-
teraction terms of the electrons and the nucleus. The
vector potential will in the following be chosen in the
symmetric gauge, i.e., A,

' =
—,
' 8 X r,

' and A' =—,
' B &C R'. 8

is the magnetic-field vector. The total pseudomomentum
K' = g (p,

' + e A,
'

) + ( P' —eZ A' ) (2)
l

is a constant of motion, i.e., it commutes with the Hamil-
tonian (1). The first step in our center-of-mass separation
is the transformation of the Hamiltonian (1) from Carte-
sian coordinates to the coordinate system which contains
the center-of-mass coordinate Rs and the relative coordi-
nates Ir, I of the electrons with respect to the nucleus.
The resulting Hamiltonian H' takes on the following ap-
pearance:

Pl
p,. ——BXr, + — BX g r,

2m, ' 2 ' 2 M
2

where M is the total mass of the atom. Ip; I and Ps are
the canonical conjugated momenta of the coordinates
Ir, I and Rz, respectively. The total pseudomomentum
reads as follows:

K=P +—BXR +—aBX gre
S S i

l

with

. e
U =exp +i a(BX—Rz) g r,

After some algebra we arrive at the following final struc-
ture for our Hamiltonian H:

H =HI +H2+H3, (6)

where

1H = P ——BXR1 2M s 2 s

2

(6a)

H2= — a Pz ——BXRz BX g r, (6b)

2

H3= g p, ——BXr, +— BX+r
e Q m,

2m, 2 2

2

1 e Q me

,M M™~~—~
i

2

XBX gr; +V. (6c)

where Q is the net charge of the ion and
a=(Mo+Zm, )/M. The reader should note that a is of
the order of 1, i.e., 0.=1, for an ion and it is exactly 1,
i.e., o.=1, for the case of a neutral system. The Hamil-
tonian H' has a complicated structure. The terms involv-
ing only the center of mass or the internal degrees of free-
dom as well as the coupling terms between both types of
motion have no simple interpretation. But what should
be the aim of our transformations? From a physically in-
tuitive picture we expect the part of the Hamiltonian
which involves only the center-of-mass degrees of free-
dom to be the Hamiltonian for a free particle with mass
M and charge Q in a homogeneous magnetic field. This is
obviously not the case for the Hamiltonian H' in Eq. (3).

As a next step we transform the Hamiltonian H', in
analogy to the case of a neutral particle system, ' by a
unitary gauge transformation

H = U-'H'U

1

2MO

foal e+ P ——BXR
M 2

Zpl ~gp, + — 'BX gr, .
l l

2
Mo e
M 2

P ——ZBXR + VS (3)

The Hamiltonian H has indeed the structure we were
looking for. The unitary transformation U decoupled, to
some extent, the collective and internal motion. The pure
center-of-mass Hamiltonian H I has the desired structure:
it describes the motion of a free pseudoparticle with
charge Q and mass M in a homogeneous magnetic field.
H2 is the coupling term between the collective and inter-
nal motion which is proportional to the velocity of the
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%(Rs, [r;])= pc ~N'(Rs)g'([r;]),
p, q

(7)

heavy pseudoparticle. H3 describes the internal relative
motion of the electrons and the nucleus. We remark that
the above performed partial separation of the center-of-
mass motion presumes the validity of the physical picture
that the electrons somehow follow the nuclear motion
i.e., are bound to the nucleus by the potential V.

The Hamiltonian for the case of a neutral atom can be
obtained from Eqs. (6a)—(6c) by setting Q=0 and replac-
ing the operator Ps by its eigenvalue, the constant pseu-
domomentum k. For a neutral atom the center of mass
follows more or less a straight line and there exists no
real interaction between the collective and internal
motion. For an atomic ion, however, the situation is
completely different. The center of mass performs in the
plane perpendicular to the magnetic field in zeroth order
a Landau motion which is described by the Hamiltonian
H&. The especially ™portantnovelty is that there exists
a dynamical coupling term H2 between this collective
and the internal motion. This coupling term is propor-
tional to the cross product of the center-of-mass velocity
and the magnetic field which represents a rapidly chang-
ing internal electric field. Because of this "dynamical"
electric field the collective and internal motion will, as we
shall see later on, mix up heavily, i.e., it is possible for the
ion to change its state of collective or internal motion
through the coupling term H2 ~ Since the ion possesses at
least a zero-point Landau energy the coupling term can-
not vanish and is an inherent property of the center-of-
mass motion of a charged-particle system in a magnetic
field. This is in contrast to the case of a neutral system
where the inAuence of the center-of™ass motion on the
internal motion is given by a motional Stark effect with a
constant electric field, which can be set equal to zero by
choosing the constant total pseudomomentum parallel to
the magnetic-field axis.

