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In order to treat the effects of local nonequilibrium in fluids the thermodynamic metric, previous-
ly used for measuring dissipation, is extended from a space of extensive state variables into a space
of the field variables involving nonequilibrium quantities such as heat Aux. The metric is investigat-
ed in the context of the field description of transport and Row phenomena off but close to equilibri-
um. Thermodynamic potentials and corresponding tensors are constructed on the basis of the ex-
tended Csibbs equation involving heat and macroscopic velocity terms. An extension of the theory
is suggested to the problem of multicomponent heat and mass diffusion.

I. INTRODUCTION

Classical thermodynamics usually deals with changes
through equilibrium states. However, the possibility of
defining invariant nonequilibrium temperatures and pres-
sures' opens the way for dealing consistently with non-
equilibrium transitions, by continuing to use standard
classical thermodynamic methods based on Gibbs's
equation, thermodynamic potentials, and variable trans-
formations. A generalized Gibbs equation involving heat
terms was obtained with nonequilibrium intensive pa-
rameters invariant with respect to change of the irreversi-
ble variable; the approach was through Hamilton's prin-
ciple. The many treatments using this approach previ-
ously were restricted to fluids in equilibrium, where
the problem of invariance of thermodynamic intensities
out of equilibrium does not appear. The consistency of
the results of a variational approach' with the kinetic
theory and the solution of Boltzmann equation supports
the possibility of a purely macroscopic description of
transitions through nonequilibrium states not far from
Gibbs's equilibrium manifold.

In this work, we apply the extended Gibbs equation ob-
tained in Ref. 1 to the problem of heat transfer in the
context of differential geometry, ' in particular of ther-
modynamic length. "' The concept of length in thermo-
dynamics has proved fruitful in many investigations: the
invariant formulation of the (equilibrium) fiuctuation
theory, ' interactions in equilibrium, ' and nonequilibri-
um fluids described by either classical or extended ' '
thermodynamics, stability problems, ' bounds on dissipa-
tion, ' and stochastic interpretations. ' Care must be
used in the interpretation of thermodynamic metrics, par-
ticularly of the spaces in which they are valid and of
lengths and areas connected with those metrics. '

Nonetheless, the usefulness of the approach thus far en-
courages us to try to extend it, particularly to nonequili-
brium systems, in view of its close connection with dissi-
pation.

The discussion proceeds as follows. The macroscopic
formalism leading to the nonequilibrium Gibbs equa-
tion" is recapitulated in Sec. II on the basis of Ref. 1,

with emphasis on the inclusion of variables adequate for
the description of the disequilibrium of interest. Some as-
pects of the problem of reference states for nonequilibri-
um systems, and thermodynamic curvature caused by
heat, are discussed in Sec. III. Section IV reviews the
roles of classical (equilibrium) thermodynamic potentials
V and discusses the so-called copotentials, the complete
Legendre transformations of V for systems of given size.
Fluids in motion are treated in Sec. V in the context of
nonequilibrium length of thermodynamic field theory and
the classical thermodynamic potentials and thermo-
dynamic tensors are extended to include heat transfer and
convection. Thermodynamic stability conditions for
equilibrium in the extended state space involving flow
variables are given in Sec. VI. In the conclusion, Sec.
VII, we show the correspondence between the thermo-
dynamic potentials used in equilibrium and nonequilibri-
um situations not far from Gibbs surface and the direct
generalization of the theory to mass diffusion in mul-
ticomponent systems.

For the thermodynamics pursued here the definition of
Gibbs's surface is essential, even though this is not the
surface on which thermodynamic length is measured. ' '
For the extended n +m + 1 state space involving n classi-
cal (static) variables, m fiow variables, and the energy po-
tential E, the Gibbs surface is the n-dimensional equilibri-
um submanifold corresponding to the classical relation
between E and the other classical variables when all the
low variables vanish. That is, the Gibbs surface is the
submanifold E(p,p„0,0) in the space of densities of
matter, entropy, and momenta, and the flux variables I
and J when I=J=O.

II. NONEQUILIBRIUM KINETIC POTENTIAL,
THERMAL ENERGY, AND MOMENTUM

For a one-component fluid out of but not far from
equilibrium, described by the specific entropy s, specific
internal energy e, and mass density p (or specific volume
v =p '), a thermal kinetic potential exists' based on the
velocity of the entropy diffusion v, and the hydrodynam-
ic velocity u. When expressed in terms of the more popu-
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which is a useful quantity to extract heat phenomena
from the total hydrothermodynamic behavior. Here
T(p, s) = T'~ is the equilibrium energy function, known
from classical thermodynamics, expressed in terms of its
natural variables, and g(p, s) is an "inertial coefficient"
associated with the deviation of internal energy (or entro-
py) from local equilibrium. For a hard-sphere Boltzmann
gas g is a constant equal to 2m /5k; this expression is a
consequence of the solution of Boltzmann kinetic equa-
tion. For real Quids the general definition of g(p, s), in
terms of the nonequilibrium internal energy e, is the
derivative p 8 e/Bj„some information of how to com-
pute g in the general case is given in Ref. 1. For the pur-
poses of this work an implicit function g(p, s) is enough.
In our close-to-equilibrium theory every multiplicative
coefBcient of any kinetic term can be taken as function of
the classical parameters only. ' The quantity (

—l, ) is the
coefticient linking the heat flux q to the entropy flux j, in
the expression for the total energy flux when the La-
grangian formalism in the variables p, s, v„u is applied
to obtain the components of the energy-momentum ten-
sor, in particular energy flux. Thus the quantity—l, —:T(p, s, v, ) has the interpretation of a nonequilibri-
um temperature. This quantity (as well as other thermo-
dynamic intensities of this kind) is used in this work to
construct the consistent formalism of an extended ther-
modynamics in which T(p, s, v, ) appears as the partial
derivative of the energy with respect to the entropy in the
extended Gibbs formula involving fluid flow and heat
phenomena.

