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Glass-sphere avalanches have been studied experimentally using a drum partly filled with beads
and rotating slowly () around its horizontal axis. The statistics of the avalanche characteristics
(i.e., duration D and size 8§0) have been determined as a function of the rotation speed (2, the sphere
diameter d, and the drum length /. The widths of these statistics are broad, but avalanches do not
exhibit either periodicity or 1/f noise. We conclude also that avalanches are governed by inertia
and gravity. We recall then classical results of soil mechanics; we will see that triaxial test results,
together with the so-called “critical state” of granular material and the Granta gravel model of
sandpiles will make evident and quantify the well-known effects of friction, caging, and dilatancy in
granular samples. Using these established results, especially those on the “critical” state of soil, we
will demonstrate that the maximum angle of repose of a pile may exceed the angle of friction for ini-
tially dense enough materials, but that this leads to a catastrophic event (avalanche). This critical-
state approach also allows us to relate the mean angle per avalanche to the mean avalanche dura-
tion, using an inertial process, and to predict the avalanche duration. According to our model, the
avalanche size is controlled by the difference between the real pile specific volume v and that of the
“critical” state v.; macroscopic avalanches are obtained for v <v, (i.e., a first-order process), but we
expect critical fluctuations (and probably 1/f noise) when v =v, (i.e., a second-order transition).
This theory makes a link between the theory of self-organized criticality of sandpile avalanches and
experimental data; it links also the Coulomb approach of the stability of a free surface and the dila-

tancy effect discovered by Reynolds.

I. INTRODUCTION

It is well known that an inclined free surface of a sand-
pile is still stable as far as its angle to the horizontal plane
is smaller than an angle ©,,; ©,, is called the maximum
angle of repose.! These different inclinations are allowed
by the existence of different settlements of the balance be-
tween gravity and intergranular forces (contact, cohesion,
friction, etc.). The precise value of ©,, seems to depend
on packing, grain geometry, and boundary conditions.'

As early as 1773, Coulomb? introduced a mean macro-
scopic friction coefficient M to explain these different in-
clinations of the free surface and has found that ©,, and
M should be related (M =tan6,, for noncohesive granu-
lar materials). However, this simple model neither ex-
plains the sensitivity of ©,, to the method of building the
pile,! nor predicts the existence of an avalanche process
instead of a continuous sliding-down flow, when one tilts
the pile slowly and tries to slightly exceed ©,,: it is only
at fast rotation speeds () that a continuous flow of beads
is observed experimentally; but, indeed, at low enough £2,
one observes an intermittent flow,>”® which consists of a
series of avalanches that readjust © below ©,, followed
by stoppages.

Then, Reynolds,® in 1885, discovered the concept of di-
latancy and its importance in granular motion processes:
due to a static interlocking of the grains, a noncohesive
granular material cannot flow or change shape without
dilating first. The effect of dilatancy on dissipation pro-
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cesses was investigated by Bagnold”® in 1954 and 1966.
A large part of these papers is devoted to evaluating the
loss due to grain collisions as a function of the shear flow,
packing density, and inelasticity of the collisions; howev-
er, some of Bagnold’s work, in Ref. 8, is devoted to the
intermittent motion of a bulldozed pile of noncohesive
granular material® and is based on a quasistatic analysis.
For example, Bagnold attributed the excess of friction,
which is generally observed in statics instead of dynamics
studies to a microscopic dilatancy effect so, using experi-
mental measures of the difference between friction angles
in statics and dynamics, he predicted a periodic motion
of the bulldozer.®