In order to investigate the significance and effects of
the Hamiltonian H2, which couples the collective and
internal motion, we apply in the following a method for
formally solving the total Schrodinger equation
H'P=E%'. The most natural way is to expand the total
wave function 0' in a series of products

1/2
(jpj+N)!
(2~)2IPINt ,+!!xp(+isa's)p~!a'+"

X~IPlexp( p's/4a )F( —N, jpj+1,ps/2a'), (8)

where the sign + corresponds to negative and positive
charge Q, respectively. The simple index p stands for the
quantum numbers N and p. F is the confluent hyper-
geometric function which, in our special case, is equal to
a generalized Laguerre polynomial. a =(jQjB) ' is the
typical length unit. The energy eigenvalues are given by

Ec jQj& N+ P+jPj+1
p

N=O, +1, . . . , p=O, +1, . . . ,

which is, apart from the fact that each Landau level is
infinitely degenerate, a harmonic oscillator spectrum.

The functions [g J in Eq. (7) are chosen to be eigen-
functions of the electronic Hamiltonian, i.e.,
H3$ =E P (q stands collectively for all electronic
quantum numbers). If we insert the product expansion
(7) for the total wave function 4 in the total Schrodinger
equation and project on a simple product 4 ~ g we ar-
rive at the following set of coupled equations for the
coefficients [c

(H2+E +E )c=Ec, (10)

where c is the column vector with components [c ]. E
and E are the diagonal matrices which contain the Lan-
dau energies [E I and internal energies [E'I, respective-
ly. Hz contains the matrix elements of the coupling term
H2 and has therefore the following structure:

where [cz I are the coeKcients of the product expansion.
In Eq. (7) the trivial one-dimensional free motion of the
center of mass along the magnetic-field axis has been om-
itted. The functions [N J obey the Schrodinger equation
H&4 =E N for afreeparticlewithcharge Qandmass
M in a homogeneous magnetic field. These so-called Lan-
dau orbitals read in cylindrical coordinates (ps, ys) (the
magnetic field is assumed to be oriented along the z axis)
as follows:

B Rs 4 BX ~ r,
I

&~;,j[R„H,]j@,'& . (12)

This quantity can be evaluated in two different ways.
The first way is to explicitly calculate the commutator.
The second way uses the fact that Np @p are eigenfunc-

Each element of Hz is a product of two terms: the first
term is a matrix element between Landau orbitals and the
second one is a dipole matrix element between internal
electronic wave functions. The first part of the coupling
matrix H2, i.e., the matrix elements between Landau or-
bitals, can also be reduced to pure dipole matrix elements
by the following calculation. Let us consider the quantity

I

tions of the Hamiltonian H
&

with eigenvalues Ep and Ep,
respectively. Combining the two results we arrive at the
following relation:

Ps BXRs

=iM(E ~
—E )&e.jR~ja (13)

With the explicit expression for the Landau wave func-
tions [see Eq. (8)] we can calculate the coupling term (13)
by calcu1ating the dipole matrix elements between
different Landau orbitals. The results reads as follows:
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5».(p+N+ 1) —5~ i ~N for ]M) 0

P ++i x'
0

5»(p+N) 5~—+i ~.(N+I)' for ]M) 0

5», ( p, +—N+1)'~~ —5»N'~ for @&0
0

(14)

where the simple indices p' and p stand for the sets of quantum numbers (N, ]M) and (N', ]M'), respectively. Inserting Eq.
(14) in Eq. (13) and finally in Eq. (11)we obtain the final, completely general, form of the coupling matrix Hz..

1

H2= i —(lglB/2)' +i 5„. „,[(p+ lpl)/2+N+ I]'~
0

for p —0

&x+ &, x' for p + 0

1 +5~~i for p )0+ +~ ~q —~', &]]A+ IVI]I2+N]
& „~ a Bx(g, g r. g l«r p —00 l

(15)

The above expression for 82 shows that couplings occur
only between states which differ by one unit in the mag-
netic quantum number p. For the Landau principal
quantum number only transitions with AX =0, +1 are al-
lowed. These are the selection rules for dipole transitions
between different Landau wave functions. Furthermore
we have only nonvanishing coupling matrix elements be-
tween states with different energy. This means that an
appreciable value of the coupling leads always to a strong
mixing of different states of collective motion with
different energies.