As shown in Ref. 1 the energy function associated with
the kinetic potential (1), i.e., the Legendre transform of L
with respect to both velocities v, and u, is the total ener-

gy density of the flowing nonequilibrium fluid with heat

2 2

E =p +pgs +pe(p, s )
2 2

(3)

and the derivative I =BL/Bv, is the corresponding densi-
ty of a generalized momentum ("thermal momentum" in
Ref. 1) which exists due to heat transfer (or entropy
transfer) in the Quid even if the Quid is at rest (corre-
sponding to vanishing hydrodynamic velocity u=0).
From Eq. (1)

lar variables of entropy density p, =ps and entropy flux in
the fiuid frame j, (heat Qux q=j, /T), this velocity is
v, =j, /p, =q(psT) '. It appears as an extra variable in
the kinetic potential density of the flowing fluid,

L(p, s, u, v, )=p +pgs —pe(p, s),
2

(1)

where the term containing g is related to heat phenorne-
na. From (1) one can define the "differential" thermal ki-
netic potential referred to unit entropy of a nonequilibri-
um fluid as'

BI.I:— =pgs vs =gsjs p 'gpsvs
s

(4)

2

E(p,p„I,J)=pe(p„p)+pg 'p, I /2+p (5)

This is a Hamiltonian type of function. The velocity of
the entropy diffusion v, is obtained from (5) by
differentiating E with respect to I, which conforms to the
general formula v=BH/Bp for a Hamiltonian H. One
obtains v, —=pg 'p, I in agreement with Eq. (4). The
heat flux density q can be then computed as

q= Tj, = Tpsv, = Tp(gs) 'i= T(gs ) 'I .

At equilibrium I, j„and q vanish; hence the thermal
Inomentum appears only for nonequilibrium fluids. It
can be associated with the Cattaneo form of the equation
of heat conduction, " which replaces the (less exact)
Fourier equation q= A,VT. From E—qs. (5) and (6) the
nonequilibrium part of the specific internal energy is

he=(gs ) 'i /2= ,'gq /p T—
which corresponds to the nonequilibrium decrease of the
specific entropy

b,s= —helT= —,'(gq /p T ) . — (8)

For an ideal gas for which g =2m /5k and I' =pkT/I,

bs= —(I/SpPkT )q (8a)

When energy and momenta pertain to the unit mass of
a continuum, the units of e =E /p and i =I/p are
(m/sec) and m/sec, respectively. However, it was
shown' that when heat phenomena are considered, ex-
pressing energy, thermal momentum, and other quanti-
ties per unit of entropy is both natural and suitable; i.e.,
the quantities e, =E/p, —and i, =I/p, are particularly
natural. They have dimensions of temperature K and
Ksec/m, respectively. They may be used in turn with
specific quantities or volumetric quantities v~hen the
Gibbs equation is established; the volumetric quantities
have been the most popular in thermodynamic descrip-
tions. The special role of the entropy basis in the descrip-
tion of heat phenomena results from its role in
Hamilton's principle' where entropy and mass are the
two basic entities of the hydrothermodynamic behavior
of a continuum and the heat can be viewed as the trans-
port of entropy in the frame of the moving fluid. '

The energy density E, Eq. (3), expressed as a function
of its natural variables of momentum densities I and
J—:pu, is
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in accordance with the well-known results of the kinetic
theory and extended irreversible thermodynamics
(EIT).' In fact, the origin of the kinetic potential Eq. (1)
is in kinetic theory. Once it is formulated, however, it is
a very suitable starting point for description of heat
transfer away from local equilibrium when a phenomeno-
logical description is pursued, even for dense gases and
polyatomic fluids.

From the invariance of nonequilibrium temperatures
and pressures with respect to transformations of the
nonequilibrium variables in the energy-momentum tensor
of the fluid, e.g. , j,—+I, it was shown' that the thermal
momentum BL /Bv, is the appropriate nonequilibrium
variable to be kept constant when differentiating non-
equilibrium energy with respect to the entropy and
volume. Only when thermal momentum I is used do the
two definitions of nonequilibrium temperature, the ther-
modynamic (BE/Bp, )~ & J and the dynamic q/j, coincide.
Other nonequilibrium variables such as q and j, do not
have this property they lead to different values of T and
P which depend on what is kept constant in the energy
formulas. The unique role of the thermal momentum re-
sults from the fact that the momenta are the natural vari-
ables of energy. ' Consequently, in this work we use the
nonequilibrium temperature defined as

T(p,p„I)= BE
Bps

BL

Bp

(9)

g Vs= T(p, p, ) —gsv, — s
Bs 2. P

= T(p, p, ) —p(gp,')

Bg (g2P2)-1
I2

Bs ' 2
P

With the signs as shown, this coincides with the
diff'erential kinetic potential (2). The equality of the ap-
propriate derivatives of energy E and (negative) kinetic
potential L in Eq. (9) is not accidental; it is the result of
Lagrangian formalism where (BE/Bg)„= —(BL /Bg), for
any arbitrary parameter g contained in E and L. This is
because the Legendre transformation from L to E in-
volves only p and v, but not g. In mechanics the time t is
used commonly for g, but g may be any variable in E or L
which is neither velocity nor momentum. In our case, g
1s ps

An analogous definition holds for the nonequilibrium
chemical potential p. Now g=p. For our L and E, Eqs.
(1) and (3), the nonequilibrium chemical potential of a
moving ffuid (in Eulerian or field representation) is

BE
Bp P, I,J

BL

Bp p, v, , u

u2
=p(p, p, )

— +—,'gs v, 1—

2

=P(p P. ) P 2
+ '(gP. )—

lng
B lnp

B lng
B lns .P.

Bing + Bing
B lnp B lns

. P
(10)

The role of convection velocity is as essential for this
function as for the total energy. The sign of u /2 is, how-
ever, reversed; this is associated with the concavity of p
around equilibrium in its natural frame, as we shall see in
Eq. (40).

The nonequilibrium temperatures and chemical poten-
tials used here differ from corresponding quantities intro-
duced in Ref. 1 for the fluid at rest; some remarks con-
cerning this matter are in order. All quantities in ques-
tion are invariant with respect to the transformations of
the nonequilibrium variables, I~j„as they should be.
However, the present formalism uses exclusively densities
of all possible extensities in the formula for energy densi-
ty whereas the previous formalism' used the thermal mo-
menta referred to the unit of entropy. That formalism
had some advantage in that i„an intensive quantity,
rather than I, appears in the expressions for the entropy
production of o., and the related equation of heat con-
duction, the expression a., = —T j, .(VT+Bi, /Bt).
However, the present formalism consistently uses energy
as a function of the extensities only in accord with the
standard thermodynamic formalism based on the funda-
mental equation and thermodynamic transformations.

