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Non-Boussinesq efFects in a Rayleigh-Benard convection system lead to a symmetry breaking be-

tween the top and the bottom boundary layers. We have found that the two layers adjust their tem-

perature drops and the thicknesses A. such that their temperature scales vK/gaA, ' are equal, where a
is the thermal expansion coefficient, g is the gravitational acceleration, and v and K are the kinemat-

ic viscosity and thermal difFusivity, respectively.

I. INTRQDUCTIGN

In most of the studies of thermal convection, the
Oberbeck-Boussinesq' (OB) approximation has been as-
sumed; i.e, . the temperature dependence of all the fluid
properties other than the fluid density are considered
constant. This approximation simplifies the convection
problem greatly. However, there are cases where this ap-
proximation is no longer valid, hence it is natural to
study how it influences the experimental results. Fur-
thermore, since the symmetry between the top (colder)
and bottom (hotter) boundary layers is broken, some rela-
tions, which are hidden in the OB case, may be revealed.
This in turn may shed some light on the OB case.

When the Rayleigh number R is less than 10, the heat
is transported by conduction. In this case, the tempera-
ture profile, heat flux, etc. , can be calculated analytically
from the diffusion equation. When the convection starts,
the situation becomes nontrivial. A few researchers
have studied the non-OB effects near the onset of convec-
tion. However, as the flow in the convection cell reaches
a different turbulence state, non-OB efFects may have
different behaviors. In this paper we shall discuss the
non-OB effects in hard turbulence" (R ) 10 ), far above
the onset of convection.

In Sec. II of this paper, we shall briefly describe the ex-
perimental setup and procedures. The situation where
the non-OB effects appear is explained. In Sec. III, we
present the experimental results, such as the asymmetry
of the two boundary layers, the strange behavior of the
Nusselt number, and the rms temperature Quctuations.
Finally, in Sec. IV, we discuss three different models.
Since the equations available are not enough to determine
uniquely the temperature drops and the thicknesses of
the two boundary layers, one more relation has to be pro-
posed. We discuss the equality of the Rayleigh numbers,
the equality of the velocity scales, and the equality of the
temperature scales, for the two boundary layers. The last
one is provied to be the best experimentally. The conse-
quences of the last model are discussed and compared
with the experimental results.

II. EXPERIMENT

We have performed the low-temperature helium-gas
convection experiment in three different vertical cylindri-

cal cells, with diameters 8.7, 20, and 20 cm, heights 8.7,
40, and 3 cm, thus aspect ratio 1, 0.5, and 6.7, respective-
ly. Of these three cells, the one of the largest aspect ra-
tio, diameter 20 cm and height 3 cm, has the best temper-
ature regulation. Thus we shall focus on this cell in this
paper. The cell sidewall is 2-mm-thick stainless steel.
The sidewall heat transport is of the same order of mag-
nitude as the heat conducted by the gas, thus much
smaller than the heat transported by convecting gas.
Both the top and bottom plates are made from oxygen-
free high-conductivity copper. The bottom plate has a
thickness of 2.0 cm and the top plate of 6.4 cm. GR-
200A germanium resistance temperature sensors from the
Lake Shore Cryotronics, Inc. , are used to measure the
temperatures of the plates. At 5 K, their typical resis-
tance is around 1.5 kQ, , and the sensitivity is about 1

mK/Q. They are embedded in both plates, several mil-
limeters away from the inner surfaces. The method of
measuring the thermometers, as well as the local temper-
ature bolometers in the Quid, has been described in Ref.
12. The entire cell is in a vacuum jacket with its top plate
in thermal contact with a liquid-helium bath. The top
plate is regulated at a given temperature around 5 K.
The top-plate temperature Quctuation is a fraction of 1

mK for low Rayleigh numbers and can reach a few mK
for the highest Rayleigh numbers. When not heating the
bottom plate, the temperature difference of the two plates
is not zero and increases slightly with the top-plate tern-
perature, but the maximum difFerence is less than 5 mK.
We think that this difference is due to the imperfect vacu-
um. By applying a constant dc heat to the bottom plate,
a temperature drop 6 is imposed. The cell is filled with
helium gas of various densities. The density of the gas is
computed by measuring the equilibrium pressure with an
absolute pressure transductor of MKS Instruments, Inc. ,
and the temperature of both plates. The Quid properties
and the relations are based on the equations and tables
given by McCarty, ' ' who has reviewed most of the
works on helium-gas properties.