On the other hand, Bak, Tang, and Wiesenfeld® !!
(BTW) have recently introduced the concept of self-
organized criticality to understand the so-called 1/f
noise problem. These authors have based their approach
on a model (the BTW model) which should also describe
the intermittent flow of sand at the free surface of a sand-
pile inclined at ©,,, since one way of stating the model is
as follows:> " !! one considers a pile of noncohesive mono-
disperse spheres laying on a half horizontal plane and an
amount of independent similar spheres that are added to
the pile on its free surface, one at a time and at random.
Let us now assume that the difference of height between
two adjacent spheres at the free surface cannot be larger
than a given quantity A, (this is equivalent to defining a
maximum angle of repose ©,,); it may then occur that
the difference of height between a sphere that has just
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been added and its neighbors exceeds 4, so that the local
surface is no longer stable; when this occurs, the system
tends to restore its equilibrium through a local downhill
flow on the free surface, which is governed by a set of
simple local rearrangement rules and local flow rules (we
will not specify the rules here, since different sets may be
chosen and have been investigated® '*). One is then in-
terested in the properties of the ‘‘quasistationary” state
that is reached after adding a tremendously large number
of spheres; in particular, one is interested in knowing the
size distribution of the flow observed at the free surface in
response to adding one grain in a given location; or, one
is interested in knowing the amount of beads that fall
below the horizontal half plane when a bead is added
somewhere on the pile.

So, these authors have computed the statistics of bead
avalanches and have found a tremendously broad distri-
bution of avalanche sizes (i.e., the tail decreases as a
power law and not exponentially as one would have
thought). This result means that the size of the local sur-
face that has to be geometrically reorganized in order to
obtain a new equilibrium depends strongly on the drop-
ping location. It was then demonstrated that the BTW
model creates spontaneously self-organized critical states
leading to properties similar to those in second-order
phase transitions and characterized by scaling laws and
critical exponents.” " !! The universality classes of the
BTW model have been investigated by Kadanoff et al.'?

From an experimental point of view,3”> one observes
some fluctuations of the avalanche size around a mean
value: the width of the experimental size distribution
ranging from about half the value of the mean value. The
distribution of sizes is too broad to be considered period-
ic, as in Bagnold’s model of bulldozing® (since this model
does not predict any size fluctuation), but it is still not
broad enough to reflect a 1/f noise, as in the BTW mod-
el.>~1* So, one is faced with two alternative theoretical
solutions that contradict each other and that do not de-
scribe in its full completion the reality.

More recently, Jaéger and co-workers!? followed an ap-
proach similar to the grain inertia regime’ of Bagnold’s
calculation for the “grain inertia regime;” they found
that the losses of granular material submitted to shear
flow depend strongly on the shear rate, so that there ex-
ists a minimum of losses at a nonzero finite shear-speed
rate. They attribute the intermittency observed in
avalanche flow to the existence of this minimum and skip
completely a possible discontinuity of the friction
coefficient between statics and dynamics, as it has been
assumed by Bagnold in his specific model for bulldozing
motion.® Furthermore, this approach does not explain
the fluctuations of avalanche size.

On the other hand, more precisely, soil-mechanics spe-
cialists are commonly using a triaxial testing method!'®~2°
to characterize their granular samples; they have
classified and interpreted the main features of the
different possible behaviors of a soil as functions of the in-
itial density of this soil, which also governs its dilatancy;
furthermore, these tests show that a dilatancy effect is
sufficient to bring cohesion between grains from a
mathematical point of view, so that the denser the initial
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packing is, the more cohesive the grains seem to be, the
larger the pseudostatic friction is, and the larger the max-
imum angle of repose will be. However, these tests also
show that when dilatancy has occurred, the grains no
longer look cohesive so that the dynamic friction angle
reaches a limit value smaller than the static one.

So, faced with the intricacy of the problem due to the
numerous different theoretical approaches, we have de-
cided to pursue our experimental study of avalanches,>*
in order to determine the real basic concepts which
govern these phenomena. This paper is then devoted to
investigating, both experimentally and theoretically, the
properties of bead avalanches. The paper is structured as
follows. Section II is devoted to describing the experi-
mental techniques and the different experimental parame-
ters; for instance, we have determined the statistics of the
avalanche duration and of their intermittency as a func-
tion of the bead diameter, of the rotation speed , and of
the number of transverse bead layers. (This last point is
important in the BTW model since it determines whether
the transverse horizontal direction influences the statis-
tics and the dynamics or not; it is then a measure of the
space dimension).