The differences between the two temperatures, of Ref. 1

and of this work, can be linked with the slightly different
ways of splitting the energy flux between the heat flux q
and the work of stresses resulting from the transfer of the
entropy or heat, II, . For the temperatures T of Ref. 1

the heat flux is defined as Tj, and the work of the stresses
II, is defined as II, .u where u is the hydrodynamic veloc-
ity, whereas in the present work the heat flux is defined as
Tj, = ( T i, .v, )j„where —T obeys Eq. (9), and the work
of the stresses is II, (u+v, )=II, u„where u, is the ab-
solute "entropy velocity" associated with the entropy
transfer or the ratio of the total entropy flux J, to the en-

tropy density p, . While defining the entropy stress work
as II, .u, seems to be more appropriate in the present
context than as II, u, the sum of the heat and work terms
in question remains identical for the two cases.

III. NONKQUILIBRIUM KFFKCTS
AND THERMODYNAMIC CURVATURE

A. Nonequilibrium and reference states

For the fluid at rest, i.e., for hydrodynamic velocity
u =0, the specific energy counterpart of Eq. (5) is
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e(s, u, i)=e'~(s, v)+g(s, u)i /2, (5') ds = T 'de+PT 'dv —T 'v, di . (14)

where g(s, u)=[g(s, u)s ] '. It is associated with the
Gibbs equation

de = Tds —pdv+v dI,
where the velocity of entropy diffusion results from Eq.
(4) and definition of rl. The nonequilibrium temperature
T and pressure P deviate from their corresponding (isen-
tropic, isochoric) equilibrium values according to formu-
las (with g, =Bg/Bs, g„=B /8„. . . , ri, —=Bri/Bs,
g, —=g/Bu, etc.):

T(s, v, i) = T(s, v)+ g, i /2

Here, on the basis of (13) and (6),

T 1(e u-i) T-1(e u)
a(T g)

Be 2

8( Ts g ) (s q /p T )

ae

=T, ' —P, i /2, (15)
= T(s, v) —(g, /2+g/s)(q/pT)', (9')

equivalent to Eq. (9), and

P(s, v, i)=P(s, v) —g, i /2=P(s, v)+g„(q/pT) /2, (12)
(PT ')(e, u, i) =(PT ')(e, u )— Q(Ts g) ' i

QU 2

resulting from ( 5') and (6). [See Fig. 1 where e (s, u, i, ) = e,
at point A and e(s, u ) =e, at point 8, etc; the tildes desig-
nate disequilibrium according to the convention used in
Ref. 1. In this text, where the complete set of variables
for thermodynamic functions is specified, it is not neces-
sary to use tildes. Also, we use abbreviated notation,
T(s, u) or T'~ instead of T(s, u, O), etc.] When expressed
in terms of the specific thermal momentum i the specific
nonequilibrium entropy s ( e, u, i ) is

=(PT ')(e, u)

z B(Ts g) ' (sq/pT)
BU . 2

=(PT '),
q
—P, i'/2 . (16)

s(e, u, i)=s(e, v ) —[g(e, u)Ts (e, u)] 'i /2

=s(e, v ) —P(e, v )i /2, (13)

where P(e, u ) = [g(e, u) Ts ] '. The generalized Gibbs
equation describing this entropy is

One can represent differences of (15) and (16) in terms
of b, T and b,P rather than b T ' and 6(pT ') to show
explicitly that they differ from those given by Eqs. (11)
and (12). For the ideal hard-sphere gas (g =const) one
finds, ' for instance,

T(s, v, i) = T(s, v ) —(gs) '(i/s)' (17)

and

P(s, u, i)=P(s, v) (g, ' "=0) (18)

but, at the same time

T(e, u, i)=T(e, u)+T (e, u)P, i (u=O) (19)

and

P(e, u, i) =P(e, u )+ [P,PT(e, u ) P,]i—(20)

entropy

FIG. l. Arbitrariness of the equilibrium reference states at-
tained from given nonequilibrium state, point A. If, for exam-
ple, entropy is held constant in the relaxation process or in
defining the reference equilibrium, then point B is the equilibri-
um, but if energy is constrained to be constant, then point C is
the appropriate equilibrium.

Apparently Eqs. (17) and (19) and also Eqs. (18) and
(20) are in contradiction. However, there is no error in
formulas (17)—(20). As it was comprehensively explained
in Ref. 1, the difference pertains not to the nonequilibri-
um parameters but to the equilibrium (reference) parame-
ters because the equilibria attained from the same non
equilibrium state along isentropic and isoenergetic lines
di+er, as shown in Fig. 1. This fact causes different
"nonequilibrium corrections" in the two cases. In other
words, the splitting of any nonequilibrium quantity ( T, P,
e, etc. , derived for point A, Fig. 1) into an equilibrium
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quantity (derived for points B, C, D, etc.) and a kinetic
correction (q term), which depends on the representa-
tion used for the thermodynamics. The nonequilibrium
quantities (T, P, etc.) at point A, Fig. 1, only have an
unambiguous, physical meaning when there is heat in the
system (due to the heat fiow, point A never lies on the
equilibrium line BCD ).

—1

(5e )'+ (5u )'

+2 aT'
Bv

B. Thermodynamic curvature —P5i 5i —2i P, 5e5i —2'„5v 5i . (21)

Let us consider now the effect of heat on thermo-
dynamic curvature. Again we designate (gTs ) ', Eq.
(13), as /3, and its derivatives with subscripts. The second
diff'erential of the specific entropy (13), in the presence of
a heat Aux in the system, is

(Maxwell relations were used to obtain this formula. ) A
comparison with the classical results without heat can be
made if one restricts the calculation to the subspace of
the variables e and u. For an ideal gas Eq. (2) yields

2s~(I=const)

1/c„T +/3„i /2

5v /3„j /2

P„i /2

P/Tu+/3„i /2 5v (22)

For i=O or q=O the matrix of d si; „„„i,Eq. (22),
simplifies to the well-known local equilibrium expres-
sion. ' Equation (22) has a structure identical to that of
Eq. (7) obtained by Casas-Vazquez and Jou with the
thermal momentum i replacing the heat Aux q and the
coefficient /3= (g Ts )

' replacing their coefficient
a=su/A. T . For the ideal gas a= —,"(klm)u e

Therefore, by using Ref. 9, we immediately obtain an ap-
proximate expression for the Gaussian curvature K, asso-
ciated' with the metric defined by —(M /k )d s:

