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Computing the Lyapunov spectrum of a dynamical system from an observed time series
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We examine the question of accurately determining, from an observed time series, the Lyapunov
exponents for the dynamical system generating the data. This includes positive, zero, and some or
all of the negative exponents. We show that even with very large data sets, it is clearly advanta-
geous to use local neighborhood-to-neighborhood mappings with higher-order Taylor series, rather
than just local linear maps as has been done previously. We give examples using up to fifth-order
polynomials. We demonstrate this procedure on two familiar maps and two familiar Aows: the
Henon and Ikeda maps of the plane to itself, the Lorenz system of three ordinary differential equa-
tions, and the Mackey-Glass delay differential equation. We stress the importance of maintaining
two dimensions for converting the scalar data into time delay vectors: one is a global dimension to
ensure proper unfolding of the attractor as a whole, and the other is a local dimension for capturing
the local dynamics on the attractor. We show the effects of changing the local and global dimen-

sions, changing the order of the mapping polynomial, and additive (measurement) noise. There will

always be some limit to the number of exponents that can be accurately determined from a given
finite data set. We discuss a method of determining this limit by numerically obtaining the singular-
ity spectra of the data set and also show how it is often appropriate to make this choice based on the
fractal dimension of the attractor. If excessively large dimensions are used, spurious exponents will

be generated, and in some cases the accuracy of the true exponents will be affected. We present
methods of identifying these spurious exponents by determining the Lyapunov direction vectors at
particular points in the data set. We can then use these to identify numerical problems and to asso-
ciate data-set singularities with particular exponents. The behavior of spurious exponents in the
presence of noise is also investigated, and found to be different from that of the true exponents.
These provide methods for identifying spurious exponents in the analysis of experimental data
where the system dynamics may not be known a priori.

I. INTRODUCTION

Lyapunov exponents of dynamical systems are one of a
number of invariants that characterize the attractors of
the system in a fundamental way. They are independent
of initial conditions on any orbit' and, thus, are proper-
ties of the attractor geometry and the dynamics. Attrac-
tors can be thought of as a distribution of points in a
phase, or state, space characterized by the density of
points. It is known that all moments of the density are
invariants of the evolution which moves points on the at-
tractor forward in time. The Lyapunov exponents are
singled out by their easy interpretation with regard to the
stability of the dynamics and their connection with the
metric or Kolmogorov-Sinai entropy ' of the system
through the Pesin inequality. '

The determination of Lyapunov exponents from
known differential equations or maps is numerically sub-
tle but reasonably straightforward in concept. They are
determined by looking at some "fiducial" orbit w(k) HR";
k = 1,2, . . . , N, in the phase space of the system, and ob-
serving the evolution of small deviations 5w(k) from the

fiducial orbit. For our discussion we will assume the dy-
namics is a map from R" to itself, which means we have
discretized time in a Aow, or have taken a Poincare sec-
tion of a Bow, or are dealing with a map from the outset.
If the orbit is taken to satisfy w(k +1)=f(w(k)), then a
perturbation to the orbit satisfies

5w(k + 1)=D f(w(k) )5w(k),

where Df(w) is the d Xd Jacobian matrix evaluated
along the fiducial orbit. If we take the product of these
matrices for E steps along the orbit

Df =Df(K) Df(E —1) . D f(1),
where D f(K) =D f(w(K) ), then the Oseledec multiplica-
tive ergodic theorem says that the Lyapunov exponents
are the logarithms of the eigenvalues of the matrix

lim [(Df ) (Df )]'

where f signifies transpose. The only problem in imple-
menting this comes from the ill-conditioned nature of the
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matrices Df, but with care this can be handled. The
Lyapunov exponents that come out of this procedure we
will identify as X; and always refer to in order of their nu-
merical size: A,

&
A,2

When dealing with experimental data, rather than
known maps or Aows, one has the initial problem of
finding the analogue of D f. Once a good representation
of this matrix is in hand, the numerical problems suggest-
ed above come to the fore. In measurements of experi-
mental data one often has an accurate determination of
only a single variable which represents the multivariate
state of the system. There is a familiar technique known
as phase-space reconstruction, originally suggested by
Ruelle, ' for recapturing the multivariate state. It has be-
come the tool of choice for recreating the vector phase
space in which to capture the behavior of the dynamical
system that produces the observed scalar time series. The
method uses scalar measured data x(n), n =1, . . . , Nr,
taken at times t„=to+ n ~, and converts it to vectors in a
d-dimensional Euclidean space R". Time delays are used
to form d-dimensional vectors y(n ) from the x's as

y(n) = Ix (n), x (n + T), . . . , x(n +(d —1)T)]
(Refs. 1, 7, and 8). (We use the same lag for each com-
ponent of the vector y, though this is not necessary. ) Us-
ing the entire time series x(n), n =1, . . . , No, one can
construct a total of N=XL, —d, d-dimensional vectors.
As they evolve in R" these vectors, y( n ), n = 1, . . . , N,
define the attractor. This provides the fiducial trajectory
for the analysis of Lyapunov exponents.

We will assume that the evolution of the y(k) is given
by some map or rule which takes y(k)~y(k+T )2via
y(k+T2)=F(y(k)). T2, the iteration step, may be
chosen independently of T, and this choice may have a
significant effect on the accuracy of the results. For each
point y(n) on the fiducial trajectory there are other near-
by points in lR". "Nearby" is measured by some norm in
IR . If we let y"(n;0) be the rth nearest neighbor to y(n),
then the work of Eckmann et al. (EKRC) for extracting
the Lyapunov exponents from data involves determining
local lineav maps DF(n), that map whole neighborhoods
of small vectors

z"(n;0) =y"(n;0) —y(n )

into succeeding neighborhoods of small vectors

z "(n; T2 ) =y "(n; T2 ) —y( n + T2 ) .

In our notation y"(n;k) is the position of the rth nearest
neighbor to y(n) after evolving forward to time n +k.
Note that y"(n;k)Wy"(n +k;0) because a new set of
nearest neighbors is to be found at each time step. For
the local neighborhood-to-neighborhood map we need
the locations, after one time step, of the neighbors at the
previous step. To determine the Lyapunov spectrum of
the dynamical system, one calculates the eigenvalues of
the matrix (DF ) DF where

DF =DF(E) DF(E —1).. . DF(1)
and the dots represent matrix multiplication. '

Our work begins where the EKRC paper ends. We

have found' by examining this method and that of others
which utilize rather similar approaches"' ' that one
can reliably determine only the largest Lyapunov ex-
ponent. The difhculty primarily arises from the fact that
the attractor is a fractal structure which does not fill the
phase space completely. Since all of the data points lie on
the attractor, there will often be a lack of information
about the behavior in certain directions which have more
to do with transient decay than with the dynamics within
the attractor itself. This can lead to gross inaccuracies in
the determination of the Jacobian matrices DF . Inaccu-
racies in the individual DF(k)'s which comprise DF are
severely magnified by the ill-conditioned nature of DF .
With careful analysis, and suSciently accurate data, sub-
stantial improvements can be made in the determination
of the Lyapunov spectrum. We shall demonstrate this
quite explicitly in what follows.

In this paper we examine several questions related to
highly accurate determination of the Lyapunov ex-
ponents. These include:

(1) What improvements, if any, can be had by using
higher-order local polynomial fits in the step-to-step map-
ping of small neighborhood intervals z"(n;0) to small
neighborhood intervals z"(n; T2)? The idea is that by
determining more than just the linear term in the local
neighborhood mapping, we can stabi1ize and make more
accurate the evaluation of the term we want. Another
way to look at our procedure is that we have separated
the problem of mapping neighborhoods to neighborhoods
from the problem of finding the Jacobian. By having a
richer local map, we are able to spread the burden of
mapping local neighborhoods to local neighborhoods
over all terms in the polynomial. In this way we can
achieve greater accuracy in determining the Jacobian.

(2) What is the efFect of data accuracy of Lyapunov ex-
ponents?

(3) Under certain conditions (such as when the local di-
mension is made too large), there will be spurious ex-
ponents which are largely a numerical artifact —how can
these be identified or avoided?

(4) Can we accurately determine some of the negative
Lyapunov exponents as well as any positive or zero ex-
ponents? Large negative exponents will cause the attrac-
tor to be "thin" in places, making the calculation of nega-
tive exponents difficult. (This thinness is often disguised
to the naked eye by the global folding that is inherent in
chaotic attractors. )

(5) Are some of the Lyapunov exponents fundamental-
ly more important to the dynamics within the attractor
than other (more negative) exponents, thus making them
more easily calculated and setting a natural cutoff point
for the number of exponents to calculate in high-
dirnensional systems?

(6) By what criteria may we choose the time intervals T
and T2?

An outline of the rest of this paper is as follows: In
Sec. II we present a detailed discussion of the methods we
used in examining the questions posed above. In Sec. III
we present the results of our numerical experiments on
four familiar dynamical systems:

(i) The Henon map of the plane' to itself,
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X2
(t}= —x, (t)x, (t)+ rx, (t) —x,(t),

dX3
(t) =x, (t)x, (t) —bx, (t),

dt

where we take o. =16, b =4, and r =45.92. For these pa-
rameters the accepted values for the Lyapunov exponents
A, &, A.z, and A, 3 are 1.50, 0.00, and —22.5, respectively.
The large negative exponent makes this system a particu-
larly challenging test for our time-series method. The
Lyapunov exponents satisfy the rule

A, , +k2+A3= —o —b —1 .

(iv) The time-delay equation of Mackey and Glass, ' '
dX aX(t —s)

1+[X(t —s)]' (4)

where we used a =0.2, b =0.1, c =10.0, and s =17.0.
This system is infinite dimensional .(because it is a time-
delay equation) and, thus, has an infinite number of
Lyapunov exponents. The first three exponents have ap-
proximately the following values: 0.006, 0.0, and —0.04
(see Ref. 19, Fig. 10).

Our reasons for choosing this set of examples as our labo-
ratory for analyzing Lyapunov exponents rest primarily
on the fact they are all well studied, they exhibit low-
dimensional chaos, and they represent a diverse set of
phenomena. Other systems could, of course, be studied,
but we have not done so. Section IV contains a summary
and concluding remarks.