Section III is concerned with experimental data and
their main interpretation; for instance, we will discuss
whether or not successive avalanches are size correlated,
what the influence of a regular lattice is, and how the
avalanche size scales as function of the pile size. We will
also show that the dynamics of the avalanche studied
here is controlled by inertia. At last, we will discuss
different finite size effects and the existence of a bistability
between the avalanche regime and the continuous-flow
regime at large rotation speeds.

In the following sections, we will compare our results
to other classical results in soil mechanics that exhibit di-
latancy; this creates the nonlinear process that explains
the avalanche process.

A major result of triaxial test studies is that any homo-
geneous sample that remains homogeneous during yield-
ing eventually reaches a constant density p. and a con-
stant friction coefficient M, independent of its initial den-
sity. This limit state is called the ‘“‘critical” state by soil-
mechanics specialists'®”1° (in phase-transition terms, this
state is obviously not a critical state and we will call it
“critical” in order to keep the same notation used in soil
mechanics). These results enabled Schofield and Wroth!”
to build their so-called Granta gravel model to describe
yielding and its evolution in noncohesive granular materi-
al; they have assumed that (i) losses are due to solid fric-
tion and are governed by a unique friction coefficient M,
(ii) strain is due to a plastic yielding only (no elastic
strain), and (iii) the “critical” state exists and is isotropic
(this last assumption, isotropy, is not valid in real cases,’
but we will still consider it valid for the sake of simplici-
ty). We will summarize the theory of Schofield and
Wroth!7 in the last part of Sec. IV. Since this theoretical
approach requires soil mechanics notation and concepts,
Sec. IV appear slightly intricate.

This is why we will derive in Sec. V a simpler theory
based on the same approach as the Granta gravel model,
but which pertains specifically to the problem of an in-
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clined free surface; this will enable us to predict many of
the experimental observations and to build a bridge be-
tween the different approaches of avalanches. In the fol-
lowing we will discuss some conclusions.

(i) If the pile is denser than the density of its ““critical”
state, p,, it must dilate before flow occurs; this brings in-
termittency with large avalanches. In this regime, no
1/f noise is observed. The system is similar to Bagnold’s
model for bulldozing, except that the density of the pile
at rest varies after each avalanche. However, the process
that creates these spontaneous fluctuations is not yet well
identified. As the density controls the difference between
the pseudostatic friction coefficient and the dynamic one
(i.e., the critical one), it also controls the difference be-
tween the largest slope ©,, of the free surface of a pile at
rest and the critical friction angle ®. According to this,
the size of the avalanche depends linearly on ©,, —®, so
that it scales as the pile size for a given initial density.
We also think that the difference between the pseudostat-
ic and dynamic friction controls the avalanche dynamics.

(ii) However, if one can control the pile density and
keep it at its critical density p,, this theory predicts the
absence of the dilatancy effect. In this case, the pile
behaves as a true noncohesive Coulomb material
governed by the friction angle alone. This system be-
comes similar to the BTW model, since it is only con-
trolled by the friction coefficient; we expect then that the
spontaneous flow at its free surface exhibits 1/f noise
when the rotation of the free surface is slow enough (i.e.,
in a case similar to the BTW model).

Due to these remarks on scaling properties of
avalanche sizes, we will argue that avalanches at a pile’s
free surface look like a first-order transition when the pile
density is larger than the critical density p. (using the
meaning of soil-mechanics specialists), since their size is
proportional to the pile size. However when the pile den-
sity approaches the critical density of soil, one may ob-
serve large size fluctuations, as observed when a system
approaches a second-order phase transition. This will al-
low us to draw a parallel between an avalanche problem
and the liquid-gas boiling transition: boiling is a first-
order phase transition if the boiling temperature T is
different from the critical temperature T, but boiling is a
second-order phase transition at 7, and exhibits critical
fluctuations. So, we think that avalanches exhibit 1/f
noise and self-organized critical behavior when the pile
density is controlled and approaches the critical state
density.