K = ,'(e u /Nc, )i—[/3„/ev+ (/32, „„/e+/3„, / )u], (23)

i =—', (m lk )(sq/p T ) (24)

and

/3=(gTs ) '=5k l(2m Ts )=—"(k /s m e), (25)

where M is the total mass of the system M =XI and N is
the total number of particles. The expression
L = —(M/k)d s is applicable only to quasihomogene-
ous systems. For large heat Auxes an integration pro-
cedure for the function —f f f (plk)d s dV is neces-

sary. ' For the ideal or hard-sphere gas,

equilibrium situations the irreversible Aux makes the
metric curvilinear except for the ideal gas. In a sense the
effect of heat Aux in a nonideal gas is similar to that
caused by an interaction between molecules. This con-
clusion is confirmed by considering the energy represen-
tation metrics based on the derivatives dT/Bs, BT/Bu,
and BP/Bu obtained from Eqs. (17) and (18). For the

ideal gas g, =g, =O, T=T, —(gs ) 'i, and P=P,„at
the same s and v, and the coefficient g of i in the energy
formula (5') depends on entropy only. Hence in the equa-
tion of the type of Eq. (23) all mixed derivatives vanish
and the classical result for E =0 must hold' despite any
heat Aow. Thus the energy representation confirms that
K=O for an ideal gas close to but not in equilibrium.
However, K need not be zero for a nonideal gas because

g, and g, do not vanish.
One may also consider an open system of fixed volume

involving d p, (variables E, p, and I) as an alternative to
the closed system involving d s (variables e, u, and i) just
analyzed. However, the Gibbs-Duhem equation implies a
conformal relation d p, =pd S between these
differentials, ' so the physical results obtained above
remain valid for the open system.

K =(ya/Nc„)q (27)

Here y depends on the form of the function g(e, u) and
vanishes for the ideal gas. The equilibrium curvature al-

ways vanishes (q—=0 at equilibrium), whereas in non-

Since /3 contains s(e, u ) it depends on both the energy and
volume, and it is not at once obvious that for the ideal
gas is

(26)

For nonideal fiuids, for which both g and /3 depend on u

as well as on e, one arrives at the result of Casas-Vazquez
and Jou hnking K and the square of the heat Aux q,
however with a different coefficient y instead of —', :

IV. FIELD VARIABLES
AND THERMODYNAMIC METRIC

FROM A POTENTIAL

Assume that we consider a thermohydrodynamic field

(a fiuid with variable thermal and hydrodynamic parame-
ters in the Eulerian representation) described by field
functions a '( x, t ), i = 1, . . . , n, where a '( x, t ) are physical
quantities distributed in some region I of the physical
space-time (x, t ). Consider any twice differentiable state
function of the variables a'=a'(x, t), say V(a', . . . , a")
and its complete negative thermodynamic Legendre
transformation V (a„.. . , a„) where a' and a; are
linked by a;=BV/Ba'. In classical thermodynamics the
space a' is spanned by the conventional coordinates such
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V (a, , . . . , a„)=pa;a' —V(a', . . . , a"), (28)

0 V

a

Q2 VT

Ba&Oak
(29)

a;=
Ba'

BVa
Ba;

(30a)

(30b)

as energy, volume, and concentrations. The Legendre
transformations used in mechanics and thermodynamics
differ by sign; the transformation (28) corresponds with
that used in mechanics. This is to preserve the same
definition when the Quid motion (described in mechanical
terms ' ) is considered. In the so-called extended thermo-
dynamics, ' ' ' the dimensionality of the state-space a'
is enlarged by including among the state variables such
quantities as cruxes ' or velocities however, the prob-
lem of metric can be stated formally in the same manner
as in the classical equilibrium case. The two functions
V(a', . . . , a") and V (a;, . . . , a„) in the two adjoint
frames a' and a; obey the relations

convex (concave) functions such as energy (entropy) and
their quadratic approximations are especially suitable as
they are associated with the stable macroscopic equili-
bria, exhibiting definite signs of the components g' in ei-
ther classical or extended thermodynamic state space
(Sec. VI). Furthermore, they provide the simple interpre-
tation of the stability conditions serving as Liapunov
functions. ' (However, stability criteria can also be ex-
pressed in terms of arbitrary thermodynamic potentials. )

For quadratic homogeneous functions V=a .A a, the
equality V= V holds, and the components of the metric
tensor g; are the elements of matrix A and. those of g'

the elements of A '. For nonlinear and nonquadratic V
the transformation of variables a ' —+ a ' =—a;, Eqs. (31a)
and (31b), is nonlinear and this is why the cofunction V,
Eq. (31b), does not coincide with V, Eq. (31a). In the spe-
cial case of a nonhomogeneous quadratic V, transforma-
tions (31a) and (31b) are necessarily linear and V differs
from V only by a certain linear function of state a', and

g, = A as well as g' = A ', as in the homogeneous quad-
ratic case. The elementary differential formula describing
the transformation of the Hessian of V from the frame a'
to the coframe (a' ) —=a;

a'V
da, = —

. da',
aa'aa' (31a)

0 V

B(a' )i3(a" )

Ba'
B(a' )

oak

&(a" )

0 V

a'ga k

Q2 V T
da

Ba, Bat
(31b)

BV
k

g2 k

B(a' )B(a" )
(33)

so that

dl =da'da;=6kda da&=da'da& (32)

is the element of the square of Riemannian length. Since
a'=a'(x, t), the thermodynamic length along given path
x(t) linking two given points A( tx) and B( tx) in the
physical space-time can be computed in terms of a'(A)
and a'(8). Also, distances between A and 8 can be found
by minimization of / with respect to path. Thus the con-
cept of thermodynamic length can be incorporated natu-
rally into the formalism of field theory by using the func-
tions a'(x, t) known from solving the hydrodynamic
equations of change. ' It is important to note that the lo-
cal states of the system at 2 and B can be out of equilib-
rium if nonvanishing diffusive cruxes exist along any part
of the x(t) path. In this way, we then have achieved a
construction of nonequilibrium thermodynamic length in
the Eulerian (field) representation of the fiuid motion.