The control parameter of this experiment is the Ray-
leigh number

agL 6
VK

where n is the thermal expansion coefficient, g is the
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TABLE I. Experimental values of the Rayleigh number R; Nusselt number N; temperature difference 6; the ratio of the tempera-
ture drops across the top and bottom boundary layers x; and the Quid properties in central region c, top t, and bottom b boundary
layers.

(mK)
P

(10 g/cm ) Region (K) (1/K) (10 cm /s)
K

(10 cm /s)
x

(mW/cmK)

2.10X 10' 35.7 357 0.89 0.406
4.486
4.402
4.581

0.267
0.274
0.259

29.1

28.0
30.3

41.4
39.7
43.4

0.0954
0.0939
0.0970

5.75 X10'

1.21X10'

5.13X10'

47.7

59.2

92.7

158

356

358

0.87

0.87

0.85

0.870

0.870

1.53

4.469
4.432
4.511

4.553
4.469
4.648

4.723
4.633
4.812

0.339
0.345
0.331

0.329
0.343
0.314

0.440
0.479
0.409

14.1

13.8
14.4

14.3
13.7
15.0

8.90
8.44
9.35

17.6
17.1
18.1

17.9
17.0
19.1

9.13
8.35
9.90

0.0990
0.0985
0.0996

0.100
0.0993
0.102

0.110
0.110
0.111

3.35 X 10 86.5 150 0 89 1.76
4.747
4.712
4.787

0.499
0.519
0.478

7.92
7.75
8.12

7.49
7.21
7.84

0.114
0.114
0.114

8.42 X 10 105

1.27 X 10' 119

2.44 X 10' 135

3.07 X 10' 132

366

287

509

715

0.79

0.77

0.65

0.58

1.76

2.38

2.38

2.38

4.725
4.644
4.827

5.139
5.077
5.221

5.073
4.973
5.227

5.164
5.033
5.392

0.507
0.559
0.456

0.579
0.637
0.518

0.605
0.723
0.492

0.571
0.711
0.439

7.87
7.48
8.37

6.55
6.29
6.89

6.48
6.04
7.13

6.57
6.02
7.48

7.41
6.72
8.27

5.30
4.85
5.91

5.15
4.37
6.30

5.35
4.35
6.95

0.113
0.114
0.114

0.128
0.129
0.127

0.127
0.130
0.126

0.128
0.131
0.127

2.75 X 10' j.56 280 0 77 2.84
5.106
5.045
5.126

0.793
0.934
0.753

5.66
5.38
5.76

3.77
3.27
3.95

0.137
0.141
0.136

3.18 X 10' 153

4.00 X 10' 148

5.30 X 10' 147

6.97 X 10" 164

9.56 X 10" 157

1.10X 10" 159

325

433

601

313

515

504

0.70

0.58

0.53

0.52

0.43

0.42

2.84

2.84

2.84

3.36

3.36

3.36

5.113
5.046
5.208

5.141
5.062
5.278

5.179
5.075
5.376

5.149
5.096
5.252

5.241
5.163
5.420

5.159
5.085
5.337

0.789
0.948
0.646

0.767
0.949
0.592

0.746
0.987
0.535

1.12
1.45
0.800

1.00
1.41
0.646

1.10
1.64
0.677

5.66
5.36
6.08

5.70
5.34
6.27

5.72
5.25
6.52

4.99
4.71
5.47

5.06
4.67
5.82

4.99
4.59
5.78

3.78
3.22
4.53

3.86
3.20
4.89

3.91
3.06
5.35

2.66
2.16
3.53

2.83
2.14
4.19

2.68
1.95
4.10

0.137
0.141
0.133

0.137
0.142
0.133

0.137
0.144
0.132

0.152
0.163
0.142

0.150
0.164
0.140

0.151
0.169
0.139
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gravitational acceleration, L is the height of the cell, 5 is
the temperature drop across the cell, and v and ~ are the
kinematic viscosity and thermal diffusivity, respectively.
In the OB case, the fluid properties throughout the cell
are the same, thus there is no ambiguity in the definition
of Rayleigh number. However, as the fluid properties
vary with the temperature across the cell, we shall
redefine the Rayleigh number based on the fluid proper-
ties of the central region of the cell. Although this choice
is arbitrary, it seems most reasonable since the central re-
gion occupies the majority of the cell volume. The Ray-
leigh number can be increased by adjusting the tempera-
ture difference 6, or by changing the fluid properties. As
the gas approaches its critical point by either increasing
the gas density or decreasing the average temperature, e
increases, v and ~ decrease, consequently the Rayleigh
number increases. In this experiment, we vary 6 between
50 and 700 mK, but the Rayleigh number spans eight de-
cades, from 10 to 10' . However, for too large a gas den-
sity or too low a temperature where the gas is close to its
critical point, the fluid properties become so sensitive to
the temperature variations that their values differ from
the top to the bottom plate. Thus the OB approximation
breaks down.

