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Random-volume scattering: Boundary effects, cross sections, and enhanced backscattering
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Assuming a scalar wave, the Bethe-Salpeter (BS) equation for a system of random medium with

rough boundaries is first reviewed, together with the scattering matrices involved. Emphasis is

placed on the optical condition of each scattering matrix, as well as that of a random layer with pro-

nounced boundary effect @s one scatterer. Their optical expressions are obtained in terms of the

cross sections along with the respective optical conditions. The enhanced backscattering can be un-

derstood as a natural consequence of requiring coordinate-interchange invariance of the second-

order Green s function, and the BS equation is rewritten as an equation for the function of the four

coordinates involved, so that the invariance is immediately clear. With the solution, specific expres-

sions of cross sections are obtained for a random layer to the approximation of using the boundary-

value solution of the diffusion equation. Nevertheless, the angle distribution in the enhanced back-

scattering holds sufficient accuracy as long as the optical width of the layer is long enough, although

not quite for the background term. Another method of using asymptotic evaluation of the cross

sections under the diffusion condition is also discussed. A numerical example is shown for the

enhanced backscattering.

I. INTRODUCTION

The scattering of waves by a random volume is an in-
teresting subject, including problems of the boundary
effect, the enhanced backscattering by both the medi-
um' and the boundaries, ' and, when a fixed scatterer
is embedded, its shadowing effect as well as its enhanced
backscattering. The basic equation is the Bethe-Salpeter
(BS) equation for the entire system consisting of the ran-
dom medium plus the boundaries that can be partially or
fully random. For such a composite system, a unified
theory of random medium and boundaries has been
developed, ' which enables us to construct the solution
in several different forms in terms of independent scatter-
ing matrices of the medium and boundaries, with the aid
of addition formulas of scattering matrices. To obtain
specific expressions, the diffusion approximation can be
partially utilized with a reasonable boundary condition
for the boundaries, which is a generalized version of the
condition more previously introduced when the boun-
daries are prefectly free from reflection. Here the
enhanced backscattering can be understood as a natural
consequence of requiring the coordinate-interchange in-
variance of the BS equation, based on the reciprocity of
the deterministic Green's function for each of the original
and complex-conjugate waves, as was emphasized by
Vollhardt and Wolfle in connection with an electron-
hole wave subject to a random potential (Anderson locali-
zation problem). The same idea was later used to investi-
gate the enhanced backscattering of a scalar wave by a
medium of independent particles, along with some com-
parison to experimental results of a light wave, ' and
also of an electromagnetic wave by a rough surface. '

In this paper, a scalar wave is assumed as a model to
represent an electromagnetic wave, electron-hole wave,
and other quantum-mechanical waves subject to a ran-

dom potential. The BS equation and scattering matrices
are first brieAy reviewed based on Ref. 8 to prepare for
the following sections, with an emphasis on the optical
condition of each scattering matrix as well as that of the
entire system as one scatterer, to ensure power conserva-
tion at every level of the scattering (Sec. II). Most of the
basic equations are written in matrix form with respect to
the space coordinates (which can include subscripts to
refer to different components of the wave) so that they
hold true for the variety of waves, although their specific
expressions should differ from one wave to another. The
optical expressions are then obtained in terms of the cross
sections together with the respective optical conditions
(Sec. III). To investigate the enhanced backscattering in
unbounded space of a random medium, first, the BS equa-
tion for the second-order Green's function is rewritten as
an equation for the function of the four coordinates so
that the coordinate-interchange invariance of the solution
is immediately clear (Sec. IV). Then, to obtain
specifically the cross sections of a random layer, the
diffusion approximation and boundary condition are ex-
amined in some detail, along with the comparison to pre-
vious methods (Sec. V and Appendix A).

II. BASIC EQUATIONS
AND SCATTERING MATRICES

The coordinate vector in three-dimensional space is
denoted by x=(x&,xz, x3)=(p,z) with p=(x&, x2) and
z x 3 where the z axis is taken in the direction normal
to the average boundaries (Fig. I). The scalar product of
two space vectors a=(a, a, ) and b=(b, b, ) is denoted by
a b =a-1+a,b„where a.b =a

& b, +a2b2. We first con-
sider two random layers separated by a rough boundary
which is planar on average, as illustrated in Fig. 2. A
scalar wave function P(x)e'"', where co) 0 and t is time,
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FIG. 1. Geometry and notations of a random layer for Eqs.
(2.26) and (2.53).

[X,—q, (x)]p, (x)=j,(x),
2

(2. la)

is considered, and is denoted in each layer by P, (x),
a=1,2, whose wave equation is

i.e., the matrix defined by the elements B,'b '(pip') is Her-
mitian with respect to both the coordinates and the sub-
scripts. This means that B" ' is a real symmetrical ma-
trix in view of having symmetrical matrix elements, as
can be shown by applying Green's theorem to the bound-
ary space enclosed by S& and Sz and using Eq. (2.4), with
the vanishing contour surface integral over both sides of
S. Hereafter, the boundary space will be neglected, on
letting d 2 ~0, unless otherwise noted; so that
S&2 =S, +S2 at z=O represents the two reference bound-
ary planes, together.

The wave equations (2.1) and the boundary equation
(2.4) can be written by one wave equation of the form

2

(+ q )q yB( )q
b=l

(2.6)

Here both B,'b ' and q, are regarded as x-coordinate ma-
trices, defined by the elements

B,'„' '(xlx')=5(z+d, )B,'& '(pip')5(z'+d&), d, =0
—k„ lm(k, ) & 0 . (2. lb)

(2.7)

Here q, (x)=q,*(x) is the random part of the medium,
and j, (x) is a source term; k, is the propagation constant
when the medium is free from the random part, and the
medium is assumed to be nondissipative for the time be-
ing. The boundary condition is first assumed to be the
continuity of g, and its gradient normal to the (real)
boundary surface, and consistently with this, the power
fiux vector w, (x) in the space k, is defined by

Vah ~a ~ah +Bah (2.8)

and q, (xlx')=q, (x)5(x—x'), and the solution is subject
to the new boundary condition that c)'„'P, =0, a=1,2, in-
side the boundary space 0&z) —d2. The proof can be
given by integrating Eq. (2.6) with respect to z over two
infinitesimal regions enclosing S, and S2, separately;
hence Eq. (2.4) is reproduced.

With a new matrix v,b, defined by the elements

w, (x)=Q,"a/, (x ),
with a vector operator a, defined by

(2.2a)
the equation of the deterministic Green's function for the
new wave equation (2.6), say, g,b(xlx ), can be written as

(2.2b) g (X,5„—u„)g,b(xlx ') =5,b5(x —x ') (2.9a)

where the left and right overarrows mean the operation
on the left- and right-hand sides, respectively. Hence the
power equation is

~ g w, (x)= g (2i) '[P,*j,(x)—j,*l(,(x)],
X a a

(2.3)

except on the boundary. Here w, (x)=0 for x in space
k„Wk, .

The boundary condition can be transferred from the
real boundary onto two reference boundary planes, say,
S& and S2 at z=O and z = —d2, respectively, chosen such
that the change of the boundary height is ranged between
S, and Sz (Fig. 2); hence, with the notation
5'„'=n "(8/Bx), where n" is the unit vector directed
outward normally to S„ the boundary equation can be
written as '

or in matrix form as

(r —u)g =1, u =q+B"" (2.9b)

g =g, V =V (2.10)

z=0
S)

Here v may be regarded as an efFective medium represent-
ing both the medium and the boundary on an equal basis.
The unified wave equation (2.9b) shows that u is a symme-
trical matrix with respect to both the coordinates and the
subscripts, v =v, hence the Green's function is also
symmetrical, i.e.,

2—&'„'g, (p)= g fdp'B,'"'(pip')g (p') . (2.4)

-d2

Q+ qz
S2

Here g, (p) denotes g, (x) bounded on S„and, when the
boundary is nondissipative

(B,'b") (pip')—:(Bb,"')*(p'lp) =B.'b"(pip'), (2.&)
FIG. 2. Geometry of a rough boundary for Eq. (2.4). The

real boundary S is distributed within the range 0)z ) —d&.
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Equation (2.9b) enables us to obtain the statistical
Green's functions in exactly the same form as those in an
inhomogeneous random medium U, and the results are
summarized as follows. ' The averaged version of Eq.
(2.9b) can be written as

(X—M)G=1, G=&g&, (2.11)

in terms of an effective medium M of U, defined by

being subject to the reciprocity.
For a general class of scalar waves, continuity condi-

tions at the (real) boundary can be reduced to those of g,
and il, 'B„g„with some constant il, depending on the
ath medium, and the equations can be similarly formulat-
ed without changing the basic form. ' Also for elec-
tromagnetic waves (having six components), boundary
condition and wave equation can be unified to be written
in a form similar to Eqs. (2.9), so that the following equa-
tions are also obtained in the same form as in this pa-

10

A. Statistical Green's functions

in the same fashion as M is by Eq. (2.12). Here K(1;2)
can also be approximated by the independent sum of K' '

from the medium and EC" ' from the boundary, as

I(. (1'2)=E' '(1 2)+If" '(1 2) . (2.19)

U(b )(1;2)=G,*b(1)G,b(2), (2.20)

the BS equation (2.17) can be written, in 2X2 matrix
form, as

I(q+)2) —U(c)[1+(+(q)+~(12))I(q+" ] (2.21)

The matrices M and E, as defined by Eqs. (2.12) and
(2.18), respectively, are not quite independent of each
other, subjected to a local (optical) relation of the form

P(x I 1;2)
Bp

Here E' ' is a diagonal matrix with respect to the sub-
scripts, having only the elements K,' '=—K,', '.„,while the
important elements of K" ' are K,'b ' —=El,",.bb. Hence, in
terms of the notation I,()+' )=I„b(, and.

MG =
& ug &, M =M'q'+M'"' . (2.12) =5(xl 1;2)(2i) 'IM*(1)—M(2)

Here M' ' and M" ' are also defined in the same fashion,
by

—[G*(l)—G(2)]K(1;2)] .

M' 'G = &qg &
M" 'G = &B" 'g & (2.13)

(2.22a)

and are approximately equal to the independent contribu-
tions from the medium and the boundary, respectively,
with the elements M,' 'Dab and M,'b '.