The two frames a ' and a; are adjoint at each point
(x, t ) HI; if the Hessian matrix of V is accepted as the
matrix of the covariant tensor, then the Hessian matrix of
V (describing the coframe) is automatically the matrix
of the contravariant metric tensor. Since for given frame
a ' and given nonlinear function V(a ', . . . , a ") the
coframe can always be defined in the region of the non-
singular Hessian of V, one can always define the metric
tensor with covariant coordinates g;k=3 V/Ba'Ba or
with contravariant coordinates g' =8 V /Ba;Oak. In
principle any arbitrary scalar function V can be used.
When describing thermodynamic equilibria, however, the

proves that except for the case of a homogeneous quadra-
tic V [constant Hessians in (31) and (32)], the Hessian ma-
trix does not transform like a tensor so that a distinction
between V and V" is generally essential. This distinction
is frequently overlooked in classical thermodynamics in
which, with conventional state variables, the various
quadratic forms applied to investigation of stability are
expressed in terms of the Hessians of the entropy or the
energy. These forms are commonly called "second
differentials of entropy. " ' ' When the coordinates are
the specific energy e and volume u [consider Eq. (31) for
V=s and a'=(e, u)], in the coordinates
a, =(its/c}e = T ', Bs/Bu =PT '), the corresponding
classical copotential is, according to Eq. (28),
V =[(e+Pu —Ts)/T]=p/T, the Planck potential.
Both V and V are concave in their natural variables,
corresponding to equilibrium.

Schlogl was able to show some virtues of the metric
defined in the space of intensities' not pointing out, how-
ever, that it is just the corepresentation of Ruppeiner's'
entropy metric when the mass of the system is constant.
It was, however, recognized' that at least one of exten-
sive variables should be fixed to determine system size.
For instance, Eq. (28) indicates that the copotential of
S(E, V, M) degenerates to zero when the mass of the sys-
tern is not fixed, making the Hessian of copotential singu-
lar, so the metric cannot be constructed. This is because
the intensities are connected by the Gibbs-Duhem equa-
tion, so they cannot all be assumed independent. Howev-
er, if one constrains the problem to a system of constant
mass or constant volume, the metric becomes constructi-
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ble. Entropy per unit volume p, of a classical system is a
function of energy and mass densities p, (F.,p) so that the
coordinates of the coframe are T ' and —pT ', and the
copotential V is ET ' —ppT ' —p, = —P/T; the role
of the pressure is also particularly important in the coen-
ergy representation, as discussed below.

Similar remarks hold for the classical metrics based on
energy. The specific energy e is, in the classical case, a
function of the specific entropy s and volume v; hence the
coordinates are T and —P. When the system has only
two classical degrees of freedom, the coenergy (28) is then
Ts —Pv —e = —6, the negative of the specific Cxibbs free
energy G( T, P)—. On the other hand, if one uses
volumetric energy E as a function of entropy density and
mass density (mass densities in multicomponent systems),
i.e., the potential F.(p„p) is taken as V, as in Eq. (28),
then the copotential is Tp, +pp —E=P, the pressure in
the system expressed in terms of T and p as the covari-
ables of p, and p.

The role of the second differentials of the pressure in
the Auid stability problems was explained well only re-
cently by Schmid, ' who pointed out the duality of E and
P as well as the role of convexity of P(T,p); a sample of
Auid in a stable, Auctuating condition is characterized by
an average pressure greater than the pressure of a quies-
cent sample at equilibrium. Thus Auctuations in a stable
Auid have the effect of "stiffening" the Auid. The essen-
tial difference between E and P is that while E is related
to the intrinsic energy, P reflects the interaction energy
that the sample of fluid possesses due to its interaction
with the rest of the fluid. '

The second differentials of equilibrium volumetric
quantities have turned out to be suitable Liapunov func-
tions for stability problems of both thermodynamics and,
with some extensions, see Eq. (51), hydrodynamic prob-
lems of stability. ' ' However, their unfortunate
identification with the second differential of entropy in
arbitrary frames persists in the literature. It was the pur-
pose of the above examples to show that the Hessians of
various thermodynamic potentials can constitute the
same thermodynamic metric g'~. More information about
the transformations that can generate g'J can be found in
Ref. 22.

V. THE METRIC FOR NONEQUII. IBRIUM
FLUIDS IN MOTION

Now we can pass to more dif5cult examples involving
moving, nonequilibrium Auids which can conduct heat.

The variety of equilibrium functions V that can be used
to define the classical g'J leads us to seek the analogous,
extended functions V for moving Auids out of but close to
equilibrium, in which various diffusion phenomena can
occur. Since this is precisely the problem of nonequilibri-
um thermodynamic potentials, in extended thermo-
dynamics (EIT) this extension is both difficult and essen-
tial due to different roles of "kinetic" terms in different
frames. ' Let us outline the problems which appear in
ErT.

First, the theory of nonequilibrium thermodynamic po-
tentials is not well developed for processes requiring the
inclusion of both diffusion and viscous terms. Second, no
interpretation of cofunctions V has been given so far
when the new (ffow) degrees of freedom are added to the
primary V. Third, the role of kinetic terms is different in
various representations (various frames) and it is not al-
ways easy to transform results from one frame to anoth-
er. Finally, it is an open question whether any external
fields should be included in V and treated in the same
manner as other terms, or should be excluded from the
metric. Concerning external fields we assume the latter
alternative. In view of the limitations of general forms of
nonequilibrium thermodynamic potentials, and with the
Gibbs equation in particular, we restrict our treatment to
flowing one-component Auids whose convection velocity
is u, with heat for which the total specific energy is given
by Ref. 1,

e(s, u, u, i)=e(s, u)+u /2+i /2s g(s, u)

=e(s, u)+u /2+ —,'gs v, , (34)

which is an immediate generalization of Eq. (5 ). The
differential Gibbs equation associated with (34) is

de = Tds —Pdv+v, .di, (35)

where nonequilibrium T and p obey Eqs. (11) and (12). In
order to avoid expanding into a matrix representation, in
equations such as (36), submatrix notation for Cartesian
vectors i, and u and their derivatives have been used. We
use bare symbols for column submatrices and symbols
with the superscript dagger for row submatrices. The un-
derlined, bracketed 1's and 0's are unit and zero subma-
trices, respectively. The convexity of (34) at equilibrium
( V, = u =0) is obvious. Recall that the coefficient
g —= (gs ) '. Therefore the covariant tensor

aT
as

as

av,
as

au
as

aT aT aT
a1 au

—ap —ap
a1~ au~

av, av, av,
a. a1 au
au au au
av ai au

a$2
—ap eq 'gv~l+a$2

9s1

0

a T Isv

av 2

apeq g j2

av+2
0

g, i~ 0~

nrl] [o1

(o1 [ll

(36)
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furthermore, for equilibrium the metric is always positive. Using Eq. (6) one can express i, corrections in terms of heat
Aux, a measurable quantity. For the ideal gas, the tensor is

2m T +3 ( 42 —2T

—2T skT
3v 307V

0T 0

—2g 's it 0~

2g s j.