II. EXPERIMENTAL TECHNIQUES

A. Principle of the experiment

The principle of the experiment is sketched in Fig. 1: a
hollow Duralumin cylinder of radius R, =9.5 cm and of
length I rotates slowly around its horizontal axis at a con-
stant speed Q; the rotation is driven by a dc motor, the
speed of which is controlled by a microcomputer; the
cylinder is partly filled with “monodisperse” glass spheres
characterized by a mean diameter d and a distribution
width 8d of d (6d /d =0.2).
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FIG. 1. Experimental setup: E, electret microphone; M, dc
motor; R, rectifying diode and lock-in amplifier; C, drum; 7,
time constant.

When the rotation speed (2 is slow enough, the angle ©
of repose of the pile’s free surface increases continuously
until an avalanche occurs, which readjusts © below ©,,.
On the contrary, at fast (), one gets a continuous flow of
glass spheres rolling down on the free surface. We have
used the sound emitted by the beads during collisions to
detect the bead flow: an electret microphone located in
the middle of the drum detects any sound; the signal is
then rectified and demodulated by a lock-in amplifier at a
frequency corresponding to an eigenmode of the cavity;
this increases the signal-to-noise ratio; the rectified and
demodulated signal S'(z) is then digitized, stored, and an-
alyzed in a microcomputer. An example of S(¢) is given
in Fig. 2; it has been obtained in the avalanche regime
and is made up of a series of peaks, each corresponding to
an avalanche.

When the mean time between two consecutive
avalanches is much larger than the avalanche duration,
one may neglect the drum rotation during avalanches and
get the average flux (F) of spheres given by

(F)=(a—cosasina)lR},;Q , (1)

where () is the speed of rotation of the hollow cylinder of
length / and radius R, and 2a is the angle of the drum
arch on which the grains lie. (F) depends on the filling
ratio of the drum through a (a=mw for half-filled

Sound Amplitude
at 2kHz (a.u.) {

10 20 30 40

time (s)

FIG. 2. Typical sound amplitude S(#) as a function of time ¢;
each peak corresponds to an avalanche of spheres.



43 ANALYSIS OF THE STATISTICS OF SANDPILE. ..

cylinders). Thus Eq. (1) is also valid in the case of a con-
tinuous flow provided that one neglects the thickness of
the bead layer at the free surface, which constitutes the
continuous flow.

B. Sets of parameters

The different parameters that control the experiment
are the inner drum radius Ry, the drum horizontal
length I, the rotation speed (2, the sphere diameter d, and
the angle 2a, which characterizes the rate of filling of the
drum. We should also include air humidity, packing den-
sity, and electrostatic charges, but they have not been
measured nor really controlled. We hope and think that
cohesion forces are negligible in our experiment.

The ranges over which we have studied the influence of
each parameter are a=1, R, ;=9.5 cm, 2 mm=]
<32 mm,0.1°/s<Q=<10°/s, 1 mm=d <10 mm.

We shall mention that electret-microphone detection
does not allow us to study avalanches of spheres with di-
ameters smaller than 1 mm. The larger the beads, the
louder the sound emitted during collisions, and the larger
the signal-to-noise ratio. However, our results are similar
to the data published by Jaéger, Liu, and Nagel,? so we
may use these data and increase the investigated bead di-
ameter range to 0.5-10 mm or even 0.07-10 mm.

C. Method for analyzing the results

The first method for studying the statistics of
avalanches is to compute the autocorrelation function
C (1) of the signal S(¢) through

C(r)= [S(S(t+7dt . @)

A typical result is reported in Fig. 3, which has been ob-
tained with a recording time of 1000 s. The signal which
seems noisy, may be interpreted as follows.