For the statistical Green's function of second order,
defined by

I,b.,d(x„x2 x'„x2)=&g,",(x, lx', )gbd(x2 x2)& (2.14a)

or in matrix form by

Here the matrix 5(xl 1;2) is defined by the elements

5,b (x l x),'x2) =5,b 5(x—x, )5(x—X2), (2.22b)

5(xl 1;2)2 *(1)B(2)—:2 "B(xl 1;2)=—2 *B(x) (2.22c)

represents

g f dxidx25 b(Six)', x2)A (xilx ))Bbd(x2lx2)

such that, for any matrices A *(1)and B(2), the product

I(1;2)= &g*(1)g(2) & (2.14b) a, b

(here and also hereafter, the subscript 1 is attached to the
coordinates of quantities of the complex-conjugate wave
function, and the subscript 2 is attached to those of the
original wave function), we first introduce a matrix b, v,
defined by

= g A.",(xlx') )B.d(xlx,'),

and the left-hand side of (2.22a) is nonzero only on S)2,
being a contribution purely from the boundary with the
elements of form

EU =U —M =Aq+AB" '

where

(2.15a)
p,d(xlxi'x2) = g 5(z+dg )pg, ,d(plx),'x2) . (2.22d)

dLq =q —M'~' 2kB" '=B" ' —M" '

and employ the expression

(2.15b) The derivation of (2.22a) is straightforward by making a
product of 5(xl1;2) and difference of the two relations
from (2.18) as

g =G(1+hug), & hug & =0, (2.16) & u (1)g*(1)g(2) &
= [M*(1)+G (2)IC (1;2)]I(1;2),

for both g*(1) and g(2) in the right-hand side of Eq.
(2.14b). Hence we obtain an expression

& u(2)g*(1)g(2) & =[M(2)+G*(1)K(1;2)]I(1;2),

(2.22e)

I(1;2)=G*(1)G(2)[1+%(1;2)I(1;2)] (2.17)

E (1;2)I(1;2)= & b v *(1)bu (2)g*(1)g(2) & (2.18)

of the form of the Bethe-Salpeter equation, with a matrix
K(1;2),defined by

so that the product is zero in the medium region, in view
of the left-hand sides of (2.22e), while it is nonzero on the
boundary, yielding the divergence term on the left-hand
side as a contribution from the part B" ' of U having non-
diagonal symmetrical matrix elements (spatially disper-
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sive). " The relation (2.22a) ensures power conservation
at every point in the space and on the boundary, and can
be rewritten, in terms of the matrixes bG(xll;2) and
ky(xl 1;2) defined according to the notation (2.22c), by

purely from the boundaries S12 and S23, with the nonvao
ishing elements K,b ', a, b=1,2, and E,'b ', a, b=2,3.

C. Solutions and scattering matrices

bG(xl 1;2)=5(xl 1;2)(2i) '[G*(1)—G(2)],
ky(xl 1;2)=5(xl 1;2)(2i) '[M"(1)—M(2)],
respectively, as

P(x)=ky(x) —AG(x)E .
Bp

(2.23a)

(2.23b)

I(12) U(C)( 1+~(12)I(12)) (2.27)

with the solution

To obtain the solution of the BS equation (2.21), we
first introduce the solution in the special case K('2) =0 (on
keeping M(~'%0), say, I" '; so that

Hence, with the operator a of (2.2b) and the matrix a(x)
with the elements

a.b(xlx)'x2) —f).b(x lx)', x2)(21) '
C)X1 BX2

(2.23d)

the BS equation (2.17) leads to [see also Eqs. (2.58) and
(2.59)]

(a+P)I(x) =b G(x)
BX

(2.23e)

B. Case of three random layers

The situation is the same also for the case of a random
layer, as illustrated in Fig. 1, and various equations for-
mally remain unchanged with the setting

equivalent to the averaged version of power equation
(2.3), except the P term meaning an additional power flux
by a surface wave propagating along the boundary.

A relation similar to (2.23c) holds true also for each
M' ' and K' ', approximately, "providing the optical con-
dition of each constituent; e.g. , for M' ' and K'~', Eq.
(2.23c) is replaced by

ky(~)(x) —AG' '(x)K'~)=0, (2.24)

where P(q)(x)=0 in the present case of a nondispersive
medium. Here G' ' is the Green's function in an un-
bounded space of M' ' and the replacement of M —+M' '

and E—+E' ' has been made in view of the negligible
boundary effect on M' ' and K' '. By the x integration,
Eq. (2.24) leads to optical relation (3.20) for the medium
cross section; for the boundary, the counterpart relation
is given by Eq. (3.16).

I(12)—U(c)+ U(c)S(12)U(c) (2.28)

in terms of an (incoherent) scattering matrix 5" ' of
K" ',

defined

b

g()2) —It (12)( 1+U(c)g(12) )

(1 It(12)U(C)) —lg (12)

S(12)—~(12)+ ~ ~(12)U(&)~(12)+
ab ab ~ ac cd db

c, d

(2.29a)

(2.29b)

(2.29c)

Here the last series shows that the multiple scattering on
both sides of the boundary is involved in S" ' in a com-
plicated way, including the coherent scattering by the
boundary.

The Green's function G' can also be written in the
same form,

G G (0)g +G (0)T(12)G (0)
ab a ab a ab b (2.30)

in terms of the Green's function G,' ' in an unbounded
medium of M,'~', whose Fourier representation in the p
space is therefore

G,' '(x —x')=(2m) f dk, exp[ i A(p ——p').]G,' '(z —z'),

(2.31a)

with

G,' '(z —z')=[2ih, (A, )] 'exp[ —ih, (A, )lz —z'l] . (2.31b)

Here

h. (Z)=[(k( ')' —Z']'"
(2.31c)

k' '=(k +M(~))'~ =k Im(k' ') &0

where M,(~)(A, ), A, =(A, , h, ), is the Fourier transform of
M,'~', and Im(h, ) &0. Hence G,&(xlx') has the Fourier
transform G,b(z lz') from Eq. (2.30), as

M =M'~'+M" '+M'"'

z =z("+z(")+z("'
(2.25a)

(2.25b)
G. (zlz') =G.'"(z z')S.,+G."'(z)T—," 'G„'0'( —z') .

Thus, using the notation I(b+' + ', a, b=1,2,3, for the
second-order Green's function in this case, we obtain the
BS equation in 3 X 3 matrix form, as

I"+ "+"'=V'"[I+(Z'"+Z'"'+Z'") )I"+ "+"'] .

(2.26)

Here

T (' ) =2ih (R (1 ') = T ('2'
ah 1 a ab ba

(2.32)

(2.33a)

where (R,'b ) )W(Rb(,' ') is the reflection-transmission
coefficient of the boundary and, when it is perfectly
smooth,

Here K'~' is a diagonal matrix with the elements

K,'b'=K,'~'6, b, and K" ' and K( ' are the contributions
(12) h1 —h2 (12) 2h1

(R (12) ) — ( R (12) )
h, +h2 h1+h2

(2.33b)
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It is generally given in terms of the 2X2 matrix M" ',
b 10

S(q/12) ~(q)( 1+I(12)S(q/12) ) (2.42)

( R (12) ) = (;h —M (12)) 1(;h +M (12))

and hence

1+(R" ') =(ih —M " ') '2ih,

(2.34a)

(2.34b)
S(oq) —~(q)( 1+ Us (oq)

)
—

( 1 I(-(q) U)
—(~(q) (2.43)

with the superscript (q/12) to mean the dependence on
o" ' through I" '. Here the effect of o" ' can be made
explicit by introducing a solution of Eq. (2.42) in the case
cr" '=0, say, S' ', governed by

G( z=0~ 'z=0)=(ih M"—') (2.34c)

in a form similar to the original given by Eq. (2.11).
Both Eqs. (2.30) and (2.32) can be written in matrix

form by

6 G(0)+ G(0)T(12)G(0) (2.35)

where h is a diagonal matrix with the elements

h, (, =h, 5,&, and M" ' is the (two-dimensional) Fourier
transform of M" '. Hence, setting z =z' =0 in Eq. (2.32),
use of Eq. (2.34b) leads to the surface Green's function

so that Eq. (2.42) becomes written, on using (2.38), as

S(q/ ) —S( q)(1+ U~( )US(q/ ))

=(1—s'"'U '"'U) 's'"' .

(2.44a)

(2.44b)

Hence Eq. (2.41) is written finally in the form

I(q+12) I(12)+(1+U (12))g(q/12)( (12)U+ 1) (2 45)

Here the entire effect of the random medium appears
only through a new matrix J'q/' ', defined by

Therefore, by introducing a diagonal matrix U,b
= U, 6,b,

defined by

U, (1;2)=[G,' '(1)]*G,' '(2), (2.36)

U' '(1;2) of Eq. (2.20) can also be written in the same
form,

g(q/12) US(q/12) U

and given as the solution of

g(q/12) —g(Oq)( 1+ ()2)g(q/12))

where

(2.46)

(2.47)

U'c'(1;2) = U(1;2)+ U(1;2)V ' '(1;2)U(1;2) .

Here

(2.37a)
g(oq) —US(oq) U

= UK'q'( U+ 2'"'),
(2.48a)

(2.48b)

1/((2)(1.2) T(12)e(1)T(12)(2)+T(12)e(1 )[G(o)(2)]—1

+T'' '(2)[G' '*(1)] (2.37b)

wherein the interference terms are negligible when the
source and the observer are both separated enough from
the boundary, whereas they are not negligible otherwise
[see, e.g. , Eq. (2.39b)].

Thus, with (2.37a), Eq. (2.28) can be written in the
form

which is a diagonal matrix with respect to the subscripts,
and tends to zero as K' ' —+0.

Also for the case of three random layers, as illustrated
in Fig. 1, the situation becomes exactly the same by intro-
ducing a solution of when K,'q' =0, a = 1,2, 3, say,
I(12+23), and letting I(12+23) do all the roles of I(12) 'in Eq
(2.45); that is, the basic equations (2.45) —(2.48) remain
unchanged with the replacement of the superscript (12)
by (12+23) and using the expression

r'"'= U+ Ua(") U . (2.38)
I(12+23) U g + U (12+23)Uab a ab a ~ab b (2.49)

Here o" ' means a resultant scattering matrix of the
boundary and is given by

(12) y(12)+F (C)S(12)F(C)
7

where, from (2.33a) and (2.31b),

F(c) 1 + Uy(12)

(2.39a)

1(q+ '2) =1(»)(1+I(.(q)1(q+ ")
) (2.40)

and hence the solution as

7(q +12) 1(12)+ I(12)S(q/12)1(12) (2.41)

in terms of a scattering matrix S' ' ' of K' ', defined by

= [1+(R" "(1)) ][1+(R " '(2) ) ], (2.39b)

and can be made more specific by using Eq. (2.34b);
F ' '=1+ V" 'U is obtained from F' ' by the transposi-
tion.

The introduction of I" ' by Eq. (2.27) enables the BS
equation (2.21) to be rewritten as

Here, when the distance between the two boundaries, L,
is sufficiently large compared with the wave coherence
distance, say, y2 ', so that y2L ))1, o.,''b+ ' can be ap-
proximated by

O-(12+23) O. (12)+O-(23)
Oab =Oab Oab ~ (2.50)

~( (12+23)U+ 1)

and, with (2.50), Eq. (2.47) is changed to

g(q/12+23) g(Oq)[1+( (12)+ (23))g(q/12+23)]

(2.51)

(2.52)

Here J' q' is still governed by Eq. (2.48b).
&xample: case of a random laper (q&=q3=0, q2&0).

The only nonvanishing element of J q ' + in (2.51) is
J(2$/'2+23) in this case. Hence, when the source is in the

being the independent sum of the two boundary scatter-
ing matrices, o,'I, ' of S,2 and o,'& ' of S23. Thus Eq. (2.45)
is replaced by a 3 X 3 matrix equation, as

I(q+ 12+23) I(12+23)+ ( 1+U (12+23) )g(q/12+23)
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space k1 and the layer width I. is large enough so that
y2I &&1, I' +"+"'within the same space is given, with
I(12+23) I(12)

ll — 11

power equation (2.23e) when the boundary is absent.
We now write I'q+' ' of Eq. (2.45) by

I(q+12) U + U (q+12)U (2.61)
I(q+12+23) I(12) + U (12)g(q/12+23) (12)U.