Table I gives the fluid properties for various densities
and temperatures. The Rayleigh number R and the
Nusselt number N are calculated based on the fluid prop-
erties in the central region (the Nusselt number is defined
as the actual heat flux normalized by the one which
would be transported by gas conduction). x is the ratio of
the temperature drop of the top boundary layer to that of
the bottom boundary layer; it will be the center topic of
this paper. The fifth column is the gas density p, which is
calculated from the equilibrium pressure and tempera-
ture. The cell is isolated after the pressure has been mea-
sured. The cell, with a given gas density, may be operat-
ed at different average temperatures. Since the central re-
gion occupies most of the cell volume, the density there
should be very close to the density measured at equilibri-
um. The fluid properties a, v, ~, and g &the thermal con-
ductivity) are computed correspondingly from the density

p and T„where T, is the central region temperature.
The pressure is calculated only from the central region
temperature and density, but should be the same
throughout the cell. From the average temperature T, of
the top boundary layer and the pressure, the correspond-
ing physical constants a„v„K„and y, can be calculated.
The same calculation can be done for the bottom bound-
ary layer. Note that the subscripts t and b are for top
and bottom boundary layer, respectively, while those
variables with the subscript c or without any subscript
are for the central region.

In the central region, the heat is dominantly transport-
ed by convection, while in the top and bottom boundary
layers where the velocity tends to zero, the heat is trans-
ported by conduction. Since conduction is much more
resistive than convection, the total temperature drop
across the cell 6 is applied only across the two boundary
layers, the central region is isothermal (essentially a
thermal short circuit):

A=6, +Ah,

where 6, and 5b are the temperature drop across the top
and bottom boundary layers, respectively. 5, is calculat-
ed from the difference of the top-plate and the central re-
gion temperatures, while T, is from the average of the
two. hb and Tb are calculated similarly. In the aspect-
ratio-1 cell, the temperature profile of the boundary layer
has been measured' indirectly by varying the Rayleigh
number to change the relative position of a fixed bolome-
ter near the bottom plate. In a convection experiment
with water, Zocchi, Moses, and Libchaber have mea-
sured' directly the temperature profile of the convection
cell at R = 10 with a moving bolometer. Both results in-
dicate that there are two well-defined boundary layers,
which bear all the temperature drop across the cell with a
constant gradient.

The temperatures of the top and bottom plates are
measured with the thermometers which are fixed in the
plates. To measure the central region temperature, a
bolometer is positioned at the center of the cell. The
bolometer is an arsenic-doped silicon cube of 0.2 mm,
which was originally made by NASA for astrophysics ob-
servation. ' ' At 5 K, its typical resistance is around 1

kQ, and the sensitivity is about 2 mK/Q. Principally, the
central region temperature has to be computed as the
average over the whole cross section of the cell, but this
is impractical experimentally. In soft turbulence, " since
there are many independent large-scale structures, our
previous study in an aspect-ratio-1 cell shows' that the
time-average temperature at different points of the same
height can be as large as 30%%uo of b.. Therefore one point
measurement at the center cannot be taken as the central
region temperature for soft turbulence. In contrast, for
hard turbulence, ' the central region becomes more
homogeneous. The maximum temperature difference of
the two points is 5% 6 at the onset of hard turbulence,
and the difference decreases with the Rayleigh number
monotonically. Thus it is a good approximation to use
the center temperature measurement as the central region
temperature, especially for large Rayleigh numbers. In
this paper, we shall only discuss the hard-turbulence re-
gime.

III. EXPERIMENTAL RESULTS

When the OB approximation is valid, x, the ratio be-
tween 6, and 6b, is 1. However, as the OB approxima-
tion breaks down, x departs from 1. Thus x is a quantita-
tive measure of the non-OB effects.