Consider first avalanches that are equally spaced and of
equal amplitude S(z) is then a perfectly regular comb
made up of a series of teeth; the width of any S (¢) tooth
is the avalanche duration D, and the periodic distance T,
between two consecutive peaks is the time separating two

Correlation 1

function

0.6

02 ‘Wl UWW\JWh’b'WWNWNWMWNWM

50 100 150 200
t (s)

FIG. 3. Time autocorrelation function of the signal S(z).
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consecutive avalanches. Thus C(7) is a perfect comb; the
width of its teeth is proportional to the avalanche dura-
tion and the periodic time separating two C(7) teeth is
the time T',.

Consider second a series of avalanches that appear
quasiperiodically with a mean period T; and a small jitter
8T, around this mean value. In this case, C(7) will look
like a perfect comb at short times (7 <7,=T3/8T,), but
the teeth decrease in amplitude and broaden within time
7., so that C(7) reaches a constant value equal to D /T,
at long times.

According to this, Fig. 3 implies that 8T, is approxi-
mately equal to 7T'; and that D is approximately one-
fourth of T,. We interpret the long-time fluctuations of
C (1), which are large, as induced by the small number of
avalanches which are stored in the computer (approxi-
mately 100). This method then leads to a rather large un-
certainty.

However, this interpretation is oversimplified since it
does not take into account the large fluctuations of the
sound amplitude exhibited by Fig. 2. On the other hand,
it would be difficult to take these fluctuations into ac-
count since we have no theory that precisely relates the
sound amplitude S(z) at time ¢ to the flow of beads rol-
ling down at the free surface.

So, one way to improve the accuracy of our experiment
is to increase the number of stored events. This can be
done within the same computer memory size if one
neglects to treat the whole time dependence of the sound
amplitude and keeps in the memory only the times 75 (i)
and Tg(i) at which each avalanche begins and ends
(i means the ith avalanche). Thus, one may compute the
statistics of the avalanche duration D,
D (i)=Tg(i)— Tg(i), and of the time T, (i) separating two
successive avalanches, T'(i)= Ty, (i +1)— Ty g)i).
In order to do so, one has to define a threshold S, of
sound amplitude: if S(¢)<S,, there is no avalanche at
time ¢ if S(¢)>S,, an avalanche is occurring. For in-
stance, we report in Figs. 4 and 5 the preceding two
statistics, respectively. They have been obtained in a 4-
mm-length drum with 2-mm-diam spheres and a rotation
speed 1=1°30'/s, after storing 1500 avalanches.

As shown in Fig. 4, the statistics of D exhibit two
peaks, one (D=2 s) much larger than the other

avalanche
number 4
(a.u.)

3l
2
1

T

Duration (s)

FIG. 4. Typical statistics of the avalanche duration D.
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FIG. 5. Typical statistics of the delay 7', between two con-
secutive avalanches.

(D =~0.8 s); we have observed that the amplitude of the
shorter peak decreases steadily when increasing either the
threshold S, or the time constant of the lock-in amplifier
(cf. Fig. 1). Therefore we interpret this first peak as a
problem of noise: small peaks of sound are counted as in-
dividual avalanches of short duration located near a large
avalanche instead of being included in these large
avalanches. This has been confirmed by observing the
flow: no small avalanche could be observed. But because
of this noise effect, the spheres we wish to study have to
be larger than 1 mm in diameter. In the same way, we
have checked that as long as the signal-to-noise ratio of
S(t) is large, the T statistics depend neither on the S,
value nor on the way of computing T'; [i.e., neither using
the ending times T (i) nor using the beginning times
Tp(i)].

So, Fig. 4 leads to a mean avalanche duration of about
2 s and a distribution width of 1 s. Figure 5 leads to a
mean intermittency time {(7,)=~6.4 s and to a width
8T, ~3.5s. These results seem to disagree with the mod-
el of Bagnold® concerning the bulldozer motion, since the
motion is not periodic, but they disagree also with the
BTW model,’ ™ since this model predicts a long tail for
the distribution of avalanche size, which is not observed
here. Nevertheless, experimental results similar to ours
have also been obtained by others for different sizes of
beads (i.e., Jaéger, Liu, and Nagel®’). This improves the
validity of our results and demonstrates that such values
of the 8T, /T, ratio are very common.