We end this section by noting that the answer to each
of the items that will concern us in this paper is a positive
one. We will demonstrate that when one works with
clean data it is possible to determine the positive, zero,
and one or more of the negative exponents. We will also
show that the accuracy of the data matters a great deal.
Inaccurate data is like noisy data, and the points in phase
space are not properly located. This causes errors in the
determination of the Jacobian matrices along an orbit

x, (n+1)=l —ax, (n) +x2(n),

x2(n + 1)=bx, (n),
where a and b are given the standard values 1.4 and 0.3,
respectively. For these parameters the accepted values
for A, , and X2 are 0.408 and —1.62, respectively. They
satisfy A, , +A,2=1n(b).

(ii) The Ikeda map of the complex z plane' ' to itself,

z(n +1)=p+Bz(n)exp[iles ia—/[I+ ~z(n)~ ]I,
where p =1.0, B =0.9, ~=0.4, and a=6.0. For these
parameters we have calculated (using the map) that A, ,
and kz are 0.503 and —0.719, respectively. The
Lyapunov exponents satisfy A, , +A,2=2 In(8).

(iii) The Lorenz system of three ordinary differential
equations, '

dx ) (t}=cr[ x(2t) x, (t)]—,

and spoils one's ability to evaluate the full spectrum of
Lyapunov exponents.

Since the Lyapunov exponents act as classifiers of the
dynamical system with clear physical meaning, the ability
to capture them from data is useful in any circumstance.
The programs to do this starting from measurements of a
scalar variable in an experiment are part of our results.
We have not reproduced these codes in the paper, but we
will make them available to any reader who wishes them.

II. METHODS AND THEORETICAL SETTING

A. Scalar time series

As is the case with previous works on this subject, we
will focus our attention on the simplest possible format
for the data —namely, an observed sequence of real num-
bers x (n); n =1, . . . , ND, taken at times t =to =n7. (r is
the mean time between measurements). In addition, we
may have some information regarding the intrinsic noise
level or, alternatively, the number of significant digits of
accuracy p. Except when the noise level or digits of accu-
racy is specifically stated, it may be assumed that the nu-
merically generated data we analyze have at least eight
digits of accuracy. The x(n)'s would probably be ob-
tained by recording the value of x at periodic time inter-
vals. Another possibility is that the data were obtained
by Poincare or stroboscopic section, i.e., one data point
(or some fixed number of data points) is taken during
each oscillatory cycle of the dynamical system according
to some rule. Often, the maximum value of the variable
is recorded each cycle. This is a good choice since the
derivative is passing through zero and, therefore, there
should be less measurement error. Since the system is
presumably in a chaotic state, the time intervals between
consecutive data points on the Poincare section may not
be constant. For our work we assume that the time series
is long: ND ))1.

We use the familiar time-lag method to construct a d-
dimensional Euclidean space in which to reconstruct the
dynamics of the system. ' From the x (n)'s we make d-
dimensional vectors y(n),

y(n) = [x (n), x (n + T), . . . , x(n +(d —1)T)],
where T is fixed. The vectors y(n), n =1, . . . , N, evolve
on an attractor that represents the dynamics of the physi-
cal system in question. Time evolution on the attractor is
given by y(n)~y(n +1).

The calculation of Lyapunov exponents requires an es-
timation of the mapping from the neighborhood of one
vector to the neighborhood of a subsequent vector with a
specified time increment T2 between these two vectors,
i.e., y(n)~y(n + T2). This second increment T2 is often
chosen to be equal to the first, T. In general, however,
this is a poor choice for reasons we will discuss presently.

For data obtained by measurements at fixed time inter-
vals, there will often be a zero exponent in the Lyapunov
spectrum. (This must occur when the dynamical system
under observation is described by a set of ordinary
differential equations. ) The zero exponent corresponds to
displacements along the orbit. However, for Poincare
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sectioned data, there can be no displacement in this direc-
tion, and thus the zero exponent will not be present. Ac-
quiring data on a surface of section is not a trivial exer-
cise for experimentalists. One must be very careful to
avoid fluctuations in the sectioning data. Fluctuations
are equivalent to errors and will disrupt the values of all
of the calculated exponents. (b)

B. Local and global dimensions

In our analysis we identify two dimensions for convert-
ing the scalar data into time-delay vectors. The first di-
mension we call the global dimension dG. We call the
second dimension the local dimension dL .

The global dimension is often called the embedding di-
mension. It must be chosen large enough so that conver-
sion of the scalar data set, x (n), into dG-dimensional vec-
tors y(n), constitutes an embedding. In the generic case a
formal result due to Mane and Takens ' says that if d, is
the dimension of the attractor, then a sufficient condition
on d& is given by

8g) 28

If dG is not chosen large enough, then the attractor (in
the time-delay representation) will be folded in such a
way that it crosses itself in certain places. Under these
circumstances a "small" neighborhood in the crossover
region would contain points from disparate portions of
the attractor. Now, imagine choosing a point in the
crossover region and calculating its nearest neighbors in
this dG-dimensional space. When neighbors are deter-
mined by their displacement (dG-dimensional Euclidean
norm), there will be no way of distinguishing the two
disparate parts of the attractor. Hence two points could
be considered "neighbors" when they are actually on op-
posite sides of the attractor. More formally, the time-
delay representation in dG dimensions would not be
diffeomorphic to the original attractor. In general, the
self-intersections will have dimension 2d, —dG, and all
self-intersections can be avoided by the sufficiency condi-
tion, Eq. (5).

This is illustrated in Fig. 1 where we show the mapping
of a one-dimensional object (d, = I) in three-, two-, and
one-dimensional spaces. The top illustrates a successful
embedding of the object into dG =3 dimensions. We have
avoided all self-intersections. The middle illustrates an
attempt to embed the object into dG =2 dimensions. No-
tice that the region where the attractor intersects itself
has been reduced to a discrete set of points. Finally, we
attempt to embed the data into dG = 1. For this situation
the attractor is folded onto itself over its entire length,
and the regions of intersection are line segments.

The local dimension dl is the number of dimensions
necessary to capture the geometry of a small neighbor-
hood of the attractor after it has been successfully embed-

ded (that is, in the time-lag representation the E
dimensional vector y(n) evolve on an attractor that is
diFeomorphic to the original attractor). The example
shown in Fig. 1 is an attractor that is properly embedded

d
in R, where dG =3. However, the dynamics takes place

(c)
1-

FIG. 1. Significance of the global dimension dG; a simple il-
lustration: (a) a line mapped into a 3D space can coil around
without intersecting itself exactly, (b) projecting down to a 2D
space, the line now has self-intersections of dimension 0, i.e.,
points; (c) projecting down to a 1D space, the line develops self-
interactions of dimension 1, i.e., line segments. This last case is
much more serious than (b) since the ability to distinguish true
"neighbors" of a given point on the attractor (the line) has been
lost for a large fraction of the total attractor. Thus an object
that is 1D locally requires a global embedding dimension dG =3
to avoid all self-intersections.

on a one-dimensional subsurface of R . In other words,
in any small neighborhood of the attractor, the attractor
itself (and hence the dynamics) is one dimensional and
dL =1.

The distinction between local and global dimensions is
important in time-series analysis. For example, the
Lorenz system described in Sec. I represents an attractor
whose dimension d, is slightly larger than 2. Hence, the
attractor has a local dimension of dL =3 (the next integer
greater than d, ). For this system it is known that the
global dimension for embedding scalar data is also d~ =3.
The Lorenz equations represent a system where the
suKcient condition given by Eq. (5) is not a necessary
condition. This is not always the case. For example, the
Ikeda map was originally derived as a relationship be-
tween the incoming and outgoing complex amplitudes in
a laser cavity. ' Therefore, one knows that its local di-
mension is dL =2, corresponding to the real and imagi-
nary part of a complex phase. Yet some time-series rep-
resentations require dG=4 to unfold the attractor (cf.
Sec. III). This results in the dynamics evolving on a two-
dimensional subsurface of a four-dimensional Euclidean
space. In Sec. III we present results where we exploit the
difference between local and global dimensions.

There are a variety of methods available for determin-
ing dG, the global dimension for embedding the data.
Perhaps the best-known method involves the
Grassberger-Proccacia correlation integral. This is the
method we have used when calculating the results we
present in Sec. III. Determining the local dimension dL
from data is a much more difficult issue. As we have
mentioned above, there are some examples (Ikeda being
one of them) where the dimension of the underlying dy-
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namics is known, a pviori. For these cases, just set dl
equal to that value. Or one may have knowledge of the
dimension of the attractor, d, . In that case dL can be set
to the next higher integer,

d, ~d (d, +1 .

To determine dL by this method we do not need the pre-
cise value of the attractor fractal dimension d, ; we only
need know what the next larger integer is.

Our approach to determining an appropriate cutoff
value for the number of exponents can be related to the
Lyapunov dimension. The idea that there is a strong
connection between the values of the Lyapunov ex-
ponents and the fractal dimension was originally explored
by Kaplan and Yorke, ' who introduced the concept of
the Lyapunov dimension. This dimension measure,
whose value is believed to be at least close, if not equal, to
values obtained for dimension by other methods, has
some important implications for determining Lyapunov
exponents from a time series. The Lyapunov dimension
is found as follows: Find the maximum number k of the
Lyapunov exponents that can be added together before
the sum g", A, becomes negative. The Lyapunov di-
mension is defined by

DL =k+
k+1

Thus the dimension is determined by only a finite num-
ber of the exponents and does not depend on exponents
beyond the (k+ l)st. This strongly suggests that the first
k +1 exponents must, in some sense, be fundamentally
important to the character of the attractor. Exponents
which are beyond k+1 are of lesser significance and
their inhuence may tend to diminish as we look at the
structure of the attractor on smaller and smaller scales.
The attractor has a space-filling character along the first
k Lyapunov directions and a fractal character along the
(k +1)st direction. If any of the first k exponents are
negative, they are of insufficient strength to promote the
formation of fractal structure, since they cannot over-
come the rate of volume expansion achieved by the posi-
tive exponents. Only when we add the (k+1)st
Lyapunov direction to our observation does the evolution
become dissipative, having a net rate of volume decrease
so-that collapse onto a fractal is possible. Displacements
in additional directions will decay more rapidly because
the corresponding exponents are more negative than the
(k+ 1)st and may become unimportant at sufficiently
small scales. This suggests both that these additional
Lyapunov exponents will be harder to determine from
data on the attractor and also that they are of less in-
terest in terms of understanding the nature of the attrac-
tor. If one takes this point of view, then the "appropri-
ate" choice for d is the integer that satisfies Eq. (6).

attractor is often very "thin" at many locations in the
directions associated with certain negative Lyapunov ex-
ponents. This occurs when the contraction rate per (ap-
proximate) cycle is very large. In theory one could al-
ways examine the data in such a small local neighbor-
hood that this thinness would not be apparent, but in
practice this would often require many orders of magni-
tude more data points than are obtainable. In addition,
studying the data on such a fine scale will increase errors
due to noise.