Figure 1 is a plot showing x for different Rayleigh
numbers. By changing the density, one can coarsely ad-
just the Rayleigh number. As shown both in Table I and
Fig. 1, the density needed to reach R =10' is not large
enough for the fluid properties of the two boundary lay-
ers to differ dramatically, consequently x is not very
different from 1. The fact that the x value is 0.89 for
R =2 X 10, smaller than 1, may come from approximat-
ing the central region temperature with one point mea-
surement. This approximation improves as the Rayleigh
number increases. However, for R ) 10', x becomes
significantly smaller than 1. Since a specific Rayleigh
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FIG. 1. x,„p„ the ratio between the measured temperature
drops of the top and the bottom boundary layers, is plotted
against the Rayleigh number R.

number can be realized with different densities, although
they must be close to each other, there is not a one-to-one
relation between x and a given Rayleigh number.

As shown in Fig. 1, x can be as small as 0.4, so the two
boundary layers are significantly different. Then how
does the turbulent temperature fluctuation in the central
region feel this difference? Figure 2 shows the histograms
of the temperature fluctuation in the central region for
R =1.2X10, x =0.87 and R =9.6X10', x =0.43.
They are normalized by their rrns temperature fluctua-
tion 6, . The normalized histogram for x =0.43 has the
same shape as that of x =0.87, it is symmetric around its
mean temperature, despite the big difference between the
two boundary layers. These boundary layers adjust
themselves somehow so that the fluctuation in the central
region is still symmetric around its mean. By the way,
the histogram of this large aspect ratio cell is exponential
only in certain range, rather than in the full range for the
aspect ratio 1 cell." This difference shall be discussed in
a future work.

However, non-OB effects may alter the Rayleigh num-
ber dependences of the Nusselt number X and rms tem-

FIG. 3. The log-log plot of the Nusselt number X vs Ray-
leigh number R. The small dots and the solid circles are the ex-
perimental data, but only the solid circles have been analyzed in
this paper. The open circles are the theoretical points. The
theoretical value has an arbitrary prefactor.

perature fluctuation 5, normalized by A. The solid cir-
cles and triangles in Fig. 3 reveal the R dependence of X,
whereas the solid circles in Fig. 4 reveal the R depen-
dence of b., /b. For R (10', both X and 6, /6 have
simple power-law relations with R,N with an exponent
0.29, close to —,', and b,, /b with an exponent —0.14, close
to

7
~ These relations have been proposed ' in a scaling

model for hard turbulence, which fits the experimental
results for the aspect-ratio-1 cell. However, X and 6, /6
deviate away from the simple power laws for R ) 10': N
seems to saturate with R and 6, /5 decreases faster than
with the —

—,
' power law. The deviation cannot be put

into the framework of hard turbulence, unless non-OB
effects play a role.

IV. PROPOSED MODELS

Now we try to answer the question of how the cell,
with a given density and given top- and bottom-plate
temperature, chooses the central region temperature, in

—1 0
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CI —1.0
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FIG. 2. Comparison of histograms of the temperature Auc-
tuation for (a) R =1.2X10, x =0.87 and (b) R =9.6X10',
x =0.43. The probability for a given temperature is plotted
against this temperature. The histograms are all rescaled so
that the rms temperature fluctuations coincide.

2 ~ 2 9 10

Logio R

12

FIG. 4. The log-log plot of 6, /6 vs R. The solid circles are
the experimental data, and the open circles are the theoretical
points. The theoretical value has an arbitrary prefactor.
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other words, how it selects the asymmetry of the two
boundary layers, namely x. Furthermore, we try to un-
derstand whether non-OB effects have anything to do
with the strange Rayleigh number dependences of N and
b,, /b, .

Let us consider how many equations we have. We al-
ready have Eq. (2), which states that the total tempera-
ture drop is across the two boundary layers only. Fur-
thermore, there is the conservation of heat flux. Since
the heat is transported purely by conduction in the two
boundary layers, then

(3a)

C)
+ 2—
C3

Q

0. 2

Xegpt

Rb/RT
x Wb/ Wt

~ e, /e,

0. 8

Ab
Xb

Ab
(3b)

where Q is the heat Aux, y, and yb are the thermal con-
ductivities for the two boundary layers, and X, and A, b are
the two boundary layer thicknesses. From the three
equations (2), (3a), and (3b), we are unable to solve for the
four unknowns 4„Ab, X„and Xb. One more equation is
needed to connect the two boundary layers.