Thus, Figs. 4 and 5 demonstrate that different
avalanche sizes may occur. One may then ask if there is
any size correlation between two consecutive avalanches.
One way to proceed is to determine the statistics of the
time Ty separating N +1 consecutive avalanches. The
mean value { Ty ) of Ty is always N{T,) and does not
depend on correlation, but this is no longer true for the
width 8Ty of the distribution: if avalanches are indepen-
dent events, one has

8TH=NS8T? . (3a)

However, if there are series of large avalanches and then
series of small avalanches, one has

8T:>NS8T? . (3b)
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If a large avalanche is more likely to occur after a small
one and a small one after a large one so that we have two
intertwined periodic combs of avalanches, the first one
made up of large avalanches and the second one of small
avalanches, one gets

8T2 <N 8T? . (3c)

So, by measuring 8Ty as a function of N one may deter-
mine if size correlations do exist between consecutive
avalanches or not.

III. EXPERIMENTAL DATA AND THEIR ANALYSIS

We report exclusively in this section the experimental
results obtained with the second method. So, the experi-
ments have been consisting of storing in the computer
memory the beginning and ending times of a series of
1500 successive avalanches for each set of parameters
(Q,1,d); the parameter range was given in Sec. II B.

A. No evidence for size correlation
between two avalanches running

We have investigated the correlations between succes-
sive avalanches using the method described in Sec. II.
We report in Fig. 6 a typical example of the variations of
8Ty as a function of N for N =1,2,4,8,16,32. In the lim-
it of the experimental uncertainty, no size correlation has
been found. However, a precise analysis of the width re-
cession for N =1 and 2 is difficult due to the existence of
the first peak in Fig. 4.

One can perhaps understand the lack of correlation us-
ing Fig. 7, which displays the successive volumes in-
volved in successive avalanches. As spheres flow down
from the top to the bottom of the pile, the beginning of
the avalanches occurs more likely on the top part of the
pile and the avalanches end on the bottom part of it,
since the beads are partly stopped by the drum wall. This
process implies that the beads do not have enough energy
to modify strongly the structure of the underlayer on
which top beads were reposing. So, the next avalanche
will more likely start on a part of the pile, the structure of

Number of
events (a.u.)5 L "

4 3
3]

10
TN/N (s)

FIG. 6. Typical statistics of the time Ty separating N +1
avalanches running in the reduced time unit T /N. The regres-
sion of the width as a function of N follows Eq. (3a) within the
experimental uncertainty, which indicates uncorrelated events.
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FIG. 7. The geometry of the pile at the ith avalanche
( ), at the (i-+1)th avalanche (— — —), and at the
(i +2)th avalanche (—- —. —- ).

which has not been modified by the previous avalanche;
the process that initiates this next avalanche depends on
the structure of the top of the pile, which has not been
built during the previous avalanche but during a whole
set of avalanches, especially those that occurred earlier at
time t=2a/Q. This means that the 60 previous
avalanches are important for the pile structure (according
to 2a~150° and using a mean angle of rotation per
avalanche of about 2.5°, as will be determined later).

Another process that amplifies this lack of correlation,
which is probably the most important process, is related
to the dilatancy property of noncohesive granular materi-
al. As we have already mentioned in the Introduction
and as we will see in more detail in Secs. IV and V, a pile
must dilate first before yielding occurs, so that the denser
the pile, the stronger at yield it will be. This is the basis
of a nonlinear behavior: assume that the pile begins dilat-
ing in a nonuniform manner, then it will become looser in
some location and yielding will begin there. This non-
linear effect is responsible for the phenomon commonly
observed by soil-mechanics specialists called localization
of yieldings, one observes often a condensation of yield-
ings on surfaces and a creation of localized surfaces of
yielding.2! =24

This localization process contributes to understanding
the lack of correlation in the avalanche case. It is only
the structure of the top layer that actually moves which
is modified and not the underlayer, so that the structure
of the uppermost underlayer of the pile is more or less
preserved by the avalanche.