11 11 112 22 ~21 1 in the same form as Eqs. (2.55), with2.53a

and the transmitted wave into the space k3 is given by

I(q+12+23) —U (23)g(q/12+23) (12)v
31 3~32 22 O21 (2.53b)

where the contribution from I31+ ' is presently negligi-
ble. Here the random medium is involved only through

', which is the solution of
g(q/12+23) g(Oq)) 1+( (12)+ (23))g((/12+23)]

22 2 L 22 22

with the solution J2 q' of

g(oq) —V K(q) ( U + g(oq) )

(2.54a)

(2.54b)

Here, as for o" ' and o' ', we may utilize experimental
values of the boundaries, instead of the theoretical ones.

Thus the problem is reduced to finding the solution of
Eqs. (2.54) and the resulting optical cross sections of the
random layer, defined, on rewriting Eqs. (2.53) in the
form

(q+ )= ( 2)+(1+ ( 2)V)s(q )(Vg( )+1) (2 62)

(q+12) (12)+ (12)g(q/12) (12)
~12 2& (2.63)

and means a resultant scattering matrix for the entire
random volume (making both boundary and medium
scattering) of when the source and the observer are both
in the space k, . To find the optical condition for o',f+'2',
we only observe that the integrated power of I'
away from the boundary S1 is always zero because all the
waves propagated into the space k2 are finally scattered
back to the space k1. Hence

f d ~("I(q+")(x)=O
s

1

where

(2.64)

and consider the case of a semi-infinite random layer
where q) =0 and q2&0. Hence

I(q+12+23) U + U (q+12+23) U11 1

I(q+12+23) U (q+12+23) U31

(2.55a) &(j)—&(j).a„—n

(2.55b) For short, we express Eq. (2.64) by the notation

(2.65)

by the asymptotic expressions of the factors o-,'q1+' +

a =1,3, when the source and the observer are both
separated enough from the boundaries (Sec. III).

B. Optical conditions of random volume

(S, lI',q+' '(1'2)=0,
and hence, using expression (2.61),

&s, (v, +v, g(q+")v, )=0.

(2.66)

(2.67)

As we show below, the local relation (2.24) for K'q' can
be written, in terms of the scattering matrix S' q' of K'q'
and a matrix y'q'(1;2) with the diagonal elements [Eq.
(2.23b)]

by

y,' '(1;2)=(2ik, ) '[[M,' '(1)]'—M,' '(2)I, (2.56)

„a(x)VS'"'= ky"'(x),
C)X

and hence, in terms of J' q' of (2.48a), by

aJ' '(x) =ky' 'U(x),
ax

(2.57)

(2.58)

a+ky' ' U(x)=b, G' '(x),
BX

(2.59)

in view of (2.36); hence

a(x)UK'q'=ky' '(x)(1 —UK' '),
BX

(2.60)

which leads directly to Eq. (2.57) in consequence of Eq.
(2.43). The sum of Eqs. (2.58) and (2.59) reproduces

meaning the power equation for the incoherent wave
The proof of Eq. (2.57) is given by eliminating the

factor hG( '(x) in Eq. (2.24) by using the power equation
for U in unbounded space, which is

%ith the same notation, we can write the correspond-
ing conditions for I" ' by

(S, lI", '+(S2lI2 '=0, j =1,2 (2.68)

which is the surface integral over S12 =S1+S2 enclosing
the whole boundary space (Fig. 2), and j = 1 or 2 depend-
ing on whether the source is in the space k1 or k2, respec-
tively. Thus, using (2.38) in (2.68), we obtain [see also
Eqs. (3.43) and (3.44)]

(s) l( v, + v(~II"v) )+ &s, I U2~2( U) 0,
&s) I U)(7\2 v, + &s2l(U2+ U2~22" U2)=o,

(2.69a)

(2.69b)

as basic conditions for cr" '.
To find the corresponding equation for the medium

counterpart S(2(/' ', we substitute expression (2.63) in
(2.67) and use Eq. (2.69a) to eliminate the (T((I ' term;
hence, as is proved below,

(s( l v(g J $ (7 v = (s2l U2(T v (2 70)

where involved in the left-hand side are only the bound-
ary values of 22($/' '. This simply says that the entire in-
cident power through the boundary, as given by the
right-hand side, is the same as the integrated power of
the waves scattered back to the space k, by the random
medium. The direct proof of Eq. (2.70) by using the basic
equation (2.47) for J'q/' ' is straightforward, first by mak-
ing the space integration of Eq. (2.58) over the space z ~ 0
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(q2%0) for the source located outside (z & 0) to obtain

&s, Is~@'= —&s, l U,

with the aid of Eq. (2.59); hence, using Eq. (2.47),

& s I

g($/i2) —
& s I U ( 1+~( i2) g($/i2) )

which can be rewritten, on using Eq. (2.69b), as

&s, I U, ~I',"2',$""=&s, l U, ,

(2.71)

(2.72)

(2.73)

being the same equation as (2.70) except for the common
factor o.

z& 'Ui on both sides.
In the case of a random layer where qi =q3 =0, q2&0

(Fig. 1), Eq. (2.73) is replaced by

[&s, lU, ~ "'+&s, lU, ~~q"]g,) "+"=&s, lU, . (2.74)

Here the boundary S2 on the right-hand side refers to ei-
ther S+2 at z =0 or S 2 at z = —L. As to the scattering
matrix for the entire system, o',$+' + ', defined by Eqs.
(2.55), the optical conditions are the same as given by
Eqs. (2.69) with the replacement of a'' '~o''i+' + ~ and
Sz~S3, e.g. ,

&s I( U + U ()+12+23)U )+ &s
I
U ()+12+23)U ()

2'~ ' ' where A, = ( A, , A,, ), cannot be written in the same
form, and, therefore, on suppressing A, and dropping the
factor (2n. ) 6(A, —A, '), we will hereafter use a composite
expression, e.g. , 2'q ' '(u, z lu', z'), by making the Fourier
inversion only with respect to A,, and A,,'.

As to the transform U, of U„we obtain

U, (u, k, ) =G,"(u—
—,'A, )G, (u+ —,'A, )

=vr5(u k,—)(k, y, —iu A. ) (3.6)

with the approximation k,' =k„k, » IA,
I

& y„and the
constant

y, =(2l'k, ) '(M,'"*—M', ,')(u), (3.7)

excluding the case when the medium is intrinsically
dispersive. "

Hence, on changing the variable u by u = u 0,
du=u du dQ, where u =lul and Q=(Q, Q, ), Q =1, is
the unit vector, we obtain an important relation that, for
any slowly changing function f (u),

(2m-) 'f du U, (u, k. )f(u)= f dQ U, (Q, A, )f(Q),
4m

(3.8)

(2 75)
where

which can be shown also directly by using Eqs. (2.53),
(2.74), and (2.69).

Here it may be noticed that, in the case of a random
volume, the optical conditions of scattering matrices are
described exclusively by the boundary values, as given by
Eqs. (2.73) and (2.74), independent of the details of the in-
side [see Eq. (3.45) with (3.39b) and (3.41b)].

III. OPTICAL EXPRESSIONS AND CROSS SECTIONS

A specific expression of Eqs. (2.54) is obtained in opti-
cal form by partially making the Fourier transformation.
We first introduce relative coordinates r and p, defined by

(3.1)

and the corresponding Fourier variables u and A, , defined
by

U. (Q, g)=(y. —iQ A) '=U. ( —Q, —&),

f (Q)=(4m) f (u=k, Q) .

Here the A,, Fourier inversion of U, (Q, X) is

(3.9)

(3.10)

U, (Q,z)—= f dA, e px(
—
, ii,,z)U, (Q, A, )

277

IQ, 'exp[ —Q, '(y, —iQ A, )z], Q,z&0
0, Qz (0 (3.11)

while the three-dimensional inversion U, (Q,p) is given
by

U. (Q,p) = Ipl 'exp( —y. Ipl)&'(Q —p/'lpl) . (3.»)
Hence, with the rule (3.8), Eq. (2.38), for example, leads

to the expression
u= —,'(A2+A, , ), A, =A& —A,

so that

A, ~'Xi+A2 X2=U r+A p

(3.2)

(3.3)

I," '(Q, z IQ', z')

= U, (Q, z —z')5,b5 (Q —Q')

+ U, (Q,z)o,"„'(QIQ')U (Q', —z') . (3.13)

Then the matrix elements of K' ' can be written in the
form

K'~'(x, ;x2lx'„'xz) =K'~'(rip —p'Ir'), (3.4)

in view of the translational invariance, approximately in
the vertical direction, and, therefore, the Fourier trans-
form has the form

E'q'(i, ;A,, IA, ', ;i,') =(2')'5(A, —A, ')ic' '(UIA, IU') . (3.5)

On the other hand, the corresponding Fourier trans-
forms of the wave quantities, e.g., 2'~/' '(u, k, lu', A, ') of

Here, from Eqs. (2.39), '

cr" '(QIQ')= IQ"&R" '(Q))' 5'(Q"—Q")
+~".,"'(QIQ ), (3.14)

where Q"= ( Q",Q,") denotes the unit vector in space
k„defined by u=k, Q" and Q,"=+[1—(Q") ]', and

6& is a specular 5 function of 0"which is not zero only
when the scattering is made in the specular direction, re-
gardless of the sign of 0,";o.,'b' ' is the incoherent cross
section, given in terms of the Fourier transform S;J.kI

(12)

(with the full subscripts), by
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(3.15)oab' '(QlQ')= g (4') F,g,~(u)Si~l kI (.ul~=olu')Fki;»(u')ln
i,j,k, l

where the notation
l n means setting u =k, 0"and u' = kb 0' ', and the A, dependence has been neglected.

The transform o',P'(0ln') provides the resultant (including both coherent and incoherent) cross section per unit area
of the boundary and is subject to an optical relation resulting from relations (2.69) [see Eq. (3.44)], as

(3.16)

~ ~

where 0'„"'=n' 'Q. The expression (3.13) should be regarded as the matrix elements of I" ' with respect to 0 and z, to
be multiplied with a 0-z vector f (n, z ), defined by Eq. (3.10).

In the same way, the 0-z expression of Eq. (2.52) gives

J',~"'+"'(n,z ln, z i= S2"'(Q,z ln, z i+ f d 0-f d n- Z2'"'(Q, z
l

0-,o)~,","(n-ln- )S',g"'+"'(Q-,oln, z i

+ fdn" fdn'"g~'~(nzln", —I ) "~(0"ln- )g($~"+"~(0-,—I ln, z ) . (3.17)

Here the original 2~2 q' is the solution of Eq. (2.54b), and its 0-z version can be obtained as the solution of the transport
equation

(1,+Q, a, )J'," '(n, ln', ')=Ic', '(Qln')U, (0', —')+ fdn'vc', '(Qln")2," '(0", ln', '), (3.18)

wherein B,=RITZ and the term —in A, has been
suppressed. Here z,z'(0 in the present case, and, from
Eq. (3.10),

from the x-integrated (2.24); the solution is subject to the
condition of no reAection at the boundary, in view of the
factor U2(n, z) of (3.11), i.e.,

X,'"(Qln )=(4~)-'K' (u=k, nlu =k,n )

=z,'"(—0'l —n)

(3.19a)

(3.19b)

s,'"'(Q,z=oln, z (o)=o, n, &o,

and fulfills the reciprocity

J' '( —0', z'l —Q, z)= J' '(Q, zln', z') .