0

0

0

5k s [1]
2&i

[0l

(37)

—p=e = Ts —Pv+i-v, +u —e, (38)

which has to be expressed in terms of covariables
(T,P, v„u). Transformed from the energy (34), this is the
negative chemical potential, Eq. (10). It is equal to the
partial derivative of the total energy with respect to mass
when the total entropy, volume, and momenta are con-
stant. However, in the multicomponent case
e = —g;p;y, , where y, are mass fractions. Further-
more, g;p;y; is equal to the Gibbs free energy
G—:e+PV —Ts only if u=—i—=0. In any system with
more degrees of freedom than the classical ones the
Gibbs free energy is no longer the sum of the products of
the chemical potentials and masses (mole numbers) of the
species. The appropriate property is exhibited in any
case by the thermodynamic potential —e . Its perfect
diA'erential in our one-component case is

de =sdT —vdP+i. dv, +u du .

The potential e is related to the classical Gibbs free en-
ergy G as follows:

=G 1 vq u (38')

Taking the equilibrium function p'q of Eq. (10) in terms
of T'q, p'q, expressing these variables in terms of non-
equilibrium variables T,P, v„u and performing a Taylor
expansion to second order yields
—e =p(T, P, v„u)=p'q(T, P) gs v, /2 u /2 . — —(40)

Indeed by differentiating (40), Eq. (39) is obtained as well
as isothermal and isbaric nonequilibrium corrections to
s'q and v'q. The role of the (convex) function u /2 —p'

The positive sign of g '=5k /2m in Eq. (37) is a
consequence of the stability of heat Auctuations in the
ideal gas. On the other hand, the positiveness of g and g
in the general equations (5), (34), and (36) is related to the
positiveness of the thermal relaxation time ~ in nonequili-
brium energy formulas of EIT as well as in the Cattaneo
equation of heat' where ~ is proportional to g. It is easy
to see from Eqs. (36) and (37) taken for i =0 that the posi-
tiveness of g, g, or ~ constitutes the new nonclassical con-
straint that should be added to classical stability condi-
tions of equilibrium, cz) 0 and g&0. Convection terms
take into account the occurrence of the inverse process of
macroscopic motion through Auctuations of the hydro-
dynamic velocity u. The complete Legendre transforma-
tion of e, Eq. (34), yields in our one-component case the
copotential

is known in variational mechanics of perfect Auids. The
contravariant elements of the metric tensor are the ele-
ments of the Jacobian B(s, v, i, u)/B(T, P, v„u), the inverse
of (36). The entropy version of these tensors' is of
course —T ' times the corresponding elements of g;&
and g'". Using standard tensor transformations, —g;&/T
and g'"/T —can be transformed to the natural variables
of entropy (e, v, i, u). Alternatively one can use Eq. (35) in
the form

ds=T 'de+(PT ')dv —(v, T ') di —(uT ') du,
(41)

and compute the Jacobians

and

B(T ', PT ', v, T ', ——uT ')

B(e,v, i, u)
(42a)

(43)
Here the equilibrium function s(e, v) is expressed in
terms of the nonequilibrium energy and volume of mov-
ing Quid which corresponds to taking the entropy s'" at
point C, Fig. 1. This entropy is greater than that at point
B; the consequence of operating with this equilibrium
function is that the kinetic terms divided by T have to be
subtracted in Eq. (43) from s (e, v) in order to obtain the
true entropy of the system at point A.

The Legendre transform of s, Eq. (43), yields on the
basis of (38) the coentropy

sr(T ',pT ', v, T ', —uT ')—
= —erT '=(pT ')'q —T 'gs v /2 —T 'u /2 .

(44)

Both s and s are concave functions around equilibrium.
The ideal-gas result is the tensor generalizing that of Eq.
(22) for u&0.

B(e, v, i, u)
(42b)

a(T ', PT ', vT ', —uT —')
to obtain the covariant and contravariant tensors.

For this purpose the function s(e, v, i, u ) describing the
specific nonequilibrium entropy at point 2, Fig. 1, should
be evaluated from Eq. (34). Since the entropy sz equals
the equilibrium entropy at point B, the arguments of
which are e'"=e —u /2 —i /(2gs ) and v'"=v, then
s (e, v, i, u) =s'q(e —u /2 —i /2gs, v ) and after Taylor ex-
pansion

s(e, v, i, u)=s(e, v) i /[2Ts g—(e, v) j u /2T(e, v ) . —
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p j2—3k /2me—
2

—p,„i —p, i T U
—I

e

p j2 —k
02V

p„„i
2

—p, it

—p, i —p, i

T U
U

—15k [1]
4m es

[Q]
—3k[1]

2~e

(4S)

where 15k /4m e=(Tg) ' and 3k/2me=T '. The
planar space associated with the classical part of (45) is
described in Ref. 24.

The Hessians of the entropy density p, have proven
suitable to investigate the stability problems of thermohy-
drodynamic equations of change for energy, mass, and
momentum in which the density arguments E=—pe,
pu /2, and pu appear in a natural manner. ' From Eq.
(5)

p, =S,(E,p, I,J)=S„(E—g 'pp, I /2 p'J /2—,p)

=S,(E,p) —g 'pp, I /(2T)

B(T ',pT ', v, T ', uT ')
g(s)—

B(E,p, I,J)
for the ideal gas, for which

g2 —1 g2 —1

( T2) i P
—i PP P PP

~E2 ' ei" gEgp

(4&)

and the perfect differential of p, is

dp, = T 'dE (pT —')dp T'v—dI T'u—d J . (47)

Now we specialize with an example. The covariant
tensor"

—p 'J'/(2T), (46) 1s

(s)

f2 J2
, —(p 'P)„——(pT),, '—

3k/2mE —(p 'P), ——(pT),p
'J'/2

—(p 'P), I

(pT), 'J—
I2 J2—Sk/2mp —(p 'P)

z
——(pT)~~'—

—(p 'P)pI
—(pT)p 'J

—(p 'p) I (pT)p 'J—
—(p 'p)[1]

[Q]

[Q]
—(pT) 'll]

(49)