B. Statistics of avalanche duration:
evidence for an inertial mechanism

We have investigated the dependences of the avalanche
duration D as functions of the rotation speed (Q, of the
drum length I, and of the sphere diameter d by drawing
the probability law of the avalanche duration D for each
set of parameters (,/,d). We will consider in this sec-
tion the results obtained in the small-Q range only, i.e.,
far away from the transition to the continuous-flow re-
gime; Sec. III E will be devoted to discussion of this last
problem.
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A typical distribution of avalanche durations is given
in Fig. 4, the characteristics of which have been discussed
in Sec. IIC. Owing to this we have characterized the
curves by the duration D, of the more probable
avalanche (i.e., the duration corresponding to the max-
imum of the second largest peak) and by the width w of
this second peak.

We report in Fig. 8 the values of D, averaged over
different Q, for different drum lengths / and as functions
of the sphere diameter d. Obviously, Fig. 8 exhibits large
fluctuations which we do not understand, since the large
number (1500) of avalanches taken into account in each
datum should give better precision. These fluctuations
are likely induced by the uncontrolled variations of a hid-
den parameter, such as the air humidity, or they may
only be due to long-range correlations, the existence of
which has been already discussed.

Nevertheless, we can conclude from Fig. 8 that D is
more or less independent of d and / and that the mean
value (D, ) of D, is 1.4 s. We have also computed for
each set of parameters the ratio of w /D), and have found
that its value is independent of the set (d,Q,/), within the
experimental uncertainty:

w/{D)=~0.8 . (4)

Moreover, the data published by Jaéger, Liu, and
Nagel,” which concern other sphere sizes (d =0.07 and
0.5 mm), agree with Eq. (4) and with the (D,,) value;
this extends the validity range of these behaviors. This is
surprising since each avalanche is composed of a few tens
or hundreds of spheres in most of our experimental cases,
but with more than a few thousands in the case of Jaéger,
Liu, and Nagel case. These experimental observations
hold in the “microscopic” limit as well as in the “mesos-
copic” one.

One may now try to write the mean duration (D,,) as
a function f (R y,d, 1,g,Q) of the different parameters (g
is the gravity). The use of dimension analysis leads to the
equation

(D)=A(R,/8)""* (@—0) (5)
Dm

(s)

41

3 o

2l . @

-3
s 3

20 2 22 23 04 (mm

FIG. 8. Small-Q regime. Duration D,, of the most probable
avalanche as a function of the sphere diameter d and for
different drum lengths /. (+, /=2 mm; A, /=4 mm; O, /=8
mm; [, /=16 mm; *, /=32 mm.)
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where A is a nondimensional constant; A4 is approximate-
ly 17. Clearly, Eq. (5) indicates an inertial regime. In
Sec. IV and V, we will develop a theoretical argument
that supports this result and give an approximate expres-
sion for A, based on the existence of a mean angle per
avalanche.

C. Statistics of the intermittency between two avalanches:
Evidence for a mean angle per avalanche in the inertial regime

In this section, we will still be exclusively concerned
with the small-Q regime. For each set (d,/,Q) of parame-
ters, we have written the statistics of the time T'; separat-
ing two consecutive avalanches (a typical result of which
is given in Fig. 5), and have computed the width-to-
mean-value ratios 8T, /(T ); we have found it to be in-
dependent of the (Q,/,d) set:

8T1/<T1>z0.4. (6)

Furthermore (in the {1—0 regime), the T'; statistics are
always similar to those reported in Fig. 5 so that they
never exhibit any long tail in both wings. This clearly
means that one can speak of a typical avalanche size
(Va1 and of a typical size fluctuation 8V,

aval*

(Vv ) =(a—sinacosa)R 2, (T, ) , (7a)
8V yya =(a —sina cosa)R 2, Q8T . (7b)
Combining Egs. (6) and (7) leads to

8V ava1 /< Vava1 ) =0.4. We have not determined higher-
order momenta of Fig. 5, due to the lack of experimental
precision; but it is obvious that the third-order momen-
tum is small, since the curve is quasisymmetric around its
mean value. So, we may conclude that our results exhibit
neither a 1/f noise distribution nor a perfect periodicity.
These results are then compatible neither with the self-
organized criticality approach (no 1/f noise), nor with
the theory of Bagnold (no perfect periodicity).