(3.21a)

(3.21b)

@2= d O'K2 ' O' 0 (3.20)

is the cross section per unit volume subject to the optical
relation With known +~2 &', 9~2)~ ~ is obtained as the solution

of integral equation (3.17), and thereby I,'$+ ' + ' is
given from Eqs. (2.53), by

II~+ "+")(Q,zln, z')=I'"'(Q, zln', z')+ fdn" f dn"'U, (0, )oz'"'(Ql 0) 'J~"' "+'(0",oIn"', oi

x ~,","(0"'l0') U, (Q', —z'), (3.22)

and a similar equation for I~3]+' + ', while the three-dimensional expression of Eq. (3.22) is

II[+' + '(Q, pin', p')=I", , '(Q, pin', p')+ f dp'dp'" f dQ"dQ'"U, (n, p —p")aI2 '(Qln")

x J' ' + '(0" z" Olp" p'"ln'" —z'" —0—)2~2 P P
(12)(0 lnIi) U (3.238)

Here U, (Q,p) is given by Eq. (3.12), 2z$
' + '(Q, zip lQ', z') is the A, Fourier inversion of J'z$~' + '(Q, zlzz ln', z'), and

from (3.13),

""(Q,pin', p'i=, (n, p —p')&'(0 —0')+ f dp U (Q,p p")~' 2'(Qln—')U, (0',p" p') . — (3.23b)

The average power at a point p in space k, for the wave from a point source at p' in space kb, say (w, b(pip')), is
given according to the definitions (2.2), by

(w,„(pip'))=i I,b(r, plr', p')l. .. 0=(4m. ) fdn f dn'k, Q"I,b(n, pin', p')
r

(3.24)
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in terms of the relative coordinates r of (3.1) and the opti-
cal expression of I,b according to Eq. (3.10).

A. Cross section of a random layer
with no boundary scattering

in the asymptotic form

'(pip') = f dpip —pl s' (' (Qlpln')

xlp —p'I ' (3.31)

When the boundaries make no scattering so that

~( &2) —~(23)—p22 22 7

o$2 '(Qln')=Ingl5 (Q —Q'),
(3.25)

Ui~(pin lp') = f dp"
I Q, I Ui(n, p —p" )

X Uz(n, p" —p'), (3.27)

which, by using (3.11), can be shown to be the same as
given by (3.12) except for the exponential factor which is
replaced by exp(yzln, l

z'), z'(0, yielding a dissipation
only in the range of q2%0. Hence, from (2.48a),

2' ~'(Q, plQ', p')

= f dp"dp'"U, 2(plnlp")

xs(oq) (Q ~&I
In&

~assr
) U (~eti

I Qr I & ) (3.28)

where the integration is made over the entire space of the
medium q& &0.

Here we suppose that the points p and p' are both
separated enough from the boundary so that the total in-
coherent intensity, Sz ~'(pip'), say, given by

&'p"'(pip')= fdndn'Sp"'(Q, pin', p'), (3.29)

can be written, on using the relative coordinates Ap and p
defined by

~P=S "—I
"'

P = l(p" +p'"»
dp"dp"'= d(&p)d p,
p"=(P+ —,'hp, z"),
p'" = (p —

—,
' hp, z"'),

(3.30a)

(3.30b)

etc. , J2$~' + ' is reduced to J~z 'i', in view of (3.17), and
hence Eq. (3.23a) is reduced to

II~+ "+23'(Q,pin', p ) = U, (n, p —p')s'(Q —n )

+22'(Q, plQ, p ) . (3.26)

Here the last term is a space continuation of Jzo'i' (origi-
nally defined in the space of q2&0) to the outside space
k„and is obtained in view of (3.25) by replacing U in
(2.48a) with

by

s")'„(QIpl Q') =s",g'„(Q,x, I
z=oI Q, x,'), (3.32)

where the right-hand side is a Fourier transform defined
by

s'+$'+z(Q, &, IA, IQ', A,,') = f dz dz'exp(iA, z iA,,'—z'),
1 —L

xs,"q'(Q, z I
A,

l
Q', z'),

(3.33)

with

A,,= —i(y~ —in A, )Q, ', n, )0
I,,'= —i(y —in' A, )(n,') ', Q,' (0,

(3.34a)

(3.34b)

so that Eq. (3.33) is a function of Q, Q', and A, .
Equations (3.34) and (3.2) indicate that the Fourier

variables A, j and A, 2 are given, when A. =O, by

A, , =k2Q+ —,'iy2(Q, ) 'n, ,

—iy2(n )

(3.35a)

(3.35b)

and, similarly,

A3 k2Q'+ —,'il 2(Q,
'

) 'n

A, z =——A,4=k2Q' ,'i y2(n,'—)—
(3.35c)

(3.35d)

and Eq. (3.32) says that the cross section
S+$ +2(n Q')—:S+2 +2(nip Q') is the same as given by
the full Fourier transform S~2 q'(A, , ;kzlk, ', ;A&) except for
the factor ( 2ir ) 6( A, —A,

' ).

B. Case involving the boundary scattering

The optical expression of I&,
+' + ' can be written, on

using Eqs. (2.55a) and (3.23a), in the form

Here Q and Q' are in the directions of p —p and p —p',
respectively, and S'+$'+2(nlpln') means the scattering
cross section per unit area of the layer boundary at p for
scattering of the wave in direction Q to Q, and is given,
upon using

f d (bp)S~2 ~'(Q, p" IQ', p"')

=s~"'(n, z"lr=oln, z" ),

II/+' + '(Q, pin', p')= U, (Q,p —p')5 (Q —Q')+ f dp"dp"'U, (Q,p —p")o If+' + '(Qlp" —p"'IQ')

X U, (Q', p'" —p') .

Here the second term is a surface integral on S&, with

(3.36)



2750 K. FURUTSU 43

(q+12+23)(Qlp ~

p IQ ) ~((2)(QIQ~)$(p~~ —p tt)

+ fdQ"dQ"'o" '(QIQ")J'$ ' + '( " "=oIp"—p'"I "', '"=o) " '( '"I ') .

(3.37)

(3.39a)

Hence, when the points p and p' are both separated enough from the boundary, the total intensity from Eq. (3.36), say
I((f+' + '(pip'), is obtained in the asymptotic form similar to (3.31), as

I',q'"+"'(pip')=Ip —p'I '+ f dplp P—
l

'~I('"+"'(QIQ')Ip p—'I '. (3.38)

Here o Iq)+' '(Qln') means the resultant cross section per unit area of the boundary at p due to the scattering by
both the medium and the boundaries, and is given by

(q+12+23)(nln ) f d(g ) (q+12+23)(nip

=~'"'«In')+ fdn"dn"'~'"'(Qln")ln, "I 's',""'"'(Q"In"')ln,'"I '~'")(Q"'In'), (3.39b)
7

where, in the last term, use has been made of

&')"2+"'(Q"

= IQ,"n,"'I 's q ' + (Q"ln"') (3.40a)
7

with

s(q/(2+23)(Q IQ ) s q ++ (Q, x lg —oln k, )

(3.40b)

similar to S'+$'+2 by Eq. (3.33); these equations are ob-
tained from an expression of 2(q ' ' similar to (2.46)
with the same procedure as that leading to Eqs.
(3.32)—(3.34).

Also for the transmitted wave, we similarly obtain the
asymptotic expression

I(q+12+23)(
I ) f d —

I

—
I

—2 (q+12+23)(nln

(3.40c)
I

whose right-hand side is a Fourier transform defined by

s(q/(2+, ")(Q,x, I win, ~,')
= f dz dz'exp(i A, z —iA,,'z'),

—L

xs(;,'"+"'(Q,z I~In', z )
with

x lp —"'I (3.41a)

~«+"+")(QIQ ) = fdn"dn" ~(")(nIQ")In" -I' s(q"'+"'( Q" nl" )In"'I-'~'"'(Q" ln )

Here Q,",0,"' &0 and

S'q2'+2 '(Qln') =f dz dz'expl iA, ,(z+L) iX,'z']—S'$ ' + '(Q, z IA, IQ', z'),
—L

(3.41b)

(3.42)

where A, =O, and A,, and A,,' are defined by Eqs. (3.34) ex-

cept that Q, &0.
Summarizing, the scattered waves are described by the

asymptotic expressions (3.38) and (3.41a) for the refiected
and transmitted waves, respectively, in terms of the cross
sections per unit area of the boundary surfaces,
o",$

' '(QIQ'), a, b =1,3, which are composed of the
entire contributions from both the medium and the boun-
daries. Here the medium scattering is manifested only
through the Q matrices S(bq/' + '(Qln'), a, b =+2, and
the resultant cross sections including the boundaries' can
be constructed according to Eqs. (3.39b) and (3.41b), by
the successive Q-matrix multiplication of the boundary
and medium matrices (that are involved in the equations
on an equal basis) on following the order of the scatter-
ings and with a weighting function ln, I

when making
the Q integration.

C. Optical conditions and reciprocity

The optical relation (3.16) for o" ' is obtained from
Eqs. (2.69) by rewriting them in the optical form, accord-
ing to the definition of (S, I by Eqs. (2.64) and (2.66) and
using Eq. (3.11); i.e., since the optical expression of
(S( I U( is

dQkiQ&U& Q 06 Q Q x oQ~(0

(3.43)

Eq. (2.69a) leads directly to
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f dnk ~(")(nln )+ f dnk ~'")(nln')
z "z

=k, ln,'I . (3.44)

f d Q k, ~(q+"+23)(QI Q )

+ fdnk, cr", ,
+" "'(Qln')=k, ln,'I . (3.45)

In the same way, Eq. (2.75) leads to the optical relation
(q + 12+23)ol o~y

The more detailed version of the relation is obtained from
Eq. (2.74), which is expressed by

d Q d Q-k, ",,"(nIQ-)
I Q,"I

's-'q,'"+,"'(Q"ln )+ d n d Q "k, ,","(QIQ")In,"I 's-""'+"'(n"
I

n') =k, I
Q"'I,h h

I ~ I 2

h h
zI

I ~
~ 2 ~ 2

h h
1

(3.46)

in terms of the medium cross sections S+2'+2 (Qln')
defined by Eqs. (3.40) and (3.42); hence the relation (3.45)
is reproduced in consequence of Eqs. (3.39b), (3.41b), and
(3.44). As for S'+f'+2(QIQ') where no boundary scatter-
ing is involved, we obtain

Also we rewrite the matrix E in the BS equation (2.17) by
E,2 to make sure that it is a two-coordinate matrix with
respect to x, and x2 with the elements K (x, ; x2 x', ; x2), on
using the primed coordinates for the rom; so that E12I
represents

f dn s'+$'+2(nln')+ fdn s "g'+2(nln') = In,' I f dx)dx2K(x„'X2lx„'X2)I(x„x2, X3,X4) . (4.3)

as a special case of (3.46).
Here the following reciprocity relations hold:

s(q/12+23)
( Q

I
Q ) s(q/12+23)

(+2, +2
s(q/12+23) (Q I

Q ) s(q/12+23)
(r 7

in consequence of the reciprocities

~(.„)(nln ) =~(,.)( —Q
I

—Q),
rc( )(nln ) =It.,(q)( —0'I —n),

(3.47)

(3.48a)

(3.48b)

(3.49a) with the solution

I= U+ U12U34S, (4.5)

In the same way, U will be rewritten by U12 when using it
in the original meaning, and the original I will likewise be
rewritten by I12 whenever confusing. On the other hand,
the matrix K2 also can be regarded as the four-
coordinate function I(. )2(x), x2, x3, x4), defined in the same
way as I has been defined in terms of I =I)2 by Eq. (4.1).