On the other hand, consider the behavior of a neigh-
borhood of data points that is large compared to the
thickness of the attractor yet small compared to the size
of the whole attractor. In general, the data points will lie
close to some curved subsurface within the local neigh-
borhood, as is illustrated in Fig. 2. This curvature can
cause severe problems for a linear mapping, as it attempts
to represent correctly the true local mapping.

One solution to these problems is to go to a nonlinear
mapping such as the Taylor-series expansion we use in
this paper. The idea is to increase the order of the expan-
sion to the point where a curved surface of that order can
follow the curvature of the local data points quite closely.
The tradeoff in this method is that the number of terms in
a multidimensional Taylor expansion increases quite rap-
idly with the order. Therefore, given a fixed amount of
data, the size of the local neighborhood required to
unambiguously perform the fitting must increase. Be-
cause of this, there may be an optimal order of expansion
beyond which the results begin to deteriorate.

One way to determine the appropriate order is simply
to look at how accurately the calculated map fits the
data. If the rms error in the fitting decreases as the order
increases, then the increase in order was an improvement,
while if the error increases it is a sign that going to higher
order is not improving the result. Another attractive
method for deciding how many terms in the Taylor ex-
pansion should be used is the minimum description
length principle which evaluates the minimum code
length required to capture both the description of the
data and the cost of the parameters.

ta points

local neighborhood

C. Taylor series

The difficulty in determining the negative exponents
from a time series comes primarily from the fact that the

FIG. 2. Local neighborhood in 2D for a data set that is near-
ly singular in one direction. Illustrates data "curvature" which
can be the source of severe errors in the calculation of Jacobian
matrices when a strictly linear analysis is undertaken.
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In general, it is often a good idea to keep track of any
large errors that may occur at only a few points in the
calculation. Such behavior is an indication that there
may be "bad points" in particular neighborhoods of the
attractor. We can loosely define bad points as those that
are outside statistical norms and exercise large infIuence
in the local fits to the data. Examples are outliers and
points of high leverage. One can try to eliminate these by
changing the global dimension, or by reducing the order
of the expansion so that the neighborhoods become
smaller, or by increasing the number of data points used
in the analysis. Finally, if all else fails, it may be statisti-
cally acceptable to eliminate these points by hand. " For
an excellent discussion of the issue of determining and
eliminating bad points, we recommend Ref. 23.

D. Choice of the delay time T

In principle, any choice of the delay time T is accept-
able in the limit of an infinite amount of data. In the
more likely event of a finite amount of data, the choice of
T is of considerabIe practical importance in trying to
reconstruct the attractor that represents the dynamical
system that generated the data. One method used by pre-
vious researchers is to choose T to be some fraction of the
autocorrelation time of the x(n)'s. '' ' This choice of
delay time was also chosen as the evolution time T2. '
As we will discuss later, this choice of T2= T meant that
the linear map of near neighbors at time n to near neigh-
bors at time n + T2 (r= 1) has a particularly simple form.
(For reasons we discuss in Sec. II this simple form is not a
large advantage. Thus we do not recommend always set-
ting T=T2. ) For some of the results we present, we
used an information theoretic method developed by
Fraser and Swinney based on work by Shaw and oth-
ers. ' The method yields the best time-lag representa-
tion of the attractor on which the vectors y(n) evolve.
As a brief illustration of our use of their results, we di-
gress to a case where the evolution vectors are two di-
mensional. In this case all the evolution vectors are of
the form

y(n)=(x(n), x(n+T)) .

We begin by recalling the definition of average mutual
information and reviewing the meaning of this measure-
ment on the data set. The average mutual information
between two sets of measurements 3 and B—for us the
measurements of x (n) and the measurements of
x (n + T)—is defined as follows. Let 3 be the ensemble
of values x (n) that are the first components of the evolu-
tion vectors y(n). Thus

A = Ix(n):n = I, . . . , N] .

We will let a denote an arbitrary element of A. Similarly,
let B be the ensemble of values that are the second com-
ponents of the evolution vectors y(n). Thus,

8 =[x(n+T) n =1, . . . , N] .

We will let b denote an arbitrary element of B.
Ensembles are sets associated with a probability distri-

bution. Let P„(a) denote the probability of choosing a
when making a selection from set A [the x (n)'s]. Like-
wise, P~(b) is the probability of choosing b when making
a selection from set 8 [the x (n + T)'s]. The distributions
P~ and P~ are completely determined by the time series
x (n) and x (n + T).

Finally, we turn to the set of time-delayed evolution
vectors y(n):n =1, . . . , N. Imagine choosing a vector Y
from the set of evolution vectors y(n):n =1, . . . , N. The
joint probability distribution P„ li(a, b) is the probability
of getting a as the first component and b as the second
component of Y. [We emphasize that the joint probabili-
ty distribution is a statement about the likelihood of a
vector (a, b) appearing in our set of evolution vectors. ] In
the presence of noise [here represented by our having
only p significant digits in each measurement of the x (n)]
a particular numerical value may correspond to many
different x(n)'s. A similar statement can be made con-
cerning the x (n + T)'s.

The method evaluates the average mutual information
I(T) between the measurements of elements of the en-
sembles 3 and B as a function of the lag T. This average
mutual information is defined by

P~, a(& b)I(T)= g P (a, b)log,
P~ (a)Pii(b)

bEB

It is a quantitative measure of the amount (in bits) one
learns about the measurements B from measurements A.

— In other words, I( T) is a measurement of how much one
knows about the numerical value of the second com-
ponent of an evolution vector y when one knows the nu-
merical value of the first component. I(T) is symmetric
in 3 and B, and it is positive semidefinite, vanishing only
when the ensembles 2 and B are independent. (In that
case, P~ ti factorizes into the product of P„and Pti. )

We use the average mutual information as a prescrip-
tion that makes T not too small and not too large. [If T is
too small, then x (n) and x (n + T) would be basically the
same measurement. If T is too large, then x(n) and
x(n+T) are random with respect to each other. ] We
take T to be the value that yields the first local minimum
of I(T). By choosing T in this manner, we insure that
the second components of the evolution vectors contain
as much new information as possible about the attractor
when compared to the first component.

For some of the results in Sec. III we have performed
the calculation indicated by Eq. (8) and determined T in
the manner stated. Since T must be a multiple of the ob-
servation sampling time v., we choose T to be the multiple
of ~ that corresponds to the first local minimum of I(T).
We then used this value of T for the time delay between
each component of the vectors y. We realize that this
choice is not fully justified when d )2. To be absolutely
correct, we should evaluate the average mutual informa-
tion between d components of the vectors y. This process
has been described by Fraser. The amount of data re-
quired to do this correctly can be prohibitively large (10
or more). Although we could generate that much data
using numerical integration, we feel that it would not be
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representative of typical experimental situation. Thus,
such a procedure would work against our desire to
remain as faithful as possible to the analysis of experi-
mental systems.

E. Generation of higher-order mappings

z"(n; T2 ) =y "(n; Tz ) y( n—+ T2 )

=F(y(n)+z"(n;0) ) —F(y(n)),
where we have used the definition

z"(n;0) =y"(n;0) y(n) —.
Let z" (n;k) be the ath component of z"(n;k). Expand-
ing F in a Taylor series about the fiducial orbit y(n), we
find

z" (n; T2 ) = DF ~(n)z&(n; 0)

+DF' ' &&(n)z&(n;0)z" (n;0)+
where

(9)

DF p (n)=dF /Byp,

DF'2'
& (n)=(1/2!)8 F /r}y&r)yr,

etc. , and all terms are evaluated along the orbit y(n).
(Repeated indices are summed over. )

The Jacobian of the underlying dynamics is the first
term on the right-hand side of Eq. (9), DF &(n). Earlier
workers on this subject truncated Eq. (9) at this linear
term. ' ' They then sought to determine numerically
the best d X d matrix, DF &(n), that satisfies

z'(n;Tz)=DF &(n)z&(n;0) .

This approach places a twofold burden on the Jacobian
D F. On the one hand, it must yield the correct
Lyapunov exponents (cf. Sec. I) while, on the other hand,
it must map z"(n;0) into z"(n; T2). It is this latter bur-
den we will remove from DF, asking only that it yield the
correct Lyapunov exponents. The accurate determina-
tion of the local Jacobians is especially important for our
study since inaccuracies in them are magnified by the ill-
conditioned nature of the final matrix DF whose eigen-
values we seek.

A chaotic attractor is defined as having at least one
positive Lyapunov exponent and one negative Lyapunov
exponent. The Lyapunov exponents come from the ei-
genvalues of DF iterated along the fiducial orbit. In Sec.
I we noted that this Jacobian product will be ill condi-

We now turn to the procedure we use to map small dis-
placements around our orbit y(n), z"(n;0), into small dis-
placements near the next time step z"(n; T2). We begin
by considering the map which evolves y forward by time

2~

y(n+T2)=F(y(n)) .

If y"(n;0) is the rth nearest neighbor to y(n), then in our
time step, T2, the vector distance from y"(n;0) to y(n)
becomes

tioned. For ill-conditioned matrices small changes in the
elements can produce large changes in the spectrum of ei-
genvalues. By truncating Eq. (9) at the first term, one
may introduce small changes in the elements of DF &(n)
that would not appear were one to retain the higher-
order terms. For example, suppose one were trying to fit
a mapping of z"(n;0) into z"(n; T2) using only DF when
in fact F is cubic in y. Such an F would indicate that Eq.
(9) has nonzero terms DF' . In an effort to compensate
for the missing terms, a truncated Eq. (9) would force DF
to change some of its values. This may lead to large
changes in the calculated Lyapunov exponents.