The original problem of the investigation of the
significance and effects of the couplings is therefore re-
duced to the solution of the eigenvalue problem (10), i.e.,
the diagonalization of essentially the coupling matrix H2
in Eq. (15). The central subject of the present paper is to
show and discuss physical situations for which the cou-
pling terms become large already at labaratory magnetic-
field strengths. To this end we have to specify our inter-
nal electronic wave functions. For the sake of simplicity
we specialize to the case of one-electron ions, i.e., our
internal wave functions [g ] are hydrogenlike functions
which are eigenfunctions of H3 in Eq. (6c) without the di-
amagnetic interaction term. The diamagnetic interaction
will be taken into account by perturbation theory. We
will, therefore, be able to draw at most qualitative con-
clusions for the region where the diamagnetic term in the

Hamiltonian H3 becomes important or even dominant
for the internal motion.

The internal hydrogenlike electronic wave functions
read in spherical coordinates (r, 9,@) as follows:

ZT
exp

ann

yl 21+1 r
ym(6]

a&n

where the index q' stands for the set of quantum numbers
(n, i, m). as is the Bohr radius (p+e ) ', where ]M+ is the
reduced mass (m, MO/M). 1.„'+&' is a generalized
Laguerre polynomial. Yl are the spherical harmonic
functions and 3,&

are the normalization constants
21+3 1 /2

2Z (n —I —1)!
n (n +i)! 2n

In order to establish the coupling matrix H2 [see Eq. (15)]
we have to calculate the dipole matrix elements between
two electronic wave functions g and P . The calcula-
tion of the radial part of the general dipole matrix ele-
ments is rather lengthy and has been performed in the
literature. ' We give here only the final result for our
coupling matrix Hz in Eq. (15):

H~=+ aB(lgl&/2)' X I5~ „i5 —,i[N+(p+ Ipl) /2+ ]I' L(N, N', p)JV( —m, l, l', n, n')

where

+5„„.]5 ~ ][N+(p+ lpl)/2]' X(N —1,N', —p)JV(+m, l, l', n, n')]

—5» for p ~0

and

X(N N /l)= '5 f 0X+ 1,%'
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1/2

A'(m l l' n n')= 5 AI I+, (l —m +2)(l —m +1)
(2l + 1)(2l +3)

1/2
(l +m)(l +m —1)

(2l —1)(2l + 1)

where the radial part A, '„",. ' of the electronic dipole matrix element takes on the following appearance:
1/2

( —1)" (n +l)!(n'+l —1)! (4nn')'+'(n n')"—+"
4(2l —1)! (n —l —1)!(n'—l )! I )n+n' (a /Z)B

4nn '
X F —(n —l —1), —(n' —l);2l;—

(n n')—
(n n'—) F —(n —l + 1),—(n' —l);2l;— 4nn'

(n +n') (n n—')

(19)

F is the hypergeometric function which reduces in our
special case to a polynomial. JR'„,'+' can be obtained
from Eq. (19) by permuting the indices. Equation (19)
holds only for the case nAn'. For n =n' we obtain the
simple result

JR" '= ——'(a /Z)[n —l )]' n (20)

We remark that the coupling matrix (18) exhibits the fact
that I-~I, the component of the total angular momentum
parallel to the magnetic field axis, is a constant of motion:

—p +m = —p+m

EI
PP

Z p+e
2n

Bm 5
2p

a dipole transition between two two-electronic eigenstates
of a one-electron atom Al =+1 and hm =+1.

In order to complete our eigenvalue problem from Eq.
(10) we have to establish the matrix for the internal ener-

gies E . Since our electronic hydrogenlike wave func-
tions (16) are not exact eigenfunctions of the internal
Hamiltonian H3 we obtain a nondiagonal matrix E
which takes on the following structure:

for all transition matrix elements. The matrix H2 can be
calculated separately for each value of p+m. Further-
more Eq. (18) contains the well-known selection rules for

I

where

2

+ &'& Sg (R„,(r)Ir'IR„, (r) &

8pp
(21)

(l'+ l + ImI' —1)
(2l —1)(2l + 3)

(l —ImI+1)(l —ImI+2)(l + Im +2)(l + ImI+1)
(2l + 1)(2l + S )(2l +3)

1/2
( l + Im I

)(l + Im I

—1)(l —Im I

—»(l —Im I
)