Thus, BS equation (2.17) can be written by

I= U+ U12K12I, (4.4)

and

s(,oq)( —Q', ~'I —zl —Q, ~)=s'" (n), ~ I/(ln', z') (3.49b)

IV. STRUCTURE QF E

from the definitions (3.32)—(3.34); and thereby the re-
ciprocity of the cross section cr(,$+' + '(QIQ') for the
entire system is ensured.

which represents

I = U+ USU

in terms of the scattering matrix S of K, defined by

EI =SU, IK = US,
and given as the solution of

(4.6)

(4.7)

The deterministic Green s function is subject to the re-
ciprocity g(xlx')=g(x'lx) or g =g, in view of v =v in
the governing equation (2.9b), and, therefore, not only the
first-order Green's function subject to G(xlx')=G(x'lx),
but also the second-order Green's function I (x„x2lx', ;x2)
should be invariant for each of the interchanges x1~x1
and x2~xz, independently. ' ' It may be remarked that,
with this simple symmetry alone, we can find a funda-
mental structure of the basic matrix K to a considerable
extent without knowing the details of the specific medium
involved.

We first consider the case of a homogeneous random
medium q so that K =E' ', and introduce a four-
coordinate function I(x„x2,x3, x4) defined by

s =z (1+Us) =(1 rcU)— (4.8a)

U(x3)x4lx3|x4)= 6*(x3lx3)G (x4lx4) (4.9)

and therefore commutable with U12, i.e., U12 U34
U34 U)2 a function U34 also is defined by (4.9) with

x3~x 1 and x4~ x2, so that

U= U12= U34 . (4.10)

(4.8b)

Here U34 is the matrix when U is regarded as a matrix
with respect to x3 and x4, say the x3-x4 matrix, with the
elements

V'

I(x)|x2)X3~x4) I(xi x2lxi x3~x2~x4)

and similarly a four-coordinate function U by

U(x)i x2& x3&X4) G (xi I X3)G (x21x4)

(4.1)

(4.2)
'V=E12+K12K34I, (4.11b)

Hence Eqs. (4.8a) and (4.8b) can also be written by

S=K12+K„U„S (4.11a)
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in a form similar to Eq. (4.5).
Here we observe that the function I is invariant against

the interchange of x2 and x4, as we already remarked
based on the reciprocity, and therefore I—:I12=I,4, in
view of the elements of the matrix I,4 given by those of
I,2 with x2~x4 and xz~x4. Similarly, U = U14 and

U)2 U34 U)4U3~ = U' '—:G*(1)G(2)G*(3)G(4) .

(4.12)

Thus, making the same interchange in expression (4.5) of
I, we learn that

tions as
V' V'

K12I= U34S E34I= U12S,

which, by the x2-x4 interchange, yield
V' V' 'V

K14I —U32S y E32I U 14S

showing therefore that
U'

K12 U12S K34 U34S K12K34I
V' V'

K14 U, 4S —K32 U32S K14K32I .

Hence Eqs. (4.15) and (4.18) can be written by

(4.19a)

(4.19b)

(4.20a)

(4.20b)

'V 'V

S=S12—S14 )

and hence, by the same interchange of Eqs. (4.11),
V' U' V'

S—K14+K14 U14S —K14+K14K32I

(4.13) V V p
K12 —E +K14K32I,
'V, %

p
K14 =E +E12K34I,

(4.14)
and Eq. (4.17) in a symmetrical form, by

(4.21a)

(4.21b)

which, upon comparing with the original (4.11b), shows
V'

9that K)4&K,2, and that K,2 can be written in the form S=K'+E'"I, (4.22a)

V V
p

V'

K12 —K +K14U14S, (4.15) in terms of a coordinate-interchange-invariant matrix
K' ' defined by

E'=E' =E' =E' =E'
12 14 34 32 (4.16)

with a symmetrical (and irreducible as defined below) ma-
trix K subject to K E 12K34 +K 14K32 ~

(4)

Here, from Eq. (4.5) with (4.12),

(4.22b)

S=K +K12 U12S+K14U14S,

which, from Eq. (4.14), shows that
V' V'

pE14=K +K12U12S,

(4.17)

(4.18)

being the same equation as that obtained from Eq. (4.15)
by interchanging x2 and x4, as it should be to be con-
sistent. Equation (4.18) shows that K,4 is U, 4 irreducible
with the irreducible K with respect to both U12 and U, 4.

Equations (4.7) can be written by the function equa-

1

S

In fact, the second term of (4.15), K' ', say, is "U,2 irre-
ducible" in the sense of having no part that can be writ-
ten in the form A, 2 U12B,2, so that its diagram is insepar-
able into two parts 312 and B,2 by cutting two lines of
U)~=6*(1)G(2) (see Fig. 3). The substitution of Eq.
(4.15) in the first term of (4.1la) yields a symmetrical ex-
pression of S, as

I= U+ U'"S . (4.23)

Hence, upon the substitution in (4.22a), we obtain a
governing equation for S, as

S=K"'+E"'U"'S, (4.24a)

where

E'"=K'+K"'U,
with the formal solution

g —(1 I( (4)U(4)) —11("(1)

(4.24b)

(4.24c)

Similarly, substituting (4.22a) in (4.23), I is found to be
the solution of

I= U(1)+ U(4)K(4)I (4.25a)

where

U'"= U+ U"'K', (4.25b)

which is the same function of U, U' ', and K as E'" of
(4.24b) is of K, E' ', and U.

Here we introduce the incoherent part of I, 7, defined
by

g —U (4)S —I(4)K(1) (4.26a)

4
to write

I= U+2 . (4.26b)

FIG. 3. The matrix K» by Eq. (4.15) is diagrammatically
shown with the approximation E&4-—K&4 on the right-hand side.
The dashed lines represent the matrix K, and the (horizontal)
solid lines represent G or G.

Here, in view of Eq. (4.24c),

I(4) U(4)( I I( (4) U(4) )
—i (4.27)

which is the solution of an equation similar in form to the
BS equation (2.21), as
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I{4} V{4}(1+K{4}I{4}) (4.28) S'"=+' I"'rc'
14 14 14 14 (4.37b)

with the solution

I(4)—U(4)+ U(4)S(4) U(4) (4.29)

Thus the resulting I is obtained, on substituting (4.32) in
(4.6) and using (4.36), as '' '

g (4)1(4)—S(4)U(4) (4.30a)

in terms of a scattering matrix S' ' of K'"', defined by
I= v+ UK'v+ v( s'"+ s' ')v
=I"'+U S' 'U

(4.38a)

(4.38b)

and governed by

S{4}—K {4}(1+U{4}S{4})

—~ (4) +g (4)I(4)~ (4) (4.30b)
K =E +K' (4.39a)

with the matrix K' ' defined by the function equation

An exact version of the solution is obtained by rewrit-
ing (4.15) in the original matrix form

S=r'+S("U"' (4.31)

similar to Eqs. (4.7) and (4.8) for S.
The function S of (4.24c) can also be written in the

form

Z (x)=Z,4U, 4S . (4.39b)

The BS equation with K of (4.39a) has the same form as
Eq. (2.21), and the same procedure as leading to the solu-
tion (2.41) leads to

similar to (4.26b) for I. I' ' is a four-coordinate matrix of'

x„x2, x3, and x4, and is the solution of Eq. (4.28) which.
ensures I'"' to be invariant for each of the interchange~
x2+ x4 and x,~x3, independently. It can be regarded a.
a Green's function of fourth order, in view of U' ' ancI
K' ' defined by Eqs. (4.12) and (4.22b), respectively.

I(L)+I(L)S( x /L )I(L)

with a scattering matrix S' ' of K' ', defined by

S{x /L} K{x }(1+I{I}s{x /L})

=S' "'(1+US' 'US' ')

(4.40)

(4.41a)

(4.41b)

A. Approximation

We first rewrite Eq. (4.17) in the original matrix form

S=Z '+ S"'+ S' (4.32)

by introducing scattering matrices S ' ' and S '

defined in terms of the four-coordinate functions, by
~ v v
S "'=Sr» U»S =Z o»U»S,

~ v v v
S ' )=Z,4 U„S=r', 4U14S,

(4.33a)

(4.33b)

S"'=Z' I")Z'
12 12 12 12

Here

I,2
—(1—U, 2K, 2) U, 2

= U, 2+ U, 2S',2'U, 2,

(4.34b)

(4.35)

which is the solution of the original BS equation to the
approximation K =K, and Eq. (4.34b) shows in view of
relation (4.8b) that

which can be obtained from each other by interchanging
x2 and x4, in view of the coordinate-interchange invari-
ance of S being ensured.

Here, to evaluate S' ', we substitute (4.32) in (4.33a)
and neglect the term from S' ' to obtain

S,2
—K,2U12(K12+ S12 ), (4.34a)

with the solution

where

S' '=K{ '(1+ US' ')=(1—K' 'U) 'K' } (4.42)

Here it may be remarked that K ' ' is the necessary part
of E for the solution I to be consistent with the general-
ized reciprocity condition; and that the anti-Hermitian
part of M has a contribution, not only from Ko, but also
from K' ' consistent with optical condition (2.24), so
that the extinction coefficient is given according to (3.20)
by the total cross section including K '

B. Optical cross section from
S' "' for a bounded layer (Fig. 1)

The optical cross sections of the random layer are
given in terms of the cross sections per unit area of the
layer surfaces, cr{$+' + ', a, b =1,3 by Eqs. (3.39b) and
(3.41b), wherein S{+~2/'+2+ ' are defined by Eqs. (3.40c) and
(3.42). Here, in the present notations, the medium
scattering matrix is

S"&)=X'+ S("+ S'
2 (4.43)

in the case of a reflection-free boundary, and is Sz) '

in the general case, which is given in terms of S2 ' as the
solution of Eq. (2.44a) with o" }-o"'+o' '. Here the
cross section from S' ' (or S ' '), say S' '(Q

~
Q '), can

be obtained from S' ' (or S 'L') by interchanging the
roles of x2 and x2 (or x2 and x4). Hence, from Eqs.
(3.32) —(3.34),

S("=X'+ S"'
On the other hand, Eqs. (4.33) indicate that

(4.36) s{",}.,(gQ ') = s {.,I.,(Q, a, ~A, =oiQ ', a,'), (4.44)

S (x) S (x) S (L)
12 14

where, from Eq. (4.34b),

(4.37a)
whose right-hand side can be given in view of relation
(4.37a) by

s ",' „(Q, x, ~
z

~

Q ', x,' ),
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with the interchange of A,2 and A,4 so that

U —U(2~u)4 ——(A, i+ A4) =k2Q14,

uu34u322(A 3 + A 2)—232
or, using Eqs. (3.35),

Q~Q, ~= —,'(Q —Q '),
0 '~032= —,'(0 ' —0)

(4.45a)

(4.45b)

(4.46a)

(4.46b)

= —k (0+0')+ —,'iy [(0,)
' —(0,') ']n, ,

(4.47b)

which show that the horizontal components A, ,4 and A, 32
are both nonzero, being given by

A, ,4= —A32=A, = —k2(0+0 '), (4.48)

in contrast to the case of S' ' wherein A, =O.
On the other hand, the transforms S +2 +2 are appre-

ciable only within the range IA, I, IA, 'I y2, in view of
U2(u, A, ) given by Eq. (3.6) and involved in all the equa-
tions as a weighting function of when making the u in-
tegration [e.g., Eqs. (2.44)]. Hence it follows from (4.47)
that the contribution from S' ' can be appreciable only
within the range

In+0 I&7,/k, , (4.49a)

and, under this condition, Eqs. (4.47) lead «
(A. ,~), = —iy20, '(1 —i@2 'iL 0), (4.49b)

Here, the y2 terms have been neglected, which are of the
order of Iy2/k2I and negligible therefore unless
IQ —O'I 8 y2/k& (( l. In the same way, A, =A,2

—A,

and A,
' = —A,4+ A,3 are replaced by A, ,4 =A,4

—A, , and

Ar32 Ar2 +Ar3 respectively, or

g„=—k, (0+0')—,'1'y, [(0,)
' —(0,') ']n, ,

(4.47a)

and hence, when 0+0'=0 exactly,

s(+~2)+2(0I 0)—=s(+", +, (ni —0),

(4.50)

(4.51)

as has been known.
The situation is the same also for the boundary-

dependent S'+q2'+2 '(QIQ') involved in Eq. (3.39b) and
given by Eqs. (3.40) as a function of 0, Q', and A, ; so
that, once it is found to the ladder approximation, say(L /12+ 23)S+2+2 (QIA, IQ'), the cross section from the crossed
diagrams, say S'+2+& '(QIA, IQ'), can be obtained by
the replacement of Q, 0', and A, , according to Eqs.
(4.46a), (4.46b), and (4.48), respectively. To this end, we
only need in view of Eq. (3.37) the quantity
J+2$

+ (Q, z =OIA, IQ ', z'=0) that is the boundary
value at z =0 of the solution of the integral equation
(3.17).