This discussion provides the basic motivation for the
work reported in this paper. We have examined the
effects of retaining terms up to fifth order in z"(n;0). We
will determine the parameters DF, DF' ', etc. , via a
least-squares fit. It can be shown that the minimum num-
ber of parameters Ãp needed for Taylor series of order

XT&y is given by

k
(10)

Examining individual components of the z's, we find that
they can be written as

z" (n;0)= (xn„+(a —1)T)—x(n +(o.—1)T)

and

z" (n; Tz ) = x (n„+T2+ (a —1)T)
—x(n+T2+(a —1)T) .

In this notation n„ is the n value associated with the
rth nearest neighbor to y(n). For the special case T=r
=T2, we note that z'(n;T2)=z" +&(n;0) for
o.=1,2, . . . , d —1. This permits us to write the Jacobian
in the form

DF=
0 0 0 0

DF~ ) DF~2 DF~3 DF~4 DF~~

where DF&„.. . , DF&& are to be determined.
We determine DF„„.. . , DFzz (the dth row of DF) by

a least-squares fit. The equation to be fitted is Eq. (11)
which for this special case reduces to

which grows rather rapidly with NT, and d. Xp is also
the minimum number of neighbors required to calculate
values for the fitting parameters in the expansion. (Using
less than %z neighbors would result in an underdeter-
mined least-squares fit. ) We use at least twice this num-
ber of neighbors in our least-squares fit of the residuals in
Eq. (9).

We introduce our procedure by using the EKRC (Ref.
9) method as an illustration. They truncated Eq. (9) at
first order,

z" (n; T~ ) =DF &(n)z&(n;0) .
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y'CX
2

z', (n;0)

zi (n;0)
zz(n;0) . zz(n;0)

z2(n;0) . zz(n;0)

Nb Nb Nbz, '(n;0) z2'(n;0) . z~'(n;0)

DF (

DFa2
(13)

DF ~

For the special case T=~=T2, one only need consider

zz(n; Tz)=DF&f3z&(n) .

Since there are d unknown elements of the matrix DF, we
need at least d nearest neighbors for the fitting. If we use
less than d, the problem will be underdetermined. Let Nb
be the number of neighbors actually used in the least-
squares fitting procedure.

We now define a total of d (a= 1, . . . , d ),
dimensional vectors V by V„=z"(n; Tz) for
r = 1, . . . , Nb. the least-squares fitting of Eq. (11) can be
written as

n=d; however, for the general case we would need to
solve Eq. (13) for a= 1, . . . , d.

In keeping with the standard notation in the literature
we will let X denote the X& Xd matrix connecting V to
DF. the solution to the least-squares problem reduces to
inverting this matrix X. The advantage of writing the
problem in this manner appears when T&r. Under these
conditions every row of DF in Eq. (11) is undetermined.
Without the special form of DF given by Eq. (12), we
must solve Eq. (13) a total of d times, once for each value
of +=1, . . . , d. The vector V changes for each row of
DF but the matrix X remains unchanged. The computa-
tionally intensive part of the least-squares fit is the inver-
sion of X which is only performed once. Hence the extra
work involved in the least-squares fit for TW T2 is negligi-
ble. For this reason we do not recommend using T = T2
for the general case.

For higher-order Taylor-series representations of the
local-neighborhood-to-local-neighborhood map, the pro-
cedure is similar. As an example, consider the case of
truncating Eq. (9) at second order. The resulting equa-
tion is

z" (n; T2 ) =DF &z&(n;0)+DF' & z&(n;0)z z(n;0) .

Defining V, B, and X as

V

z' (n; T2)

z (n;T2)

z '(n;T2)

DF, (n)

BQ

DF z(n)

DF.",', (n)

DF', '~(n)

(14)

DF zz(n)

z', (n;0) z'(n;0)

z, (n;0) . . zz(n;0)

z', (n;0)z', (n;0)

z, (n;0)z, (n;0)

z', (n;0)z2(n;0)

z, (n;0)z2(n;0)

zg(n;0)zq( n;0)

zz(n;0)z&(n;0)

Nb Nb Nb Nb Nb Nbz, "(n;0) . . zz '(n;0) z, '(n;0)z, '(n;0) z, '(n;0)z2'(n;0) Nb Nb
zq '(n;0)zq '(n;0)

then once again the least-squares fitting problem reduces
to solving V =XB for known vectors V and fixed ma-
trix X. By taking advantage of the fact that

z" (n;0)z&(n;0) =z&(n;0)z" (n;0),
we have avoided some double counting in our formula-
tion of X.

To calculate the Lyapunov exponents from the DF's
we use the QR decomposition technique discussed by
EKRC. The method recursively defines an orthogonal
matrix Q(k) and an upper triangular matrix R (k),
k =1, . . . , K, via

DF(m+1) Q(m)=Q(m+1) R(m+1),
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where Q(0)=I is the d Xd identity matrix. The
Lyapunov exponents are given by

K
T2A, ;= lim —g lnR;;(k), i =1,2, . . . , d

K~ 00
(15)

F. Spurious exponents and data singularity

By increasing d, the dimension of the evolution vectors
used in the calculation, one increases the number of ex-
ponents generated. If the original system producing the
data has a phase space of dimension d„;g and d)d„;g,
then at least d —d„; of these exponents must be numeri-
cal artifacts. There are two competing mechanisms by
which the numerical values of the spurious exponents
may be generated.

First, as noted by EKRC, nonlinear terms in the
dynamical system that originally generated the data (or
terms of higher order than the polynomial being used to
fit the data) cause the data to have more curvature than
can be represented by the fitted map. If the noise in the
data is su%ciently low, this extra curvature will be no-
ticed. The fitted mapping will adjust its terms in an effort
to compensate for this curvature. For highly accurate

with T2 taking its original dimensional value.
A couple of refinements to Eq. (15) are worth noting.

First, there will be an initial transient regime that can be
omitted from the sum by going from k =ko to
k =K+ko where ko might typically be chosen to be
about 100. Second, with the addition of each successive
value of lnR;, the value of the calculated exponents will
fluctuate somewhat. This "end effect" can be greatly re-
duced by windowing the lnR;, - values by multiplying them
by a function that goes smoothly to zero at the end
points. The Hanning window

I 1 —cos[2m(k —ko)/K] I

seems to work quite well for this purpose.

data, this tends to produce Lyapunov exponents whose
numerical values are even larger than the largest true ex-
ponent of the system (cf. Sec. III).

As an example of the second mechanism, consider data
from the three-dimensional Lorenz system with d =6-
dimensional reconstructed evolution vectors. The system
has three spurious directions. Noise will cause the data
to appear to have local displacements into the spurious
directions. This typically results in the generation of neg-
ative parasitic exponents with finite numerical value. In
general, both mechanisms can be at work simultaneously.

It may be possible to choose an optimal value of d us-
ing the information theoretic methods of Abarbanel and
Kadtke and avoid the worry expressed in this subsec-
tion. However, as shown in Ref. 28, the sampling rate
may not always allow this luxury. In that case, and
perhaps in general as a double check on one's work, it is
important to take additional steps to determine which of
the exponents are likely to be spurious and what degree
of confidence we should have in the remaining values cal-
culated. The simplest and probably best thing to do is to
examine the data set for singularities (thin directions). In
linear approximation, this is optimally accomplished us-
ing the singular value decomposition (SVD) of the local
sample covariance matrix of the displacements of all of
the neighbors of a given point y(n) on the attractor.
This matrix is given in terms of our z",

b

R = g z"(n)z"(n)
Nb

The square root of the smallest singular value gives the
rms displacement of the data set in the thinnest direction.
Projecting out this direction, the data can be examined in
a d —1-dimensional subspace. Then, the next smallest
singular value corresponds to the thickness in this sub-
space, etc. This procedure is not very satisfactory for the
type of data set we expect to encounter. The curvature of
the data set may artificially induce a thickness that is
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FIG. 3. The average mutual information I{T) for the Henon
map. It is a characteristic of data that are inherently a map that
the average mutual information has no minimum.

FIG. 4. The average mutual information I( T) for the Lorenz
system; the sampling time is ~=0.02. We choose the first
minimum at T=0.1 as the time lag for the phase-space recon-
struction (Ref. 26).
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TABLE I. The Lyapunov exponents for the Henon map.
These were computed in a local dimension of 2 from data with
four digits of accuracy. In this table we show the effects of
varying the order of the local polynomial fit to the
neighborhood-to-neighborhood map. Global dimension dG =2.
Correct values are A,

&
=0.408, A,2= —1.62.

Order of polynomial

'1 .50

'I .00

0.50

0.00

—0.50

2 —1.00
Linear

Quadratic
Cubic

Quartic

0.434 51
0.447 07
0.446 85
0.451 42

—1.5849
—1.5096
—1.5486
—1.4679

—1.50

—2.00

—2.50

—3.00 I I I I I I ) I I 1 I I I I I I
f

I I I I I I I I I
f

I I I I I I I I I
[

I I t I I I I I I
f

I f I I I I I I I

significantly greater than the deviation of the data from a
properly chosen curved surface.

There are a variety of ways of attempting to refine this
singularity measurement. One method that works well in
most cases is this: First, obtain an estimate of the most
singular direction using SVD as previously described.
Next, the coordinates are rotated so that this singular
direction corresponds to one of the axes. Now express
the small displacements along the singular direction as a
function of the other coordinates, such as a Taylor expan-
sion up to a certain order. The rms error in the fit is then
an estimate of the data thickness and the linear part of
the expansion coe%cients is a correction to the singular
direction. This procedure may be iterated to attempt to
improve the fit and is usually convergent except when the
data is highly singular in multiple directions. After
finding the most singular direction, one can go on to ana-
lyze the remaining coordinates and identify the next most
singular direction and so on, until a complete set of
singular values and orthogonal singular directions has
been identified.