Classically' ' the boundary layers are assumed to be
marginally stable, therefore their Rayleigh numbers are
constant. This implies the equality of the Rayleigh num-
bers R, and Rb for the two boundary layers, i.e.,

FICr. 5. Ratios between Rb and R, (open triangles), wb and
w, (crosses), and 0, and Ob (solid circles) vs the measured x.

creases, the ratio diverges away from 1. Therefore this
assumption is not corroborated by the experimental re-
sults.

It has been observed that there are many thermals in
the central region, which are released from the boundary
layers. ' ' ' Therefore the temperature fluctuations in
the central region must be directly related to the proper-
ties of the boundary layers. In the scaling model intro-
duced in Ref. 12 (where the OB approximation is as-
sumed), the thermals, with their initial temperature 6/2,
merge into the central region with a velocity w,

gCKg Xt Ag gCXb kb Ab
3 3

v VbKb
(4)

gawk

where the left-hand side is R, and the right-hand side is
Rb. This assumption can be checked from the experi-
mental data. If one substitutes the measured Q, A„and
b, b into Eqs. (3a) and (3b), the boundary layer thicknesses
X, and A.b can be determined; they are listed in Table II.
Thus R, and Rb can be calculated independently. R, and
Rb have been listed in Table II, and their ratio Rb/R, is
plotted against x in Fig. 5 as open triangles. As x de-

where this velocity w comes from the balance between
the buoyancy force gaA and the viscous force vw/A, .
Further the temperature Auctuation 6, in the central re-
gion is the temperature scale 0 of the boundary layers,

KV

gAA,

where the right-hand side is O. In the OB case, these two

TABLE II. Calculated values of the thickness A, , b, the Rayleigh numbers R, b, velocity scales w, &, and temperature scales 0, b of
the two boundary layers for different Rayleigh number R.

2.10x10'
5.75 X 10
1.21 X 10
5.13 X 10
3.35 x10'
8.42 X 10
1.27x10"
2.44 X 10'
3.07 X 10'
2.75 x10"
3.18 X 10'
4.00 X 10'
5.30 X 10'
6.97 X 10'
9.56 X 10'
1.10x10"

(pm)

390
291
235
148
163
128
110
89.8
85.5
86.1

83.4
77.3
74.1

70.0
63.1

62.5

A b

(pm)

452
338
276
177
184
161
141
133
143
108
112
124
128
113
124
122

R,

241
261
310
356
279
368
343
391
437
404
419
400
510
447
541
654

337
406
428
466
362
548
573
783

1086
656
611
995

1243
1202
1801
1809

wr

(cm/s)

24.5
15.3
22.4
20.0
12.3
19.3
15.1
19.0
22.2
15.3
16.2
16.6
21.1

14.4
18.3
20.4

wb

(cm/s)

32.3
21.7
29.6
26.1

15.5
28.2
23.9
37.0
52.9
23.9
24.8
39.1
51.9
37.6
60.7
60.8

O~

(mK)

0.698
0.282
0.536
0.461
0.253
0.441
0.364
0.515
0.602
0.301
0.321
0.399
0.408
0.239
0.287
0.228

O~

(mK)

0.561
0.208
0.444
0.416
0.219
0.372
0.283
0.394
0.416
0.242
0.312
0.275
0.316
0.172
0.199
0.196

2S/(S, +S„)
0.998
0.999
1.00
1.01
0.997
1.00
0.983
0.979
0.963
1.05
0.976
1.01
0.943
0.935
0.909
0.897
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equations are equivalent. Starting from either, one is able
to draw a series of predictions which fit the experimental
data of the OB case well. ' In the non-OB case, although
it is not obvious that w, is the same as wb, and 8, is the
same as Ob, it is revealing to compare their values in an
effort to generalize either Eq. (5) or (6) to the non-QB
case. Thus we calculate w, and wb, 8, and 8» from the
Auid properties in Table I and from the boundary layer
thickness in Table II. Their values are listed in Table II.

The ratio between wb and w, is plotted as crosses in
Fig. 5. It diverges away from 1 as x decreases, therefore
w, and wb do not match. On the other hand, the ratio be-
tween 0, and Ob is plotted as solid circles in Fig. 5. For
all the experimental values of x, the ratio remains con-
stant at 1.27+0. 13. Compared with the previous two
cases (the equality of R and the equality of w), the equali-
ty of the two boundary layer temperature scales

2.0

X 1.0—
la

0. 5—

0.0 0 0 O. E

Xexpt

0. 8 1.0

FIG. 6. Ratio between the theoretical and the measured x vs
the measured x.