V. APPLICATION OF THE DIFFUSION
APPROXIMATION

When the source and the observer are both separated
enough from the layer boundaries, I'„+' + ' and
I3(q + 12+23) are given by the asymptotic expressions (3.38)
and (3.41), respectively, in terms of the cross sections per
unit area of the layer surfaces o'q+' + ' and o'11
of the form

(~w)z = i—720, '[1—1(k2/y )-'[0' —(0,')'] j,
wherein 0,—(Q,' ) =Q' —02- —20.(0+0 )

Note that Eqs. (4.49b) and (4.49c) are exactly the same
as (3.34) for A,, and A,,', and hold true even when 0 and0 ' are replaced by 0,4 and 032 of (4.46a) and (4.46b), re-
spectively, to the present approximation.

Thus Eq. (4.44) gives

S(+~2)+2(nin ')

S (L)=s, ,(Q, , (A, , ), IA, IQ„,—(A,„),)
=S'+ +2(0, (X)4), l

—k, (0+0')I —0, —(X32), );

—(A32), = iy2(n,—') (1 iy2 'A—. 0'), (4.49c)
~(t+ "+"'(ni0 ) =~(")(0IQ ')+~(q"'+")(nI 0 '),

(5.la)

with the A, given by (4.48); Eq. (4.49b) is proved by ob-
serving that 0,' ——0, in Eq. (4.47a) and hence

(q+ 12+23)( 0I0 ) (q/12+23)( 0I0
Here, from (3.39) and (3.40),

(5. lb)

()/12+23)(nin ) f dn fdn (12)(nin )g(g/12+23)(0 z"—Oin "' z"'=O)g (Q "'IQ ')

~«/»+23)(QIQ )=fdn- fdn- ~',23)(nIQ")&(~"'+"'(0"z"=—L In"', z"'=o)~'"'«"'In'»
(5.2a)

(5.2b)

which both tend to zero as q2 —+0 and hence can be re-
garded as additional boundary cross sections caused by
the medium fiuctuation. Here, J2($/' ' is the solution
of Eqs. (2.54), and can be obtained as a boundary-value
solution of the diffusion equation, approximately, as has
been tried to investigate the enhanced backscattering in a

I

bounded layer space, as well as unbounded, on assum-
ing reQection-free boundaries.

To make the diffusion a~proximation, we introduce a
set of eigenfunctions fz(Q, A, ) and fz(Q, A, ) of the cross
section E(2q'(Q

I
Q '), defined by the eigenvalue equations
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fdn'K ~ (QlQ')U (O', A)f„(Q', A)= A(A)f„(Q, A),

(5.3a)

f d 0 'f„(0 ', A ) Uz ( 0 ', A )K z'i (0 '
l
0 ) = A ( A )f„(0,A ),

Hence, discarding all the terms other than the diffusion
in Eq. (5.9), we obtain the expression

S ~
~' '(Qlk, lQ')=S'~ '(A, )f„(Q,A, )f„(Q',A, ), (5.13)

s' '(i)=(i —A)-'A +'(i)

with the normalization

(5.3b)
(D g 2) —1+ y d(N)$2n

n=o
(5.14)

fdQ fq( Q, A, }U2( Q, A)f~(Q, &)=$„~ . (5.4)

Here Uz(Q, A, ) is regarded as a weighting function when
making the 0 integration, and A(A, ) is the eigenvalue
with branch points at lA, l =+iy& on the lk,

l
plane, caused

by the pole of Uz of (3.9), and tends to zero as lk, l
~ ~.

In terms of the eigenfunctions and the eigenvalues, the
cross section can be exhibited by the series

K2 '(Qln')= y A(A)f (Q, A)f„(0',A), (5.5)

and hence, generally,

(K', 'U, )"K',i'(0
l kl 0 ')

= g A"+'(A, }f„(Q,A, )f~(0', A, ) . (5.6)

where

+S(oq, x)
2 (5.7)

S ioe»~ = (1 K ivy U )
—

i(K i~aU )&K i9~
2 2 2 2 2

and hence

s,"&"'(Qlkln )

(5.8)

= g(1—A) 'A '(A)f„(Q,A)f„(0',A), (5.9)
A

in view of Eq. (5.6); the original S~2 'i' is given by S ~~
~'

when N=O. The series (5.7) consists of the scattering
terms up to the ¹horder of short-range functions and
the remainder S2 ~' ' of a long-range function. The
diffusion term is the first term with the eigenvalue of the
form

A(A, )=1—
y2 'D2A, +0[(A,/y )2] (5.10)

in the range lA, /y2l &(1, when the medium cross section
is rotationally invariant in space with the form
Ki2~'(0 0'). Here

D2=(3y2) '(1 —a, ) '=(3y2) '+D2,
D2 =(3yz) 'a, (1—a, )

(5.1 la)

(5.11b)

where a, is the average of the cosine of the scattering an-
gle, defined by

a, =y, 'f dn(0 -0'}K',&'(0 n') . . (5.12)

To find a similar expansion for S ~2
~' from (2.43) we ob-

serve that

S ' i'=(1 K'~'U )
—'K'~'

2

=K' '+K,'"U,K',~'+ . +(K,'q'U, )" 'K',~'-
2

where the last is the series expansion with respect to A,
2

within a range of lA, /y2l (1. Here the first term, say
S~ (A, ), is the same independent of the order N, and its
Fourier inversion with respect to z, say,

Sz(zlzz,

lz') —=Sz(zlz'), is a solution of the diffusion equa-
tion

y,-'[y'"i+D, (z' —a,') ]s„(zl~ lz') = |'(z —z') (5.15)

with a new parameter y' ' to represent an intrinsic dissi-
pation by the medium.

To investigate the asymptotic form of S '~ ' at lA, l
~ oo,

on the other hand, we observe on using Eq. (5.3) and the
normalization (5.4) that

A=f„U,K' U,f„-O(lxl-'), (5.16)

and hence S 'z ' —0(lk, l
') and S 2

~' ' —0(lk, l ),
confirming therefore that the short-range behavior of
S2 ' ' is not the same, depending on %.

When the q2 space is bounded by the boundaries at
z =0 and —L, the difFusion equation (5.15) is subjected to
boundary conditions to be described below, and, with the
solution SA

+ ', say, we obtain a diffusion expression of
S(q/12+23) as22

s')"'+"'(n
l
0 ' z')

—f„(Q,iB, )S'„' '(zlz')f„(0', i8,')—, (5.17)

P„(n,iB, )= Uzf„(n, iB, ),
P„(Q, iB, )=f—„U~(0, iB, ), — (5.18b)

which is a crude approximation when z =z'=0, neglect-
ing all the other terms in the series (5.7) and (5.9). Here,
to the first order of A, = ( A, , iB, ), we obtain, with D2 of
(5.11b),

f~( QiB, )=4m y2f~(n, iB, )

= 1+3D2( i Q.A. —Q, B,),
y,y„(n, ia, ) =4~y„(n, ia, )

= 1+3D2(iQ. A, —Q, B, ),
U (Q, iB, )=y '[1+y '(in AQ, B,)), ,

—

(5.19a)

(5.19b)

(5.19c)

and SA' + is subject to the boundary condition at z =0
of the form (Appendix A)

and hence also

'(Q, z ln ', z')

-y, (n, ia, )S,'"+"'(zlz }y„(0,—ia,') (5.18a)

where
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(2y ) '( —,'+D B, )S" + '[z(=0)lz']

=&~2"2"(a,)&s,("+")[z(=0)l'], '&o.
Hence

Z(12)—[2(k /k ) &
~((2)

& ]
—

1& (12)
& (5.27)

Here

& ~(.(,"(a, ) &

(5.20)

=(4 )
' f dQ f dQ'," '(QIQ')$~(Q', 8, )

2n. 2'
(5.21)

(a, b = 1,2), and is subject in view of Eq. (3.16) to the rela-
tion

and becomes —,
' when the boundary is free from refIection

by giving &o(12 &1=1 and &o'12 &o= —,', consistent with
Eq. (5.20). When the matrix o(' ' is rotationally invari-
ant around the z axis, Z" ' is independent of A, , in view of
no contribution from the responsible integrand in Eq.
(5.26a). Another expression of Z" ' is given, in terms of
(r22", by (A12).

Another boundary equation at z = —I. is similarly
given by

2

y k. &~(.", )(a, ) &=k, (2y, )-'(-,' —D,a, ) . (5.22) +z( 3))s(1 +23)[ ( L)l ] (5.28)

in terms of & cr'(z )((l, ) &, and further as

(D,a, +z'"')s„'"+"'[z(=o) lz'] =o, (5.24)

with a constant Z" ' given by the root of the equation

a=1

To apply the boundary condition (5.20), it is con-
venient to rewrite it, on using relation (5.22), as

'D (l +k &(7'"'((l )&]S'"+ "[z(=()lz']=0

(5.23)

where Z' ' is determined by o' ' as Z" ' is by o" ', ac-
cording to Eqs. (5.25) or (5.27).