In addition to obtaining the Lyapunov exponents, one
can also obtain the direction vectors L,- associated with
these exponents. These directions will be different at
every location on the attractor but cannot be calculated
locally as they are associated with the Lyapunov ex-
ponents which are a global property of the attractor. The
L; are defined by the requirement that a small displace-
ment along any one of these directions followed forward
in time will expand or contract on average at the rate
given by the corresponding exponent and if followed
backward in time will do so by the inverse rate. To cal-
culate these vectors, we start by examining the "Q ma-
trix" obtained at each step by the method of EKRC. At

1.00 —0.50 0.00 . 0.50 1.00 1.50 2.00
Re(z)

FIG. 5. The phase portrait for the Ikeda map.

each step the Jacobian matrix DF is multiplied by the
previous Q matrix and the product DF Q is then decom-
posed into a new orthogonal Q matrix and an upper (or
right) triangular matrix R,

DF Q„d=Q„,„R .

One then finds that the product of all the DF matrices is
given by the last Q matrix times the product of all of the
R matrices R, which is also upper triangular. To find
the direction Li associated with the largest exponent, we
note that except for certain very special directions, an ar-
bitrary initial displacement vector is expected upon re-
peated iteration to align itself with the desired direction.
We can choose our arbitrary vector to be (1,0,0,0, . . . )
since there is no reason to assume that this direction is in
any way special. Then we find that this vector evolves to
R f&Q&, where Q& is the first column vector of the final Q
matrix. So Q&=L&. (Note: the reader should not be
worried that this result is not so obvious for other choices
of the initial vector. They also work out because R is
highly singular; it is "top heavy, " i.e., the elements of the
top row are much larger than the second row, etc. ) Now
consider an arbitrary initial plane which we could choose
to be all points of the form (a, b, 0, 0,0, . . . ). We expect
this to align itself, upon repeated iteration, with the plane
defined by the first two Lyapunov direction vectors.
Since R is upper triangular, we find that the resultant
points all lie in the plane defined by Q& and Qz. Thus we
know that L2 lies in this plane. All of the Q vectors are

TABLE II. The Lyapunov exponents for the Henon map. These were computed using a local cubic neighborhood-to-
neighborhood map using six digits of accuracy in data. The effect of varying the dimension d =dI =dG is shown. Correct values are
A

&

=0.408 A ~
= 1.62.

G

2
3
4
5
6

0.444 90
0.440 73
0.441 99
0.463 12
0.464 82

—1.609 1
—0.893 24
—0.307 00
—0.049 209

0.143 95

—1.6535
—0.803 62
—0.389 60
—0.227 19

—1.6246
—0.760 73
—0.424 57

—1.6352
—0.871 54 —1.6449
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FIG. 6. An attempt to reconstruct the phase portrait of the
Ikeda map in dG =2. The lack of a one-to-one projection of the
attractor onto the [x(n),x(n+ I)] plane is clear to the eye.
This and the correlation function data below indicate that one
should use global dimension dz )2.

FIG. 7. The Grassberger-Procaccia correlation function for
the Ikeda map for global dimensions dz = 1,2, . . . , 7. From the
slope we obtain d, =1.8. It seems clear that the correlation
function changes slightly at the low and high ends until dirnen-
sion 3 or 4, indicating that d& =2 is not a good global dimen-
sion.

orthogonal, while the L vectors are not. Similarly, it is
found that L3 lies somewhere in the Q„Q2, Q3, three-
space, etc.

After startup transients have died away, the Q matrix
depends only on the present location on the attractor and
not on exactly how many previous calculation steps were
used to get there. This independence is basically a result
of the multiplicative ergodic theorem of Oseledec. Also
this explains why it is advantageous to initialize this ma-
trix by taking a significant number of initial steps before
taking contributions from the R matrices towards evalua-
tion of the Lyapunov exponents.

It is useful to examine the "thickness" of the data set
in the Q; directions. This can be done by trying to fit the
points to a subspace of dimension d —1, curved to the
desired order, which is tangent at the origin to all but one
of the Q vectors. This is a straightforward least-squares
problem and the rms error of fit gives a measure of the
thickness. If one direction is known to be significantly
more singular than all others, then this will usually be
nearly collinear with the last Q vector. If not, this is pos-
sibly a sign that this direction is too singular and the cal-
culation is generating a spurious exponent.

To obtain the actual L; at a given location on the at-
tractor, it is necessary to have information about the dy-
namics a long time into the future as well as the past.
For example, the last L vector is that one special direc-
tion that continues to evolve at the rate governed by the
most negative exponent as it is followed into the future.
We can obtain enough information to calculate all of the
L vectors by studying the reverse as well as the forward
dynamics of the system. To do this, we simply invert the
DF matrices (do not recalculate them from the reversed
data set in case of errors or singularities involved in their
calculation) and use these to obtain the reverse Q ma-
trices Qz. We must be far enough from both ends of the
calculation so that transients have died out in both Q and

TABLE III. The Lyapunov exponents for the Ikeda map. In
the first part of the table these were calculated using dL =2 and
d& =2, showing results that depart strongly from the true values
X, =0.503 and A.2= —0.719. Increasing dG to 4 in the second
part of the table, we eliminate the self-interactions of the attrac-
tor and now obtain acceptably accurate results for the two ex-
ponents. Correct values are A, 1=0.503, A,2= —0.719.

Order of fit
2 dG 2 dL=2, dg=4

Linear
Quadratic

Cubic
Quartic
Quintic

0.6104
0.5348
0.5649
0.5912
0.6047

—0.2358
—0.3779
—0.4260
—0.4881
—0.4588

0.5085
0.5050
0.5123
0.5056
0.5115

—0.7317
—0.7281
—0.7356
—0.7354
—0.7490

Q~. Then L; will be known to be orthogonal to the last
d i co—lumn vectors of Q and also to the last i —1

column vectors of Qz. This is sufficient information to
determine L, in nondegenerate cases. One method is to
make a matrix consisting of all of the orthogonal vectors
mentioned above plus one zero vector. This is then ana-
lyzed by singular value decomposition to obtain the
desired vector.

Once the L, have been determined, there are several
things that can be done with them. First, they should be
examined to see if two or more of them are nearly col-
linear. This can occur if a poor choice was made for the
delay time (probably too small} or also if nonlinear effects
are generating a large spurious exponent. Note that a
more general analysis can be made by a SVD of the ma-
trix of L vectors. We can also determine the data thick-
ness in the L; directions in the same way that we did pre-
viously for the Q;. This is particularly useful for identify-
ing a spurious positive exponent. We can also determine
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TABLE IV. The Lyapunov exponents for the Ikeda map. These were computed with
d =dL =dG =4, with data that has five digits of accuracy. In this table we vary the order of the local
polynomial fit of the neighborhood-to-neighborhood map and show its effect on the two legitimate and
two spurious exponents. We notice that the spurious positive exponent decays as the order of the poly-
nomial fit is increased. For fourth-order fits the spurious exponents appear as A, 2 and A,3. Correct values
are k, =0.503, k2= —0.719.

Order of
polynomial

Linear
Quadratic

Cubic
Quartic

0.879 59
0.495 44
0.495 97
0.503 54

0.469 44
0.019259

—0.194 15
—0.154 18

k3

—0.680 81
—0.61109
—0.652624
—0.627 12

—1.1596
—0.809 87
—0.769 63
—0.788 07

the data thickness in the L,. directions in the same fashion
as was done for the Q;. The results of this will be report-
ed in Sec. III.

The validity of the calculated L,. vectors can be
checked by using them to recalculate the Lyapunov ex-
ponents. These are now completely separated and can be
obtained by observing the local stretching or contraction
of the mapping along each of the L; directions and
averaging the logarithms of these over a large number of
steps. This works quite well, but does not appear to give
any improvement over the original calculation of the ex-
ponents.

Once it is clear that a given direction in the data set is
nearly singular, there are several approaches that can be
taken to deal with the situation:

(1) Carry through the calculation and attempt to iden-
tify the spurious exponent at the conclusion of the calcu-
lation.

(2) Reduce the value of d.
(3) Attempt to "null out" the singular direction by

making all of the row vectors of the DF matrices orthog-
onal to the local singular direction(s). This forces the
spurious exponent(s) to go to minus infinity.

(4) One can project data onto a lower-dimensional
space (of the correct dimension) in such a way as to op-
timize display of the nonsingular directions.

III. RESULTS OF NUMERICAI. EXPERIMENTS

A. Time lags and Lyapunov exponents

In this section we present the results of our numerical
experiments on the dynamical systems enumerated in
Sec. I. For each of the systems we numerically generated
a time series as follows:

The Henon and Ikeda systems are maps of the plane
into itself. We chose initial conditions (0.25,0.25) for the
Henon map and (0.1,0.1) for the Ikeda map. We then
iterated these initial conditions forward in time using
double precision. In each case we discarded the first 50
iterates of the map as representing transients before
recording the data. Finally, we recorded 11000x, coor-
dinates for the Henon map and 21000 values of the real
part of z for the Ikeda map.

The Lorenz system is composed of three ordinary
differential equations. It was numerically integrated for-
ward in time by using fourth-order Runge-Kutta integra-
tion and double precision. We used two values for the
sampling rate r: one was 0.02, while the other was 0.05.
For the sampling rate 0.02 the initial conditions were
(17.83,12.34, 10.32). After a few hundred steps to avoid
transients, we recorded 60000 and 20000 values of x„
respectively, for the two data sets.

The Mackey-Glass equation is a delay differential equa-

TABLE V. The Lyapunov exponents for the Ikeda map. The embedding and local dimension are
the same as in the previous table; however, we have retained eight digits of accuracy. Notice that the
negative Lyapunov exponent is determined to greater accuracy than the previous case. But the spuri-
ous positive exponent does not decay as fast as in the previous case. Correct values are X&=0.503,
A.2

= —0.719

Order of
polynomial

Linear
Quadratic

Cubic
Quartic

0.921 79
1.5205
0.648 34
0.611 81

0.471 99
0.487 59
0.424 11
0.308 23

—0.672 51
—0.587 14
—0.579 30
—0.601 21

—1.1499
—0.801 99
—0.739 51
—0.722 02
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Linear
Quadratic

Cubic
Quartic

1.4504
1.5027
1.5121
1.5561

—0.005 712 3
—0.046 041

0.006 964 1

0.032 219

—13.999
—19.448
—22.925
—23.465

tion having an effectively infinite-dimensional phase
space. For a delay time s =17, we used an integration
time step of 0.1 so that we were always saving the previ-
ous 170 values of x. The output was sampled at time in-
tervals ~=5, i.e., 50 numerical time steps. We used
20000 values of x in our calculations. Runge-Kutta in-
tegration methods require evaluation of the derivative at
half time steps, and this is complicated in this case be-
cause we need the value of the delayed variable which we
have calculated only for integral time steps. Instead, we
chose to perform the integration using a fourth-order
predictor-corrector algorithm, which appears to give very
accurate results. The accuracy can be tested observing
the time evolution of the system for a set time interval
(several oscillatory cycles long) using a relatively large
time step. This is then repeated for successively smaller
time steps, each time starting from the same initial condi-
tion. We generally set all of the saved values of x to 0.5
as our initial condition.