I2 J2
(3k/2mE) (p 'P)ep — (pT),z

—' —— —(p 'P), I (pT), 'J—

(The flux corrections are written in the form usual for both ideal gas and nonideal fluid. ) The negativity of the deter-
minant of this tensor and its principal minors at equilibrium (u=v, =0) constitute the stability conditions for the fluid
with fluctuations in its velocity, heat flux, density, and energy. [See Eq. (69), below, for other statements of equilibrium
conditions. ] The perfect differential of the energy of unit volume E=pe(p„p, I,J), Eq. (5), is

dE = Tdp, +pd p+ v, .d i+u-d J . (50)

Using Eqs. (5), (9), (10), and (50) in the expression for the second differential of entropy density associated with Eq. (47)
one obtains

5 (ps) = [5T '5E 5(pT ')5p —5(v T) —' 5I —5(uT ').5J]
= [[5T '5p, 5(pT ')5p]'„= q—„0=0—T '5v, .5I —T '5u 5J]
=5 [(5s)'„q 0, 0 I /(2gs pT) J lpT]=—p5 [s„'q 0, 0

——i /(2gs T)—u /(2T)],
(51)

where p, is the density of the equilibrium internal energy.
One may see an interaction of equilibrium and Aow terms
in (51). When I=q=O and J=O, Eqs. (49) and (51) sim-
plify to the well-known equilibrium results. ' ' The dual
of p, is the density of the (nonequilibrium) grand poten-
tial ( P /T ) and for sm—all u and v, this dual is

( II—: P /T)—
II(T ',pT 'v T 'uT ')

=II' (T ',p, T ') —T 'pgs v, /2 —T 'pu /2 .

(52)
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dE—:—dQ=p, dT+pdp+I. dv, +J du . (53)

For our energy E, Eq. (5), the complete Legendre trans-
formation leads to the nonequilibrium pressure function,
Eq. (12), in the form

T

P=P 'q(p„—p )
——1 Bg q

2, Bp T

'2

(12')

which was discussed comprehensively in Ref. 1. When
expressed in terms of its natural variables T, p, U„and u,
this pressure function becomes

0=E=P'q( —T,p—) gp, v, /2, —

where

2
g vsT= T+gsv + s

Bs 2

(54)

The quadratic form associated with Eqs. (49) and (51) and
small perturbations of E, p, I, and J can be accepted as a
Liapunov function to investigate the stability problems
involving Quid motion and heat transfer. As was stressed
by Glansdorff and Prigogine, ' the hydrodynamic prob-
lem can be handled by using the so-called 6 z criterion
where z=s —u /2T instead of the conventiona1 6 s cri-
terion. Our Eqs. (46), (49), and (51) show how to define

p, and its second differential in the case involving heat
transfer and convection and prove that Z is nothing but S
expressed in appropriate variables which take into ac-
count role of momentum-related terms; see also Oono.

The dual of E of Eq. (50) is E = —0,—corresponding to
the intensities (9) and (10) as well as velocities v, and u.
Its perfect differential is

aT
Bp~

—2p, 'v,

0
p

2ps vs

Bp
Bp

(p,'g ) 'I (p, gs ) '[1]
—

p 'u [0]

(p2g )
—11' —lut

[0]

p '[ll .

(57)

and the inverse of Eq. (57) is the pressure function tensor.
The upper left 2X2 block is the classical part. Coupling
with the velocity field is due to presence of p in the kinet-
ic energy of unit volume pu /2. The g terms describe the
role of heat fiux. Although (57) and (49) are conformally
equivalent, " it is easy to see that the energy tensor of the
ideal gas in the frame of its natural variables is simpler
than the corresponding entropy tensor.

It may be proved even classically that if mass
diffusion takes place in the system, then the correspond-
ing term in the Gibbs equation for the specific energy
differential is of the form vk d(p pI, vk) for species k,
where vk is the momentum of diffusion of the species k in
the Quid frame, i.e., the difference between the
laboratory-frame velocity of this species, uk, and the ve-

locity of convection u. [The corresponding contribution
to the energy of unit volume is the term v&.d(pkvz). ]
Since this is the same formal structure as in Eq. (35)
where the term v, di=v, d(p 'p, i, ) pertains to the en-

tropy transfer, it is not difficult to extend the present
theory to treat mass diffusion in multicomponent sys-
tems. The Cxibbs equation for the multicomponent sys-
tem of course contains the sum of the contributions from
both diffusional and thermal momenta.

and

2

p=@+ = ~gs v~ 1
8 lng 8 lng
8 lnp 8 1ns

VI. THERMOHYDRODYNAMIC STABILITY
AROUND EQUILIBRIUM

IN THE EXTENDED STATE SPACE

Here the complicated arguments of P'q are the equilibri-
um temperature and chemical potential expressed in
terms of T, p, v„and u. Taylor expansion yields the po-
tential

—Q(T, p, , v„u)=P'q(T, p, )+pu /2+p, gsv, /2, (55)

which contains the same kinetic corrections as E, convex
around equilibrium. Differentiating (55) leads to (53) if
the nonequilibrium corrections are made, pertaining now
to p, and p. The covariant tensor

Let us apply the first expression on the right-hand side
of Eq. (51) to determine the stability conditions for tran-
sients around equilibrium. Consider a physical system
contained within a fixed volume V wherein the Auctua-
tions of the densities of energy, heat, and momenta may
occur. Working in the framework of the Liapunov
theory' ' ' we evaluate the time derivative of the
second differential of the total entropy [5E=a(5E)/at,
etc.; note the interchangeability of the operators 6 and
a/at ]

—,'(5 S)(„„i)=f f f [5T '5E 5pT '5p—
a(T,p, v„u)

g'"=
a(p„p, I,J)

—6v, T ' 6l

—5uT ' 5J]dV. (58)

contains the nonequilibrium corrections through the
nonequilibrium temperature and chemical potential
which do not disappear even for the ideal gas (g =const).
The tensor (56) has the structure

The conservation and evolution equations pertaining to
the Lagrangian (1) consistent with Eq. (58) were derived
in Ref. 1. Their perturbed form, which should be substi-
tuted to Eq. (58), is
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5p= —V.5J (mass conservation),

5J= —V 5(p 'JJ+1P+II )

(60)

(momentum conservation), (61)

g(pT) '5q= V5—T A,
—'5q (heat conduction),

5II, = —2g, V5v, (viscosity equation) .