To express (T(P(/' + ' of (5.2a) specifically by using
(5.18a), (5.19b), and boundary condition (5.24), we intro-
duce two new functions (7",2 '(Qlz) and a.zI '(z Q),
defined by

",,"(hlz)= fdh", ,"(hlQ )y„(Q', ~, )l, ,

o", '(zlQ)= fdQ'(t (Q', —'8, ) ", '(Q'lQ)l

(5.29b)
—IZ(12) —k &

(12)( D
—1Z(12)

) &

(2y )
—

1( &
(12)

& + &
(12)

&
Z(12))

(5.25a)

(5.30)

where lz designates the setting (},= —D2 'Z" '. Hence

~12 (Qlz)=(4~/} 2)~21

(5.25b)
where the last expression is obtained by using (5.19b), in
terms of the notations

and let Eq. (5.25a) and a similar equation for Z' ' be
written by

&oab &()= f dQdQ'o', b(QlQ')(1+i3D2A, Q' ')

(5.26a)

k, fdh ~ ,("(hlz)=(4~ k, /l, )z "()
k3 fdQ o'32 '(QIZ) =(4mk2/y2)z'

(5.31a)

(5.31b)

&~(.)
&, = ' f dQdQ ~(.,)(QIQ )IQ'"'I. (5.26b)

I

Thus Eqs. (5.2) become written, on using (5.18a) and
(87)—(816), as

~'~"'+"'(hlh ') =(y /z'"')~'")(Qlz) [~'"'(z =olh ')+ [(z'")/y )s'"+"'(olo)—1]~(")(zlh ') j

=(y /Z2" ))o" '(QIZ)[o" '(Z =OlQ') —Y(Z" '+ Y) '(T(2'( )(ZIQ')],
(~"'+")(QIQ )= ("'(h z)s'"+"'( —I.lo) '"'(zlQ )

(5.32a)

(5.32b)

(5.32c)

Yl o =—YO=Z' '[1+(L /D2)Z'

Yl L ))(——)~D2,

(5.33a)

(5.33b)

and, when 1r=o, the relation equivalent to (2.74) or (3.46)
holds:

f«k(~'P, "'+")(h lh ')+ fdh k3~(3~»2+23)(hlQ )

=4~k .(»)(z =olQ )

=k, fdh~,",2)(hlh ), (5.34)

in terms of the variable Y defined by Eq. (87) and the
Sz + ' by Eqs. (88) and (89). Here, with

( (ab)D —1 +g2)1/2
2

I

which is a direct consequence of relations (5.31) and

(5.35)s( +»)( Llo) (y /z(23)) Y (z(12)+ Y )
—1

and, together with the corresponding relation (3.16) for
each boundary, ensures the optical relation for the entire
system, (3.45).

In the case of a semi-infinite random layer where
L = oo and 1r=o, Eq. (5.32b) is reduced in view of Eq.
(5.33a) to

(~/12+ ~ )( Q
l
Q I

)

—= (y2/Z" ')cr" '(Qlz)cr" '(Z =OIQ '), (5.36)
which depends on the medium characteristics only
through o" ' and Z" '. In terms of 0'1~1

' ', Eq.
(5.32b) can be written as
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g~~~i2+»(0~0 ) —g~~» +- (0~0 ) = —(Z~"'/Z'"')g'"'(QIZ)S'" "'(—L 10)g,'i"(ZlQ')

= —(y, /Z'"')o", ,"(Q~Z) Y(Z'"'+ Y) 'g', P'(Z ~0 '),
(5.37a)

(5.37b)

wherein the right-hand sides are symmetrical with
respect to 0 and 0 ' in both expressions. Here (5.37a) is
valid only when ~=0 or y'"'= A, =0, and leads directly
to the basic optical relation (5.34) by perfect cancellation
of the 0.

3&
' + ' term by the right-hand side, in virtue of

the expression (5.32c) with relations (5.31). This means
that, including the case of ~%0, the right-hand-side term
of (5.37b) has the same accuracy as g~zf~' + ' for the
transmitted wave when y,L»1, i.e., a sufficient accura-
cy expected by the diffusion approximation.

A. Case of a random layer with smooth boundaries

From Eq. (3.14), g,'b ' in this case is given by

o'"'(0 ~0 ') = l0"(R'"'(0) )'l&'(0 "—(0 ")')
= ~0~b~(R ~i2~(0) )2~$~ (0 ~b' —(0 ~b))')

(5.38b)

Here the reflection-transmission coefficient (R,'b ') is
given, when using Eq. (2.33b), by

0', ' +(k, /kb) 0,"

an ("
=(k /k )'~0"/0'b'i .

an (a) + b z z (5.40b)

Hence

fdQ 'g (0 '~0) = ~Q~ '(R(~ )(0) )

and Z' ' is given by Eq. (5.27) with

(cr ' ) = fdQ'2 ~Q' '(R]2(0))

(5.41)

(5.42a)

from (5.26a), without any contribution from the A, term,
and

(g" ') = f d0~~~~0~~)Q~~~(R~i2'(0))2~ (5.42b)

Thus the cross section per unit area of the layer surface is
given, upon using Eqs. (5.1a) and (5.32b), by

and the second expression is a consequence of the re-
ciprocity (3.49a) or, more directly,

an'"
~is(0 "—(0 ")')= fi'(0 ' ' —(0 '"')'), (5.40a)an"

cr']+"+"'(0
~
0 ') =(7'i2'(0 ~0 ')+(y, /Z "z')cr'i2'(0 ~Z )[cr"2'(Z =0~0 ') —Y(Z "~'+ Y) 'g'"'(Z

~

0 ') ],
where, using (5.38b) in (5.29),

(5.43)

g'"'(QIZ) =(4~/y, )g,","(Z~ —0)(,
=y2 (1+3~0,' '~Z'"'+i3D, A, 0"')~0"'(R'i2'(0) )'~, (5.44)

which is a real function when A, =O.

B. Reciprocity

From Eqs. (5.32c) and (5.30), the reciprocity

g ~]~i2+~3~(0iQ ') =g ~$~'2+ )( —0 '~ —0) (5.45)

k, f d 0 g']"'+"'(Ql 0 ') =k, f«g'"'(010 '),
(5.46)

follows directly, and the same holds true also for the
right-hand-side terms of (5.37) for g'P~' + '. However,
from (5.36), this is not the case of the term crI]~' + ' on
the left-hand side unless Z" '«1 [as realized when
k, /k2 «1 in view of (5.54b)] in spite of satisfying the
correct optical condition

in view of (5.31a) and (5.29b). This implies that the
diffusion approximation is not good enough for the term
o'» ' + ' in spite of its success for the other terms given
by the right-hand sides of the expressions (5.37).

Formally, a symmetrical (reciprocal) expression can be
obtained by taking the principal value of 2,S„"+"'(z ~z')

at the discontinuity z=z'=0, which results in giving
cr'P~' +"' by the average of the expression (5.36) and the
same expression with the interchange of n and —n'.
But, the resulting cross section does not satisfy relation
(5.46) necessary to satisfy the basic (5.34). Another
symmetrical expression is obtained by using an asymptot-
ic expression of the integral representation (3.40c) at
~A,, ~, ~A,,'~ —~, upon making use of the diffusion condition
that the change of Sz(~' + '(Q, z~Q', z') be negligibly
small within the distance ~A,, ~

' —y2 '. Here, to evaluate
the integral by using Eq. (Bl), we first disregard the
discontinuity at z =z' so that we obtain the expression to
the first order of 8, (8,' =0), as
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S'q ' + '(QIQ ')=(k, A,,') '[1 —(ii, ) '(), ]S'$ ' + '(Q, z( =0)IQ ',z'= —0) (5.47a)

= In, n,'I2((/"+")(Q, z=OIQ ',z'= —o), (5.47b)

where the last expression is required from Eq. (3.40a), to be consistent. Here Szf ' + '(Q, zIQ ', z') on the right-hand
side of (5.47a) is given from (5 ~ 17), (5.19a), and (5 ~ 1 la), by

S2$
' + '(Q, zIQ', z')=(4m. ) 'y2[l+(y ' 3D )—Q, (), ]SJ ' +"'(zIz'= —0), A, =o

and A,, and A,,' are given by Eqs. (3.34). Hence Eq. (5.47a) agrees in fact with Eq. (5.47b) when using the diffusion ex-
pression (B13); this holds true including the case A,AO, as may be shown by subsituting the A,-dependent expressions
(3.34) in the first factor (A,,A,,' )

On the other hand, if we took into account the discontinuity of the integrand at z =z', the expression (5.47a) would
be replaced by

s(q,",2+")(QIQ ) =(x,x,')-'[1+1(x, —x,')-'a, ]s(,~"'+")(Q,z( =o) In ', z = —o),

which is invariant against the interchange A,, and —
A,„

fulfilling therefore the reciprocity, but is not consistent
with the realtion (3.46) necessary to ensure power conser-
vation. '

Summarizing, the diffusion equation is an equation for
the coefficient S„" + '(zIz') in the expression (5.18a) for
J+2$

' + ' which, with (5.19b), is an asymptotic expres-
sion in the same sense as Eq. (5.47a) is asymptotic; there-
fore, whenever using the solution, it gives the asymptotic
answer, directly, without any need of further asymptotic
evaluation according to Eq. (5.47c).

C. Enhanced backscattering

In the basic expression (3.39b) for o',f+' + '(QIQ'),
the contribution from the random medium is given by the
second term in terms of S'+q2/'+2 '(QIQ ') which, except
for the factor

I Q, Q,' I, is the same as the boundary value
of 9(2$/' + ' given to the difFusion approximation by Eqs.

I

(5.18) with the boundary-value solution Sz' ' of the
diffusion equation (5.15); thereby power conservation is
ensured strictly. Here, from (4.43) on neglecting the IC

term, we divide S'+2'+2 ' into two parts by

S(q/12+23)
( Q

I
Q ) S(L /1 2+23)

( Q
I
Q )+2) +2 +2, +2

+s(",",+"'(Q In '), (5.48)

as the sum of the contribution from the ladder digrams,
S'+ 2 '+ 2 ', and that from the maximally crossed dia-
grams, S '+ 2 +2+ ', and obtain the latter from the former
by the replacement of Q, Q' and A., according to Eqs.
(4.46a), (4.46b) and (4.48), respectively. Hence, in the
present case of A. =0, the contribution from the former to
o',] ' + '(QIQ'), say (rI( ' + ', is the same as given by
Eq. (5.37b) with Y= Yo from (5.33a), while that from the
latter, say o.

& &

' + ', is given, when limiting ourselves to
the case of smooth boundaries and suppressing the 0 .A,

terms, by

o'" ' + '(QIQ ')=(4qrz" ') 'IQ' 'I (R (0)) (1+3IQ' 'Iz" ')[1—Y(z" '+ Y) '(1+3IQ' 'Iz" ')] (5.49)

in consequence of Eq. (5.44). Here Y is defined by Eq. (B7) as a function of )('= k =
I k2(Q+ Q') I, and the right-hand side

of (5.49) is appreciable only when Q+Q '-0 so that IA, /y2I (& I [Eq. (5.51)], and independent of the Q.A, terms
suppressed, when the wave is vertically incident.

1. Case of (R2) ) —1 (k, —k2) and vertical incidence of the (vave

For later convenience, we here assume a medium of isotropic scatterers (a, =0) and introduce a new parameter ro to
write Z" '=(3rD) ' in Eq. (5.49). Hence

cr („ /' '( Q
I
Q ') = (4' ) '3( 1+ro) [ 1 —3 Y ( I + 3 Yq o) '( 1+~0) ] (5.50a)

=(4') '3(1+qo)(1+3Y&0) (1—3Y) . (5.50b)

Here, when A,L »1, A, = IA, I,

3Y=x/y, =(k2/7'2) In+ n'I (5.51)

(x/12+23) (41r)
—13(1+r )

X [1—( I+Go)(k, /y2)IQ+Q'I], (5.52a)

from (5.33b) and (5.1la), and hence, to the first order of
A, , Eq. (5.50a) gives which is valid as long as I1(/y2I ((1 and AL »1, includ-



43

0.2ng the case L =
0-' /12+23) .