By using long time series, we avoid the possible effects
of a finite sample size in our investigations. We have no
precise criteria for determining the exact size of the data
set needed for a particular dynamical system. As a rule
of thumb, one would expect that the required number of
points ND should increase with the dimension of the at-
tractor d, as log, o(ND) ~d, . We wanted to use data
sets that are large enough to cover the attractor and thus

TABLE VII. In this table we display the Lyapunov ex-
ponents for the Lorenz system computed from 20000 data
points evaluated with a sampling time ~=0.05 and a time delay
T=T2=2w=0. 1. The data have nine plus digits of accuracy
and are analyzed using d =dL =3 and dG=7 for mapping or-
ders 1 through 5.

Order of
polynomial

Linear
Quadratic

Cubic
Quartic
Quintic

1.549
1.519
1.505
1.502
1.502

—0.094 70
—0.026 47
—0.005 695
—0.002 847
—0.000 387

—14.31
—20.26
—22.59
—22.63
—22.40

TABLE VI. In this table we display the Lyapunov exponents
for the Lorenz system computed from 50000 data points evalu-
ated with a sampling time ~=T2=0.02 and a time delay
T =5~=0.1. The data have five digits of accuracy and are ana-
lyzed using d =dL =dG =3 for varying orders of the polynomial
5t to the neighborhood-to-neighborhood map. Correct values
are I,)

= 1.51, A,2=0.0, A, 3
= —22.5.

Order of
polynomial

avoid problems due to finite sample size. Yet at the same
time we wanted to restrict ND to sizes comparable to a
large range of experimental situations. We think that our
choices satisfy these two opposing goals, but it is well
worth further study of the effects of the size of data sets
on the evaluation of Lyapunov exponents.

As stated in Sec. II, the first part of the analysis of the
time series is to determine the time lag T for the recon-
struction. To assist in making this determination, we cal-
culated the average mutual information function, Eq. (8),
for the first three systems on our list. In this paper we re-
port the result of this for the first and third systems. We
are fortunate to have been provided with public domain
C programs written by A. M. Fraser that accomplish this
task. For the Henon map we used an ensemble size of
2' =8192. For the Ikeda map we used 2' =16384
points, and for the Lorentz equation we used 2' =32 768
points. The results of our investigations on I(T) are
shown in Figs. 3 and 4.

Figure 3 shows the type of behavior common to data
that are associated with maps. Each e indicates a choice
of T and the corresponding value of I(T). The figure
shows a monotonic decrease in I(T) with T. Systems
known to be flows and whose data yield this type of mu-
tual information behavior can be explained by analogy
with a Poincare surface of section. Each point of the sur-
face of section would represent an iterate of the map.
Thus, by considering points on such a surface of section,
one can model a flow via a map. Under these conditions
each iterate of the map represents a large temporal evolu-
tion of the dynamics. ' For data that are inherently best
modeled by a map, we used T =~= T2 = 1.

Figure 4 shows the type of behavior common to data
that are associated with flows. Again, each e indicates a
choice of T and the corresponding value of I (T). The in-
dividual choices for T are of the form T =m~ for increas-
ing m. This is necessary since the only measurements
available for the ensemble are the ones taken with a fixed
sampling rate r. The mutual information I(T) demon-
strates an oscillatory behavior overlaying a smooth
monotonic decay for increasing T. For data that are in-
herently best modeled by flows, we have chosen T to be
the first local minimum of I. For the Lorenz system this
is at T=0.1.

For all of our test cases we examined least-squares fits
to the data up to and including fourth or fifth order. Our
own experience as well as that of others indicates that
one should use at least twice the minimum number of
nearest neighbors (Nb=2Np) in a least-squares fit. We
used a k-d tree to minimize the time required to find
nearest neighbors. For our purpose we used the Euclide-
an norm, although other norms are possible. The k-d
tree method of finding nearest neighbors requires
[O-log, o(N) ] time to compute.

As we stated above (cf. Sec. II), the least-squares fitting
reduces to solve V =XB for known V and X. The in-
version of X was accomplished using the QR algorithm
without pivoting recommended in the LINpACK Users'
Guide. This process is by far the most time-consuming
part of the calculation. The matrix X is Xb X Nb/2. Even
for moderate d, third- and fourth-order fitting produces
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TABLE VIII. The Lyapunov exponents for the Lorenz system. These were computed using a local
cubic neighborhood-to-neighborhood map using six digits of accuracy in the data. For all cases the lo-
cal and global dimensions were equal (d =dL =dG). The data have sampling time T&=~=0.02 and
time lag T=0.1; 50000 points were used in the calculations. Correct values are A, 1=1.51, k&=0.0,
A, 3

= —22.5.

1.5169
1.5375
1.5631
1.6123

—0.007 994
—0.070 352
—0.015 967

0.009 517 1

—23.093
—22. 147
—21.600
—21.340

—108.21
—77.403
—60.057

—114.83
—80.231 —»5.50

large X matrices. At present we can think of no way to
avoid this problem. Finally, the matrix inversion prob-
lem is sensitive to roundoff errors. We believe that this is
due to the ill-conditioned matrices that one is inverting.
To avoid as much of this problem as possible, we ran our
Lyapunov exponent programs in double precision on a
32-bit machine. Thus, although the data inserted into the
programs contained only p digits of accuracy (p ~ 9), the
matrix calculations carried a higher accuracy.

The reader will notice that Eq. (15) is defined only in
the limit as K~ ~. Obviously we can only choose some
value of K that we trust is large enough to yield a con-
sistent result. We based our choice on the following cri-
teria: Since we know the true evolution equations, we
can calculate the exact Jacobian at each time step. We
perform a QR decomposition on the Jacobian and deter-
mine what value of K yields consistent results. We set-
tled on K=1000, 3000, and 5000 for the first three sys-
tems introduced in Sec. I. These values are much larger
than necessary. Part of our rationale in their section was
to avoid problems associated with small K. Of course, an
experimentalist would not be able to do this. A common
method for determining K for experimental data is to cal-
culate the power spectrum and find the largest relevant
frequency. This yields an extremely rough estimate of a
dominant time scale in the problem. Not surprisingly, we
recommend performing the calculation for values of K
that are several hundred or several thousand times the
time associated with this line. Then repeat the calcula-
tion using 2K Jacobians and look for convergence of the
exponents calculated at K and 2K.

Order of fit

3.44[3]
6.41[3]
6.38[3]
6.72[3]

—2.20[3]—7.05 [4]—1.64[3]
—7.59[4]

A3

—5.92[2]—5.07[2]—2.21[2]—4.28[2]

TABLE IX. The Lyapunov exponents for the Mackey-Glass
equation obtained from 20000 data points. We used dL =3 and

d& =7 to minimize self-intersection of the attractor. The order
of the local mappings was increased from 1 to 4.
T, = T =2~=10. Correct values are A,

&
=0.006, X2=0.0,

A,,= —0.04. x [y] represents x X 10

When performing our numerical experiments, we used
two approaches to calculating Lyapunov exponents. The
two approaches are intimately related to the local and
global dimensions dL and dG, defined in Sec. II.

Under one approach the evolution vectors y(n) are of
dimension d =dI (dz. The reconstruction is thus not
globally diffeomorphic to the attractor that represents the
true dynamics. However, we believe that the y's do cap-
ture the local dynamics of the attractor. We generate
these evolution vectors by first embedding (via time de-
lays) the data into dG dimensions for the purpose of cal-
culating nearest neighbors. Having found the nearest
neighbors to a particular y(n) in the dG-dimensional Eu-
clidean space, we project down onto a dL-dimensional
subspace by eliminating all components of the y's beyond
the first dI . All subsequent calculations are performed in
d =dL dimensions and dL Lyapunov exponents are pro-
duced. This method is useful if, for example, one has a
priori knowledge of the dynamics that generated the orig-
inal data set or an unambiguous value for the dimension
of the attractor. (See our discussion on local and global
dimensions in Sec. II.)

Under the other approach the evolution vectors y(n)
are of dimension d =d&. Therefore, the y's evolve on an
attractor that is diffeomorphic to the attractor that
represents the true dynamics. Nearest neighbors to a
particular y(n) are found in a dG-dimensional Euclidean
space and all calculations are performed in that space.
The method produces d =dG Lyapunov exponents. This
approach is useful when subsequent calculations involv-
ing the attractor require a global embedding —for exam-
ple, if one wishes to perform constrainted predictions of
temporal evolution on the attractor (cf. Sec. IV and Ref.
10). It is also an appropriate choice in the absence of a
prori knowledge concerning underlying dynamical equa-
tions.