(2l + 1)(2l —3)(2l —1)

m, Mp

Mp —o.m,
2

Q me
1 ——

m, e M2

+1
Mo

g m, M+Mo
1 ——

e M M

n
(R„I(r)Ir IR„I(r))= a~[Sn +1—3l(l +1)] . (22)

2Z' '
III. DISCUSSIQN

Having completely specified our eigenvalue problem
(10) we are now able to investigate our original problem

For the following considerations the off-diagonal part of
E will be of only marginal importance. We therefore
refer the reader for the explicit complicated structure of
the matrix elements (R„&(r)Ir IR„.&.(r)) to the litera-
ture and give here only its diagonal elements

Iof the significance of the coupling terms. The relevant
quantity is not the absolute value ~ of the coupling ele-
ments of the matrix H2 but rather the quotient of this
coupling ~ and the energy spacing 6 of the corresponding
diagonal matrix elements in E and E .

Let us first consider two different electronic states of,
for example, the helium ion which belong to the same n

manifold and couple via the matrix H2. According to the
selection rules [see Eq. (18)] these two electronic states
must differ in both of their eigenvalues I, m, by one unit.
The corresponding Landau levels of the center-of-mass
motion differ also by one unit in the magnetic quantum
number p. Without loss of generality we assume further
that p &0, i.e., that the Landau levels differ also by one
unit in their principal quantum number X.

We begin with small principal quantum numbers n, for
example, n =2. Within this n manifold and for strong
laboratory magnetic-field strengths (=1 T) the Zeeman
effect dominates the spin-orbit coupling and determines
the energy spacing between the electronic states with
different m eigenvalues. The diamagnetic interaction is
negligible in this range of magnetic-field strengths and
principal quantum numbers. Our coupling matrix tells us
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that the (l =1, m =1) electronic state couples with the
(l =0, m =0) state and the latter one with the (I = 1,
m = —1) state. But how large are these couplings?
From the matrix Hz we obtain the value

(~/b, ) =
M

(23)

where we have used atomic units (B=2.35 X 10 T corre-
sponds to 1 a.u. ). For a typical laboratory magnetic-field
strength 8 =10 a.u. and the mass M =7.3 X 10 a.u. of
the helium ion we need N to be of the order of magnitude
X=6X10" in order to make the coupling ~ as large as
the energy spacing 6, i.e., (i~/b, )=1. At first sight this
seems to be an astronomical number. However, the ener-

gy of the center-of-mass motion belonging to this value of
Vis E =10 a.u. , i.e., some 10 KeV. This is a kinetic en-
ergy which is without problem achievable in the laborato-
ry and still far from the region where relativistic effects
start to become significant. Since the number of quan-
tums X in the pure center of mass Landau motion is very
high, the center-of-mass motion is expected, apart from
small fluctuations, to be well described by its classical
path. The influence of the internal motion on the collec-
tive motion in this special case is therefore expected to be
negligible. Since the above-mentioned coupled three lev-
els of the n =2 manifold are energetically well separated
from the n =1 and 3 manifold we can neglect the cou-
plings of the states of the n =2 manifold to the states of
other n manifolds.

The above discussion shows that significant values of
the coupling of the center-of-mass motion to the internal
motion appear already at laboratory magnetic-field
strengths and even for low-lying electronic states. These
couplings modify the internal wave function consider-
ably, whereas, in our special case of low-lying electronic
states, the reaction back on the collective motion is negli-
gible. We remark that by increasing X it is possible to
manipulate (x/6) and therefore the mixing of the inter-
nal states over a wide range.

As a next step we investigate the behavior of the cou-
pling terms for "intermediate" values of the principal
quantum number n. "Intermediate" here means that the
Zeeman energy is still dominant over the diamagnetic in-
teraction energies. Since the diamagnetic energies are
proportional to 8 n we are for n up to approximately 15
and in the laboratory achievable magnetic-field strengths
well within the above-mentioned region. The energy

for the coupling between the state (l=1, I =1) and
(I =0, I =0) and the value

ir2 =+(«~)~B [ I glB (& —1)]'"(3iiii /Z)

for the coupling between the states (l =0, m =0) and
I =1, m = —1). The energy spacing b is essentially given
by the electronic Zeeman energy split (e/2)(B/p ) (the
energy difference due to the change in the Landau princi-
pal quantum numbers is negligible). If we assume X ))1,
i.e., %=X—1 =%—2, we arrive at the following estima-
tion for the quotient (ir/b, ).