~ Here
11

gle Y
pendent on th

«emarke

of Eq. (551)
e normalized sc

t at

square br k
only through h

cattering an-

rac ets of E .
t e second

q. (5.50a) wh' h
'

ic is from
o 'i thtt

Y
wit the sam

su cientl ac
th of h constant p

g statement ].
a n ing previous result w

~) '3 [(—'+ r — ro

was given b

ro) —(1+ ) (k

w
'

y

0.15

with M'

, /), ) ~Q+Q I]

M' ' valuei Milne's

2

owing that th e their second (A,-d
fi t t do

is equivale
hefa tth tth
t to

e metho

dof
Eq t (5

'
n .50b shsh e cross section b

b

5p . a n' h
in (3.40c)

n in the ran e
d

y2 1

rapidly with

'ffi b o r o
i A, resulting in t ement of

(5.52b)

0.05

1—
he replac

—3Y~(1+1,/ y, ) ', AL»1.
0

(5.53)

RANDOM-V OI-UME SCATTERIN G, . BQUNDAR~ EF

it m

FFECTS

30pkp IA+ & I

0.2

2759

2. uantitative d'
e discussion of the case k

min

0 t erase k&lk&«1

(Rq( ) —2k /k1 2 (5.54a)

Assu g the vertical in
'

incidence of the we wave, we obtain

FIG. 4. The cross sec
(5.49) is show

section per uniunit area a'

ve is vertically incid

parameter
'

dssp

=0.004 122
D&, which is ch eD osen to be

z(12) 2'" —
—,(k, /k, )3 «1 (5.54b)

which is ap rec'appreciable only f
h L= t

or Y in

is given by

=~, t e maximumum va ue at

( X /12+23) -(4~Z("')-'& R 21 (5.56a)

—(4m. ) '24( k, /k i (5.56b)

in consequenceq nce of Eqs. (5.54 .

e ection is presentl
e

„)—[1—2(k, /k

which,

~1

w ich, when k /k = , is 0.4, being corn

( X /12+23(

ug gested that, when

where the last
'

ast is from E .
) is reduced to

e. 8. Henc Eq.

~( X /12+23) —(4m ) iR~, ) (Z" '+ YY) '(1 —3Y),

(5.55)

ki/k& ~0.2 and L ==~, the ep

th l, b
. g

0 11 due

Ill t t d'

e value by

ge inFi .

ize
p r unit area o' ' '+

d scatterin
11

ss sec-'s e cro

g 3D,k, ~Q+Q'
yi id to

dk, k =o

e wave is

parameter is the nor

'
a ive layer of

alized width

VI. SUMMARY AND DISCUSSION

The soluution of the BS e
'

o
d i S +

sc

constructed
for the entire

'
e volume. Th

erin g Inatrix 23)

atrix can be

matrices of t
ition of ind

ed
in ependent

condition t1

oundaries,
o e consis

so does a h of th
tll

' . Tll
'

1 o di io [Eive optical
' '

s qs. (3.45) and (3.46) .. The



2760 K. FURUTSU 43

APPENDIX A: BOUNDARY CONDITION
OF THE DIFFUSION EQUATION

To find the boundary condition, we investigate the
(power) equation of continuity for J~z(~' + 3' by studying
first the equation for J~z q' which is given, upon the Q in-
tegration of the transport equation (3.18), by

a, f dnn, S,"q'(Q, z~n', z')=y, U, (n', z z'), —
4m'

(A 1)

enhanced backscattering can be understood as a natural
consequence of requiring the coordinate-interchange in-
variance of the BS equation, i.e., the invariance of the
second-order Green's function based on the independent
reciprocity for each of the two deterministic Green's
functions involved. It is hence convenient to rewrite the
BS equation as an equation for the function of the four
coordinates so that the invariance is immediately clear
(Sec. IV). Here it may be remarked that the term K in
Eq. (4.17) also has a structure and, in consequence of this,
the equation can be further rewritten so that the four
coordinates are involved in it on exactly the same footing;
thereby the fundamental structures of the basic matrices
K and M are found.

To obtain specific expression of the cross sections, the
diffusion approximation was examined in some detail
based on expansions of physical quantities in terms of the
eigenfunctions of the medium cross section [Eqs. (5.3)
and (5.4)], together with the boundary condition of the
diffusion equation [Eqs. (5.24), (5.27), and (A12)]. When
the boundaries are smooth, the cross section for the back-
scattered waves is given by Eq. (5.43) with (5.44) or, more
generally, (5.29). The result agrees with what would be
obtained by asymptotic evaluation of the integral repre-
sentation [Eq. (3.40c)] under the diffusion condition.
Here, when the inte grand is obtained by using the
boundary-value solution of the diffusion equation, care is
necessary about its discontinuity that could lead to a re-
sult not consistent with power conservation. The term of
the enhanced backscattering can be obtained from the
above results according to the coordinate-interchange
principle [Eq. (4.50)]. Even to the diffusion approxima-
tion, the angle distribution of the enhanced wave holds a
sufficient accuracy (although not quite for the back-
ground term) as long as the optical width of the layer is
long enough [Eqs. (5.37) and (5.49)].

in consequence of optical relation (3.20). Here the power
Aux of S~z q' in the z direction, say ( w,' q'), can be written
as a sum of the two components ( w,' «') —+ propagating in

the positive and negative directions, respectively, and
given by

&w.'"'(zln', z')&+-—= f .dnn, &~+'(n, z~n', z'), (A2)
Z

except for a numerical factor. Hence

( (Oq)) —( (0«))++( (Oq))—

and (Al) is written by

a, &w,"q'(z~n, )&=),U, (n, —').

(A3)

(A4)

Here we introduce a distance I subject to y 2l &) 1, and
integrate both sides of (A4) over the range 0~z ~ —1 to
obtain

(w,' q'(z~n', z')) ~, I= f dz yzUz(n', z —z')

1, 0' &0, z'=0

0, Q,'~&0, yz(1+z') && —1,
(A5)

dnn, ~,'"'(Q, z= —I~n, z )
"Z

1, 0' (0, z'=0 (A6)

0 Q' &&0 yz(l+z') « —1 . (A7)

It is now straightforward to find the corresponding
equation for the boundary-dependent Jz$ ' ' by apply-
ing the above relations to the governing equation (3.17),
hence

where use has been made of (3.11). Here, on the left-hand
side, the part ( w,' q') is zero at z =0 in view of (3.21a),
while, for the part (w,' q')+, we assume that the length
I))y2 can be minimized so that, within the region
O~z ~ —l, (w,' q') (propagating toward the boundary
S,z) remains almost unchanged; this is a severe condition
not quite realized, though. Thus, on the left-hand side of
(A5), ( w,' q' ) + makes no contribution, resulting in that

dn n g()/lz+z3)(n z = I ~n
' z') dQ dQ "o'~ »(Q Q -)g ~

"+"'(n"z"=Oln ' z')
0 &0 z 2 n &0 II O22 2 7 7

Z Z Q, &0
(A8)

where yz(l+z') « —1, Q,'w&o, and the ozz term does
not make a contribution, in view of (A7). Equation (A8)
simply says that the total backscattered power by the
boundary is transported without gettting any change to
an imaginary plane at z = —l assumed in the diffusion re-
gion. Here we observe that the left-hand side of (A8) can
therefore be approximated by the diffusion term (5.18a),
and also that

s~ "+"~(z = —I ~z ) =s'"+"'(.=O~z'), (A9)

being a slowly changing function of z; while, for the
right-hand side, the 0 " integration makes the contribu-
tion from the diffusion term dominant, in view of the fact
that the Q-integrated cr zz '( Q

~
n "

) provides a slowly
changing factor with respect to Q " [Eq. (3.16)].

Thus, Eq. (A8) is reduced, upon substitution of the ex-
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pression (5.18a) for J2$
' + ', to a boundary equation of

the form
the boundary conditions at z =0 and —L, respectively;
Cz is a constant given by

(2y ) '( ,'+—D B,)S" + '[z( =0)~z']

=& (,,")(a, )&s~ "+")[.(=0)~'] . (Alp)
2 (12) ~ (23) (23) ~ (12)

D
(B2)

Here, with (5.19b), use has been made of

(4m) ' J„dQ Q, P„(Q,i }(,)=(2y ) '(+ ,' D——c), ),"z

(Al 1)

and &o(2z )((), )) is defined by (5.21). Hence we directly
obtain an expression of Z" ' defined by the boundary
equation (5.24), as

( y
( ab)D —1 +g2 )

1 i2

we can set

(p" '(z)=cosh(Kz) Z" —'(KD2) 'sinh(KZ),

(B3)

(B4)

'(z)=cosh[K(z+L)]+Z' '(KD2) 'si hn[ (Kz+L)],

Hence, by using the boundary conditions (5.24), (5.28),
and a parameter ~ defined by

Z'"'=(-' —&,",") )/(1+ &,","),),
in terms of & o 22 ')o and & cr22 '), by Eqs. (5.26).

(A12)

APPENDIX B: SOLUTIONS OF THE DIFFUSION
EQUATION

and determine C~ at z =0, hence

Cz =y2[Z" [cosh(KL)+Z '(KD2 } 'sinh(KL )]

+KD2sinh(KL )+Z' 'cosh(KL )]

(B5)

(B6)
A plane-wave solution of the diffusion equation (5.15)

is given by The solutions can be written, in terms of a new variable
Y defined by

S(12+23)(z~'}=C„(")(z ) '"'(. ) (Bl)

Here z & and z & designate the larger and the smaller of z
and z', respectively, and y" '(z) and y( '(z) are solu-
tions of the homogeneous diffusion equation subjected to

KD2tanh(KL )+Z'
Y=&D2

KD2+ Z' 'tanh(KL )
(B7)

s'"+"'(0~0)=y,(z(")+Y}
—',

S" '( —L ~0) =S" '(0~0) [cosh(KL )+ (KD2 ) 'Z' 'sinh(KL ) ]

Hence, in the special case of ~=0 or y' '=A, =O, we obtain

Y~ ()
—= Y() =Z' '[1+(L /D2 )Z' ']

S(12+23)( L~p) —(y /Z(23)) Y (Z(12)+ Y )
—1

together with the relation

Z S +23)(p~p)+Z(23)s(12+23)( L~p)

(B8)

(B9)

(B10)

(Bl 1)

(B12)

Here the last relation can be generally shown by integrating Eq. (5.15) over the range 0 ~z ~ L for z'=——0 and fol-
lowed using the boundary conditions.

To derive expression (5.32b) for cr(P~' + ', we substitute (5.19b) in (5.18a) to obtain

J'$ ' + '(Q, z~Q', z')=(4rry ) '[1+3D (iQ A. —Q, ), )c][1+3D (iQ' A+Q,'8,')]S„"+ '(z~z') .

Here, using the boundary condition (5.24),

D d,'S(' + '[z=o~z'(=0)]=[D ((),' —ci, )+D c), ]S(' + )[z(=0)~z'(=0)]

Z ( 12)s ( 12+23 )(0
~
p )

in consequence of Eqs. (Bl) and (B2). Hence the substitution in (B13)and use of (B8) lead to the expression

22($
' + '(Q, z=p~(Q', z'=0)=(4') '(Z'' '+ Y) '(1+i3D2Q A+3Q, Z" ')(1+i3D Q' A+3Q,'Y)

=(y, /Z("))y„(Q, ( a, )~ [y„(Q,(a, =p) Y(Z("'+—Y)-'y„(Q, —(a, )~ ],

(B13)

(B14)

(B15}

(B16)

which yields expression (5.32b) for cr(f ' + ', directly, according to the definition (5.2a) with Eqs. (5.29), and also ex-
pression (5.32a) in consequence of (B8). As for expression (5.32c) for cr(3, ~' + ', the derivation is straightforward by us-
ing the boundary equations (5.24) and (5.28) in Eq. (B13)with z = Land z' =0. —
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