(62)

(63}

Fixed boundary conditions are assumed which exclude
any Auctuations of any independent variable on the sur-
face A surrounding the volume V. The coefficients in
Eqs. (58)—(63) are evaluated at the equilibrium state,
point C, Fig. 1, and are kept constant (linear stability).
Bulk viscosity effects are neglected. ' Since any elastic
effects are neglected in Eq. (1}, Eq. (63) for the shear
viscosity has the form of Newton's law. On the other
hand, the heat Eq. (62) has Cattaneo structure" due to
the inertial (g) term in Eq. (1). The standard approach
developed in Ref. 15 is used to transform the terms such
as 5pT '5p= 5pT 'V 5J— into the divergences
V (5pT '5J) and remainders, so one can apply Gauss's
theorem yielding the surface integral with the products
5@T 5J, etc. Neglecting this integral (it vanishes on the
surface A where no perturbations are allowed) and using
the extended Gibbs-Duhem equation resulting from the
Legendre transform of Eq. (47)

E5T '+5pT ' p5(pT ')—
—I.5(v, T ') —J 5(uT ')=0, (64)

we obtain

,5'S,~...= j' I J~(5q 5qnT'}.
+ ( 5II, :5II, /2g, T ) )d V . (65)

According to the Liapunov theorem the su%cient stabili-
ty conditions for 6 S~„„&~ taken as the Liapunov func-
tional are

(66)

and

5 Stot&0 (67)

From Eqs. (65) and (67) one can conclude the positivity of
the transport coefficients

A, &0, g, &0 (68)

and, from Eq. (66) by using the equilibrium form of Eq.
(49) or of any thermodynamic tensor derived in this
work,

C„&0,

(69)

g&0, p&0, T&0.

5E = V—.5(puE+ Put q+ II, .u, )

(energy conservation), (59)

Around equilibrium, the inequalities (68) are simply the
consequence of the second law represented by Eqs. (65)
and (67). The inequalities (69) are the concavity condi-
tions for the equilibrium Gibbs surface representing the
entropy in the extended space E,p, I,J. The conditions
g &0 and g, &0 are new. The first one indicates that the
heat Aux contribution to the extended entropy function
can be only negative (and the energy, positive), i.e., the
presence of heat should increase the organization of the
system around the equilibrium. The second condition re-
quires that the viscosity phenomena associated with heat
fiow (first revealed by Grad ) should be characterized by
a positive coefficient of viscosity g, .

As indicated by the form of the metric tensors obtained
in this work around nonequilibrium states g;k ( and hence
5 S) can be of indefinite sign since they contain mixed
(fiow) terms linear with respect to I and J. The properties
of the stable Gibbs surface contained in (69) are in this
case not enough to define the stability conditions of any
nonequilibrium manifold. One can, however, rely on 6 S
exclusively to obtain nonequilibrium counterpart of the
conditions (69) provided that one is able to prove addi-
tionally that the final derivative 6 S keeps definite sign
within the volume investigated. In a future work we will
apply this formalism to a thermodynamic analysis of tur-
bulence.

VII. CONCLUSIONS

The following are the conclusions drawn from this pa-
per.

(a) The problem of nonequilibrium thermodynamic
length has been stated phenomenologically based on EIT.
Thermodynamic metric tensors are given for a Aowing
Quid with heat Aow in field representation which includes
variables —degrees of freedom —to represent the degree
of disequilibrium. With these variables, it is possible to
achieve the invariant form' of the Einstein formula for
the probability of Auctuations around equilibrium, by
taking into account the Quctuations of the macroscopic
motion and heat Aux. This is associated with inclusion of
momenta (or velocity terms) into our thermodynamic
field formalism, which differs at this point from the tradi-
tional one. However, once stated, the near-equilibrium
stability conditions of a moving nonequilibrium Quid with
heat are automatically contained in the positive-definite
character of the energy-representation tensors at
u =U, =0 or the negative-definite character of the entro-
py representation tensors and no new criteria such as that
for 5 Z are needed. This is due to the fact that the in-
equality B(5 S)ldt )0 always holds at equilibrium as a
consequence of the second law.

(b) It was shown that the physical nature of the ther-
modynamic potentials that define the metric and corre-
sponding criteria of stable equilibrium remains un-
changed when the convection and nonequilibrium (heat)
phenomena are taken into account. Concavity or convex-
ity at equilibrium is preserved provided that, besides the
classical conditions C, & 0 and g & 0, the inertial
coefficients in the extended energy formulas are positive,
i.e., inequalities (69) hold. The second differentials of the
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energy, entropy, and their corresponding copotentials are
still applicable as the Liapunov criteria to be tested for
nonequilibrium fluctuations. In particular 6 Z of
Glansdor6' and Prigogine is just 6 5 expressed correctly
in terms of the total energy and momentum variables al-
lowing mechanical degrees of freedom. This agrees with
the conclusion Oono ' obtained for the case neglecting
the heat. Since, however, the sign of r)(5 pS)Idt out of
equilibrium is in general indefinite, the extended thermo-
dynamic potentials and tensors derived here are not cap-
able of providing the complete set of the stability condi-
tions out of equilibrium, unless one proves additionally
that B(5 pS)IBt is of definite sign within the volume in-
vestigated.

(c) The following simple rule is helpful to adjust prop-
erly the sign of the nonequilibrium and convection terms
in the nonequilibrium thermodynamic potentials: kinetic
terms pertaining to macroscopic motion and heat Aow
should be added to the convex equilibrium functions or
subtracted from the concave equilibrium functions of en-

ergy type. In entropy-type functions the same rule holds
for the sum of the kinetic quantities divided by the tem-
perature. However, the arguments of the equilibrium
functions in question must always be the total nonequili-
brium quantities pertaining to t'he real state of the Auid;
see Eq. (55).

(d) The inclusion of mass diffusion terms conforms to
the same formalism (see the end of Sec. V).

(e) To preserve positive (definite-sign) metrics, only
those of thermodynamic potentials were considered
which, at equilibrium, are convex or concave with respect
to either static- or kinetic-type variables. There is no evi-
dence that geodesic lines for such metrics should be asso-
ciated with a natural motion (e.g., fluctuation decay) in
the system; perhaps indefinite-sign metrics corresponding
to the Lagrangian, with the sign of kinetic terms re-
versed, would be competitive candidates in this regard.

(f) The approach presented here is valid only close to
equilibrium. Other results from work in progress, which
will be communicated soon, indicate that the thermo-
dynamics of systems further from equilibrium must be
nonlocal and that some additional state variables need to
be added to those introduced here.
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