spacing 6 for two electronic states of the same n mani-
fold is then again determined by the Zeeman energy
difference. Let us specialize to the case n &)1. The
quantity (v/b, ) can be obtained from Eq. (18) together
with Eq. (20) and its order of magnitude is determined by
the expression

(~/&)= n'. (24)

As an example we take n =10, B=10 a.u. , and the
mass of the helium ion. If we again demand that the cou-
pling ~ is as large as the energy spacing 6 we arrive at a
corresponding value of X= 10 . This means a kinetic en-

ergy of the ion of the order of magnitude of 1 a.u. , i.e.,
some 10 eV. We conclude therefore that for typical
strong laboratory magnetic-field strengths the coupling
between the collective and internal motion becomes for
states within a higher n manifold (n = 10) already impor-
tant for a center-of-mass energy of the ion of a few eV.

So far we have considered only the coupling of states
within the same n manifold. For states belonging to
different n manifolds and for intermediate values of n

(n ))l) the order of magnitude of the energy spacing [see
Eq. (21)] is determined by the energy diS'erence in the ab-
sence of a magnetic field, i.e., 6=( Z I—n ). For the
evaluation of the couplings we have to use the fact that
the matrix elements At'„„' 'a're . for large n, n ))I, and
~n n'~ &—&n in the leading order proportional to n . A
rough estimation yields then the following order of mag-
nitude for our quantity (i~/b, ):

(i~/b ) = Bn (25)

k~ TM

lalB
(26)

For a magnetic-field strength B =10 " a.u. and n =10
we obtain from our requirement that ~ should be of the
order of magnitude of 6 that X= 10', i.e., a center-of-
mass energy of the ion of a few keV. This means that the
couplings become at these energies not only dominant for
states within the same n manifold but also important for
states belonging to adjacent n manifolds. The exact
eigenfunction of the ion is therefore a sum of products of
collective and internal wave functions which mixes the
Landau orbitals of a certain range of the principal quan-
tum number X, . . . , %+AX and the electronic wave
functions over a certain range of their quantum numbers
n, l, and m according to the selection rules of our cou-
pling matrix H2.

In the preceding discussion we assumed zero tempera-
ture. For finite temperature we have to take into account
the effect of the thermal motion of the ion. In order to
obtain an estimation of the order of magnitude of the
effects of the thermal motion we set the Landau energy in
Eq. (9) (for p &0) equal to the mean thermal energy ks T
for the two degrees of freedom, where k~ is the
Boltzmann constant and T the temperature. This yields
the following relation between the Landau principal
quantum number and the temperature (in K):
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As an example we again take the helium ion at a
magnetic-fi. eld strength of B =10 a.u. and for room
temperature T=300 K. As a result we obtain
N =6X 10 . For intermediate values of n the correspond-
ing value of the coupling is still negligible, but for high n
manifolds (see the discussion below) the kinetic energy
due to the thermal motion of the ion at room temperature
will be sufhcient to cause significant values of the cou-
plings and produce a strong interaction between the col-
lective and internal motions.

The physical situation discussed so far changes
dramatically if we go to higher values of the principal
quantum number n. The diamagnetic term of the inter-
nal motion becomes more and more important and there-
fore our description of the electronic wave function in
terms of hydrogenlike functions becomes inadequate.
The n manifolds are no more well defined, i.e., they mix
strongly and the internal wave function continuously
changes its shape from initially Coulombic to finally elec-
tronic Landau character. These changes are accom-
panied by a phase transition from regularity to irregulari-
ty, i.e., the onset of quantum chaos. The region where
the internal motion is chaotic is also for our problem of
the coupled collective and internal motion of special in-

terest. Since the energy spacing of the electronic eigen-
states becomes much smaller than the corresponding
spacing of the levels in the field-free case and since the
coupling between the electronic states is probably un-
derestimated by the above considerations we expect to
obtain a strong mixture of the co11ective and internal
motion, i.e., strong couplings, already for E= 10 [see Eq.
(25)]. As a consequence the mixing of many different
states of collective motion, for example, 5%=10 —10,
becomes essential for the collective motion and provides
no more small Auctuations around a more or less classical
center-of-mass orbit. We remark that this strong mixing
appears automatically because of the finite temperature
of the system (%=10 corresponds to T=5 K). To study
this very interesting region where probably both the
internal and collective motion become chaotic and couple
strongly goes beyond the scope of this paper and will be
left to future investigations.
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