Kgvt Kbvb
C 3 3g+t gt g~b gb

(7)

appears to be the best assumption. This assumption is
also consistent with the experimental fact that the histo-
gram of the central temperature Auctuations is symmetric
even in the strongly non-OB case, i.e., the colder temper-
ature Auctuations is the same as that from the hotter
ones. Generalizing Eq. (6), the rms temperature fluctua-
tions in the central region is the same as the two bound-
ary layer temperature scales.

Now that we have Eq. (7), we can write out the expres-
sion for x in terms of only the Auid properties. From
Eqs. (2), (3a), (3b), and (7), 6, and b, b can be calculated.
Their ratio x is

1/3
CXb Vt Kt gb

CXt VbKb

St

Sb
(8)

where S, and S„are defined as (v~/a)'/ (I/y) for the
top and bottom boundary layers. Note that the Auid

properties in the two boundary layers are related to x,
thus the right-hand side of Eq. (8) is also a function of x.
This allows one to uniquely solve for x. Here we use the
measured temperature to compute the Auid properties,
from which we calculate the theoretical x value from Eq.
(8). Figure 6 shows the ratio between the theoretical x
value and the experimental x value. The ratio is constant
with a value 1.08+0.04, indicating a good agreement be-
tween experiment and theory.

Let us point out the uncertainties in the measurement
and analysis. First, there are errors in the temperature
measurement and the consequence in the Auid properties.
The second factor comes from assuming the Auid proper-
ties in the boundary layer to be the mean temperature
value. Third, there are uncertainties in the McCarty
tables and equation, especially close to the critical point.
In the error bars of Fig. 6, only the first error is plotted,
although the scatter may be due to the second and the
third factors as well.

The rms temperature Auctuation 6, in the central re-
gion has been assumed to be the same as the boundary

layer temperature scales in Eq. (7). However, in order to
express the heat flux Q only in terms of b, and the fluid
properties, a further assumption has to be made about
the velocity in the central region. As in Ref. 12, we as-
sume that the thermals in the central region are only
driven by the buoyancy force, then

V, =(agLb, , )'/ (9)

The heat Aux is

gaL b,
x

2/7 ] /7
K

9/7

(12)t+ b

9/7

R 2/7P —1/7

S, +Sb
(13)

and the temperature Auctuation is
6/7S

S, +Sb
R —1/7P —3/7

where R and P are the Rayleigh number and Prandtl
number (P =v/x) based on the fluid properties of the
central region. For small non-OB effects, (S, +S„)/2 is
close to S, thus the relations between N and R, and be-
tween b, /6 and R are the same as those of the ideal OB
case. However, when. the non-OB effects are so strong
that (S, +Sz)/2 becomes different from S, then both 1V

and 6,, /b, depart from the simple power laws. The ratio
2S/(S, +Sb ) is listed in Table II. The theoretical Nusselt
number is plotted in Fig. 3 as open circles to compare

Q=C pb, , V, .

Combining Eqs. (8) and (9), one finds

Qcp(agL)1/2g3/2

Here the Auid properties are those of the central region of
the cell. From Eqs. (2), (3a), (3b), and (7), A. , and A, & can
be expressed in terms of Q, 6, and the fluid properties.
Then combining Eq. (7) with (ll), the heat flux Q is ex-
pressed as
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with the experimental data. One can see that besides the
power-law region for R &10', the theoretical Nusselt
numbers change in the same way as the experimental
data for R ) 10' . The theoretical b,, /6 is compared to
the experimental one in Fig. 4, with good agreement.

V. CONCLUSION

good between the experiments and theory. The scatter of
the results may come from the errors in the temperature
measurements, the apparent crude approximation about
the fluid properties of the boundary layers, and the uncer-
tainties in the fluid properties themselves. All of the
above discussion is about hard turbulence, where the
large-scale flow is not important in the centra. 1 region.

The assumption that the temperature scales of the two
boundary layers are the same is verified experimentally.
It is consistent with the observation that the histogram of
the central region fluctuation is symmetric even in the
strongly non-OB case. This assumption allows us to cal-
culate the ratio of the temperature drops across the two
boundaries, and compare it with the measurement. If the
velocity in the central region is assumed to be a free-fall
velocity, the heat flux and the rms of the temperature
fluctuation can be further computed. The agreement is
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