We have results on the Lyapunov exponent for Eqs.
(1)—(4) as well as results on the attractor thicknesses for
Eqs. (3) and (4). First, we discuss results for the Henon
map. For this example we did not investigate the
difference between local and global dimensions. All of
our calculations were performed in IR where d =dG.
The Henon map is naturally two dimensional. Indeed,
since xz(n) is just proportional to x, (n —1), the two vec-
tors

y(n) = [x, (n), x, (n +1)]
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TABLE X. Singular thickness values for the Lorenz system. The attractor was reconstructed in a
Euclidean space of dimension dG =5, and 250 neighbors for each point on the fiducial orbit were used.
S& through S5 are the most singular through least singular thickness values. The values must stabilize
above the intrinsic noise level (here very small) in order to correspond to nonspurious exponents. Note
that S& and S2 continue to drop as the order is increased, indicating that a good choice for dL would be
3 (since three values stabilized). x [y] represents x X 10

Order of
polynomial

Linear
Quadratic

Cubic
Quartic
Quintic

Sl

2.13[2]
1.05[3]
1.98[5]
6.64[8]
2.78[11]

S2

5.26[2]
9.17[3]
7.73[4]
1.08[4]
2.78 [6]

S3

3.62[1]
1.88[2]
1.84[2]
1.73[2]
1.71 [2]

S4

1.95
1.95
1.97
1.93
1.92

S5

2.73
2.73
2.69
2.71
2.72

are just a rotation of the original phase space. The ac-
cepted values of the Lyapunov exponents for this system
are A,

&
=0.418 and A,z= —1.62. Table I shows the calcula-

tion of the Lyapunov exponents in d =d G
=2 for linear

through quartic local polynomials for the neighborhood-
to-neighborhood mapping; each entry has p=4 digits of
accuracy in the data. For all of our cases we control the
number of digits by rounding off the data after p
significant digits. This is a Very crude approximation of
noise but it is convenient for our purposes. We also ex-
amined the effect of keeping more significant digits. Un-
like subsequent cases, we found no significant differences
in the values of the calculated Lyapunov exponents for
4&p (9. Table II shows a different cut on the data.
Here we see the Lyapunov exponents resulting from a cu-
bic local map using p =6 for dimensions
d =do =1, . . . , 6. As indicated above, the result of hav-
ing too large a local dimension (for this experiment
dr =dG ) is to produce spurious negative exponents.

The Ikeda map is an excellent example of a system for
which the use of separate local and global dimensions is
important. Comparison of the attractor in the original
phase space (Fig. 5) with the two-dimensional time-delay
reconstruction (Fig. 6) clearly shows the self-intersection
effect which was discussed previously. Since knowledge
of the fractal dimension is useful for deciding on the
values of dl and dG, we plot the Grassberger-Procaccia
correlation integral for embedding dimensions d& = 1

through 7 as seen in Fig. 7. From the slope we see that

the fractal dimension is d, =1.8. The fact that the slope
of the linear portions of the curves continues to change
slightly past a global dimension of dG =2 is a result of the
self-intersection of the attractor. On this basis, and also
from Eq. (5), we would choose dG to be at least 3 and
preferably 4. An appropriate value for the local dimen-
sion is dL =2, which agrees with the suggested value of
Eq. (6) and also can be obtained by our method of data
singularity analysis. (Calculation of the fractal dimension
d, and/or the embedding dimension dG of an attractor
using this method requires large data sets and has slow
convergence. We have confidence in the value d, stated
because it is relatively far away from 2.0 as well as the
fact that we have some a priori knowledge that the
answer must be less than 2. In practice this method of
determining the local dimension dL may not yield unam-
biguous answers. ) In Table III we show the results ob-
tained when using the incorrect values d =dG=dL =2
and compare with those obtained with d& =4 and
d =dL =2. The correct values are approximately
A, , =0.503 and A, = —0.719.

If both the local and global dimensions are set equal to
4 (d =dL =dG =4), the overlap problem is eliminated but
we have to deal with two spurious exponents as shown in
Table IV. We notice that for the linear polynomial fits a
spurious positive exponent appears. However, as the or-
der of the polynomial fit increases past 2, this spurious
positive exponent disappears. Also, the value generated
for the negative Lyapunov exponent is more accurately

TABLE XI. Singular thickness values for the Mackey-Glass equations, for 20000 data points using
dl =3, dG =7, and T2 = T =2~= 10. 250 neighbors for each point on the fiducial orbit were used. Note
that S, and S2 continue to drop as the order is increased, indicating that a good choice for dL would be
3 (since three values stabilized). x [y] represents x X 10 ~.

Order of fit

Linear
Quadratic

Cubic
Quartic
Quintic

Sl

1.80[3]
2.45 [4]
2.60[5]
2.02[6]
3.96[7]

S2

3.47[3]
l.10[3]
3.07[4]
1.12[4]
3.57[5]

S3

2.06[2]
1.33[2]
1.09[2]
9.03 [3]
6.10[3]

S4

3.52[2]
3.45[2]
3.32[2]
3.28[2]
3.50[2]

S,
5.60[2]
5.58[2]
5.57[2]
5.59[2]
5.32[2]
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TABLE XII. Lyapunov exponents and thicknesses of the attractor along the corresponding
Lyapunov direction vectors for the Lorenz system. The calculation was done with 20000 data points
using dL =4 and dG =7 so that there is one spurious exponent. For second and above, the spurious ex-
ponent separates from the true ones and can be identified by its extremely small thickness value.

Order of polynomial fit; Lyapunov exponents and thicknesses

X, =1.936
O] =0.4666
ki =4.364
O] =0.00256
A, i

= 18.04
0( = 1.89[7]
A, i

=26.96
8, =2.46[10]

A, 2
=0.8019

O2 = 1.083
A.2

= 1.401
O, =0.4»6
A, 2

= 1.502
O2 =0.1288
A, 2

= 1.503
O2 =0.0656

A, ~
= —1.1137

Og
= 1.111

A.q
= —0.6559

Oq
=0.4539

kq = —0.000 55
Og =0.0910
k) = —0.004 84
O~ =0.0656

A, ~
= —13.44

O4 =0.161
A,4

= —20.57
O4=0.001 16
A4 22+77

04 =2.7[4]
A.4

= —22.55
04 =5.57[5]

reproduced. The advantage of higher-order polynomial
fits is clearly demonstrated. For this table the number of
significant digits is p =5. In Table V we see that the value
calculated for the negative Lyapunov exponent moves
closer to the correct value as the accuracy of the data in-
creases. In this table the number of significant digits is
p=8. This improvement is offset by the fact that the
spurious positive exponent decays much more slowly
than in Table IV. We believe that the value calculated
for the positive exponent will eventually decay to the
correct value as one increases the order of the polynomial
fit beyond fourth order. The result would be two spuri-
ous negative exponents (cf. Sec. II). Recall that negative
exponents are necessary to contract the dG-dimensional
phase space onto the d, = 1.8-dimensional attractor. The
Ikeda map is a nice test of the effects of higher polynomi-
als fits since the exponential in Eq. (2) indicates that any
fit of finite order will not be able to completely capture
the dynamics.

From the results so far the reader may not be very im-
pressed as to the value of going to higher-order fittings,
as the linear results do not look too bad for the two maps
we have studied. As we will see, the results for Aows can
be much more impressive. We move now to the Lorenz
system, for which the accepted values of the Lyapunov
exponents are A. , =1.50, A,2=0.0, and A,&= —22.5. In the
case of data from the Lorenz equations we have two
slightly different settings for the evolution time lag T2
and dimensions. One of our choices uses an evolution
time lag of T2 =0.10 while our other choice is 0.02. As a
last issue before presenting our results, we remind the
reader that data for the Lorenz equations can be globally
embedded in dG =3 dimensions, and the local dimension
of the Lorenz attractor is dL =3.

In Table VI we have calculated the Lyapunov ex-
ponents for data with ~=T2=0.02 and an embedding
time, T=0.10. A total of 50000 data vectors, y were
used in the calculation, and we retained p =5 digits of ac-
curacy. The order of the polynomial fits ranged from 1 to
4, and we use dimensions d =dL =dG =3. In Table VII
we have calculated the Lyapunov exponents for data with
~=0.05 and T = T2 =0.10. 20 000 points were used in
the data set and the order of the polynomial ranges from

1 to 5. The data in Table VII is accurate to at least nine
digits. Our choices for dimensions differed from those
used in Table VI. Here we used a local dimension of
d =dL =3 and a global dimension of d~=7. As the
reader will observe, from Tables VI and VII, the negative
exponent is very difficult to obtain. Yet, we see it
dramatically snapping into place as we increase the order
of polynomial fit to 3 and above. Also, note the improve-
ment in accuracy of the zero exponent as the accuracy of
the data is increased. As one can see, accuracy of the
data is very important (unlike the Henon map). Finally,
in Table VIII we have the same Lorenz data as in Table
VI but now show the k's for dimensions
d =dL =d G

=3, . . . , 6 for a cubic polynomial fit and
p=6 digits of accuracy. In this case the spurious ex-
ponents all are highly negative as shown. The large nega-
tive exponents will cause the d&-dimensional phase space
to collapse rapidly onto the attractor. It is our conjecture
that the theoretically correct values of these spurious ex-
ponents are minus infinity. The presence of noise (al-
though small) gives width to an attractor that is actually
singular in the spurious d —3 directions. This small
width results in finite values for the spurious Lyapunov
exponents.

We show results for the Mackey-Glass equation in
Table IX. For the parameters used the dimension of the
attractor is known to be d, =2.15. We chose to calculate
three Lyapunov exponents in this case, both because this
is the choice indicated by Eq. (6) and because of the
singularity results described in Sec. III B. Thus
d =dI =3. The sufficient condition implied by Eq. (5)
suggested that we set the global embedding dimension to
d G

=7. There are, of course, an infinite number of
Lyapunov exponents for this system, but we only have
enough information to accurately calculate the most
significant three of these. The accepted values for the
three Lyapunov exponents are A, , =0.006, A,2=0.0, and
A 3

—0.04. The time delays used to reconstruct the at-
tractor were T2 = T =2&= 10. Our results do not con-
verge as rapidly as they did in the Lorenz case, probably
due to the highly convoluted nature of this attractor. '

However, the values of the calculated exponents are
reasonably consistent as we increase the order of our po-
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lynomial fits to 3 and above. Furthermore, the results are
in good agreement with previously calculated values.

B. Attractor thickness and spurious exponents

As discussed earlier, one method of deciding on the
value for the local dimension d is by a singularity analysis
of the data points in one or more small local neighbor-
hoods. In Table X we show how the measurement of the
data thickness improves as the order of the fitting is in-
creased when using data from the Lorenz system. For
the Lyapunov data shown, the dimension of the original
system is 3 but the scalar data set is being converted to
five dimensional vectors. As a result, the two extra di-
mensions must be highly singular, with data thickness
limited by the intrinsic noise level which is very small for
this numerically generated data. Thus the first two singu-
lar values decrease dramatically as the order is increased.
The Lorenz attractor is very thin in places. This is
demonstrated by the third singular value, which is a fac-
tor of 100 thinner than the final two values and has essen-
tially converged after taking the fitting to second order.
Since the third value is significantly higher than the first
two, it can be assumed to be well above the intrinsic noise
level and thus we would choose d=3 as a result of this
analysis.

In Table XI we show data from the Mackey-Glass
equation. For the parameters used, the attractor has di-
mension of about 2.15. We have reconstructed the data
in a five-dimensional space. Here, none of the singular
thickness values drop off as rapidly as the first two of the
Lorenz system (even though the dimension of the attrac-
tors is about the same). This is due, in large part, to the
fact that the system that generated this data has an
infinite-dimensional phase space while the Lorenz system
has a three-dimensional space. Hence, the Lorenz system
is exactly singular in the extra dimensions. Nevertheless,
the first two values have dropped off sufficiently to indi-
cate that it would be inadvisable to try and obtain more
than three Lyapunov exponents for these parameter set-
tings.

In order to be able to include additional exponents, we
need to compare the additional singular thickness values
to the level of stochastic noise known to be in the data. If
comparable in size, the exponent will be difficult to ob-
tain. We may also compare the rms fitting error of our
calculated map to the minimum thickness of the iterated
data point set. If it is smaller, than there is a good
chance that the calculation will produce a meaningful re-
sult.

In Table XII we analyze the Lorenz equations with a
local dimension d=4, which we know must generate at
least one spurious exponent. When using a second-order
fitting to our local map, Eq. (9), the results are poor for
all of the Lyapunov exponents, and the Lyapunov vectors
L2 and L3 are found to be nearly collinear. Increasing
the polynomial fitting to third order, we find that the last
three exponents are very close to the true exponents,
while the first is 10 times larger than the true value of the
largest exponent. In this case there was no significant
collinearity of the L;. The spurious nature of L, can rap-

idly be identified by examining the local data thickness 0&

in the Li direction, which is over five orders of magnitude
smaller than the thickness Oz for L2. A positive exponent
should not exhibit any significant "thinnesss, "while some
thinness for the negative exponents is to be expected as
exhibited here by 04.

C. Direct eÃects of noise on the Lyapunov spectrum

Although we have shown that it is possible to include
singular directions in the calculation and later identify
the questionable positive exponents, the presence of rela-
tively small amounts of noise makes this more difficult.
This is illustrated in Figs. 8 and 9 for the Lorenz system.
We have added Gaussian white noise to the data points
with the indicated standard deviation. In Fig. 8 we have
used dl =3, while in Fig. 9 we used dL =4, which will
give us one spurious exponent. In both cases we used a
third-order expansion for the local mappings. The spuri-
ous exponent in Fig. 9 changes wildly as the added noise
is increased, going from + 19 (much higher than the actu-
al largest exponent of 1.5) down to —6. This behavior is
in fact another way of identifying a spurious exponent in
extremely accurate data. While we can identify the spuri-
ous exponent in the dL =4 case, the values of the other
three exponents are significantly more noise resistant
when the calculation is carried out in dI =3. For this
reason, it is prudent to add singular dimensions to the
calculation one at a time and observe the effect on the
values obtained at the previous step.

The wild behavior of the spurious exponents gives sub-
stance to the idea that working with a local dimension
larger than needed is a very unwelcome situation in a
noisy environment. Since the nondynamical com-
ponents of the vectors y(n) are totally dominated by
noise, while the dynamical components are just contam-
inated, we would expect any perceived dynamics in a di-
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FIG. 8. The effect of external noise on the determination of
Lyapunov exponents for the Lorenz system. In this figure the
local dimension is dL =3. On the horizontal axis is the loglo of
IR which equals the noise level divided by the signal level.
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FIG. 9. The efFect of external noise on the determination of
Lyapunov exponents for the Lorenz system. In this figure the
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vided by the signal level.

mension above the minimum allowed to be completely
unreliable.

Noise will also affect the data singularity measure-
ments. As one would expect, the data thickness measures
will not dip below the noise Aoor. Generally, if the di-
mension is increased sufficiently, the most singular direc-
tions will have thicknesses governed by the intrinsic noise
level. Singular thickness values that tend to converge to
a level that is above the noise level should correspond to
meaningful exponents in the analysis. For meaningful re-
sults one must therefore reduce the value d until the most
singular thickness level remaining is significantly higher
than this baseline.

IV. SUMMARY AND CONCLUSIONS

In this paper we have addressed several questions relat-
ed to the determination of the full spectrum of Lyapunov
exponents for time-series data representing observations
of a dynamical system:

(i) Can we relieve the Jacobian from the dual task of
taking neighborhoods to neighborhoods accurately and
giving precise values for the Lyapunov exponents by em-

ploying higher-order terms in the local map? What addi-
tional analytical power comes from using a local polyno-
mial map for the evolution of neighborhoods in recon-
structed phase space instead of the local linear maps used
in the pastP' '"

(ii) What can we say about the efl'ects of accuracy of
the data or, equivalently, noise in the observation on our
ability to determine the Lyapunov exponents of the sys-
tem?

(iii) What methods can we use for determining whether
the Lyapunov exponents are actually representative of
the dynamics or are artifacts of our having reconstructed
the data in too large a space?

(iv) The Ikeda map is a system where the embedding
dimension d& necessary to reconstruct the attractor is
larger than the number of original dynamical dimensions
d„; . For these situations, what interpretation can be
placed on the dG —d„; spurious Lyapunov exponents?

Our answers to these questions are contained in the set
of tables and the figures in this paper. Basically, we have
a positive answer to each of the questions. We have
shown the utility of higher-order (rather than linear) local
maps from neighborhood to neighborhood in recon-
structed phase space. The linear term (the Jacobian) is all
that is needed for the determination of the Lyapunov ex-
ponents through Oseledec's multiplicative ergodic
theorem. ' In our examples, when one includes cubic or
higher terms in the local polynomial map, the evaluation
of the linear term settles down to a stable and accurate
value. This is because the higher-order mapping is able
to deal correctly with the local curvature of the data set.
The tables make it quite evident that one can, in the low-
dimensional cases considered and by extrapolation to
few-dimensional attractors with confidence, determine
the full set of Lyapunov exponents (or at least all those
which are strongly involved in the dynamics within the
attractor) from time-series data alone.

The accuracy of the data is also critical! The values of
negative exponents in "thin" directions of the data set
start to become affected when the noise level goes above
about 10% of the thickness of the data set in the associat-
ed Lyapunov direction. We have demonstrated this in
two ways: (1) We kept data accurate only to 1, 2, or up
to 9 significant figures and (2) we explicitly added Gauss-
ian white noise to the clean data.

On the third issue we have presented two slightly
different ways to test the reality of the Lyapunov ex-
ponents determined from the observed data. We have
shown here in the case of both the Lorenz system and the
Mackey-Glass equation that evaluating the "thickness"
of the singular directions in the local space provides
strong evidence of spurious versus realistic exponents.
When the exponent is spurious and positive, we should
see a very thin extent of the attractor in the eigendirec-
tion associated with the exponent. A thick extent of the
attractor is associated with a realistic positive exponent
as significant stretching of orbits occurs in these direc-
tions. Our examples show clearly that one can, indeed,
distinguish the two cases.

There are situations, such as prediction, ' where one is
required to work in a reconstructed phase space of di-
mension d G )d„; . In these situations there will be
dG d

g
spurious exponents. For the cases shown in the

figures and tables these spurious exponents are usually
negative. (The few examples of a positive exponent we
attribute to using a polynomial fit that is too low in order
to capture the curvature evident in the extremely accu-
rate data we have used. ) We interpret them as being
necessary to contract a dG-dimensional phase space onto
an attractor whose dimension d, is less than dG. We an-
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ticipate that for situations such as this it will be necessary
to use all dG Lyapunov exponents when performing cal-
culations in the d&-dimensional reconstructed phase
space.

At this stage the procedures require several cross
checks, as none alone is sure to be unambiguous.
Nonetheless, the tools are present for extracting these ex-
ponents from data. The Lyapunov exponents are invari-
ants characterizing and classifying the attractor. Furth-
ermore, they have clear physical interest in terms of pre-
dictability of the system observed through its measured
time series. Therefore, our technique provides an impor-
tant item in the analysis of signals from chaotic systems.
As indicated elsewhere, ' the constraints of Lyapunov ex-
ponents are required to assure oneself that when making
predictions in chaos, the predictions are being made on
the system observed. The more Lyapunov exponents one
can reliably and believably determine, the more sensible
the predictions one can achieve.

There are two directions that have not been explored
by us in this paper which we would recommend to the
reader. The first is the investigation of the ability to use
these methods in the presence of short data sets. We
have used only long data sets to establish the possibility
of computing the local Jacobian matrices accurately. If
one can also establish the dependence of the procedure on
the length of the data set, that would be of some practical
interest. The second is to extend the methods we have es-
tablished to rational local maps of neighborhoods to each
other. These are likely to have a better radius of conver-
gence and may be useful in the investigation of the issue
just mentioned about short data sets. From a computa-
tional viewpoint, rational maps are only as diScult as po-
lynomial or Taylor expansions, being another form of
least-squares problem. The main mathematical issue is
the reliability of an extrapolation of the map to z=0
where the evaluation of the required Jacobian matrix is to
be made —i.e., on the fiducial orbit. Use of rational rath-
er than polynomial maps for this would seen to have at-

tractive virtues.
There is an interesting question that arose in the course

of this work concerning the negative exponents. In some
sense the negative exponents govern how orbits in the full
dG-dimensional phase space are drawn to the attractor.
Our data, since we have passed all transients and deal
only with stationary time series, lie entirely on the attrac-
tor. How, then, can we determine the negative exponents
from data alone? The answer we have arrived at, with no
pretense at rigor, in the face of the clear demonstration
that one can indeed determine the negative as well as the
positive exponents in many cases, rests on our assumed
form of the neighborhood-to-neighborhood maps as poly-
nomials. This implicitly assumes an analyticity of the
maps in phase space which extends oA the attractor, thus
allowing us to learn something of phase space by con-
tinuation away from the given data. This point may mer-
it a deeper mathematical investigation than we are
prepared to provide.

Finally, we recall the possibility of using the minimum
description length principle for choosing the optimum
number of coefficients in a polynomial (or rational) neigh-
borhood map. This may prove quite essential when data
sets become sparse.
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