We have also measured the mean time T ) separating
two consecutive avalanches for different  and found
that it varies as 1/Q (in the Q—0 regime). This means
that we can speak of a mean angle {86 ) of the drum ro-
tation between two successive avalanches.

We have studied the variations of (80 ) as a function
of ] and d and have found that it may be written as

(60)=2.5+G(x) (Q—0) (8a)
with
x=l/d , (8b)

where G (x =1/d) is a function and is sketched in Fig.
9(c). As a matter of fact, one way of determining and
visualizing this relationship is to plot the different experi-
mental values of (80 ) as a function of different abscissas
u;, as we have done in Fig. 9. One expects the points to
be dispersed at random in the ({80 ),u,) plane if there is
no relationship between (80) and u;; but one expects
the points to be aligned on some curve exhibiting noise,
for an appropriate value of u;.

So, according to Fig. 9, the appropriate parameter is
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x =1/d, and according to Fig. 9(c), G (x) is always posi-
tive and tends quickly to O as soon as x is larger than
x,=4; G(x) may be as large as 7° for small values of x
(x =1). The physical meaning of the variations of G (x)
will be discussed in Sec. III D.

What we want to emphasize here is that the asymptotic
value of (80 ) at large x is 2.5% this is also the value ob-
tained by Jaéger, Liu, and Nagel5 for slightly smaller
glass spheres (diameter of 0.54 mm). So, for drums much
thicker than one bead in diameter (i.e., x >>x_), (80) is
independent of / and Q, and (80 ) may actually be con-
sidered as the true mean angle per avalanche: in particu-
lar, this means that the number N, of beads per
avalanche increases linearly with increasing / and de-
creases as (1/d)> when increasing the bead diameter d
(within the limit of our experimental precision).

D. Influence of packing in the avalanche characteristics:
2D order — 3D disorder crossover

As we have already mentioned in the preceding para-
graphs, we have found experimentally that Q(7T,) is a
constant so that we may speak of a mean angle per
avalanche (80 ) =Q( T, ); we have also found that {80 )
data obey Eq. (8), which means that they depend only on
the ratio (x =1/d) of the cylinder length / to the sphere
diameter d. x is then the number of transverse vertical
layers of beads that are contained by the drum. We have
determined that (80 ) reaches an asymptotic value (2.5°)
as soon as x =//d is larger than a characteristic value
x,=4. So, as soon as the length of the drum contains
more than four vertical layers of beads parallel to the
vertical surfaces of the drum, the avalanches reach their
3D characteristics.

Let us now discuss the physical meaning of G (x) and
try to prove that G (x) reflects the change of the packing
characteristics between a two-dimensional sample and a
three-dimensional one.?’

Let us first remark that trying to build a dense packing
of spheres by only maximizing its density at a local scale
leads first to an ensemble of hexagons in 2D space; trying
now to get a local dense packing of this ensemble of hexa-
gons leads to an ensemble of larger hexagons and the
iteration of this procedure leads eventually to the well-
known triangular lattice. Unfortunately, the same itera-
tive procedure of packing generates a disordered struc-
ture in a 3D space: the first step leads to an ensemble of
tetrahedras and the second one to the packing together of
this ensemble of tetrahedras (instead of hexagons), for
which it is known that the densest packing cannot com-
pletely fill the 3D space®® and always leads to the ex-
istence of voids in a large proportion. This 3D packing
procedure creates in general lacunae at random, which
explains the existence of a great number of defects in the
structure. (However, one can obtain a 3D lattice struc-
ture, but this requires a very careful packing procedure
or the use of long-range forces as electric forces.)

It is indeed commonly observed that a 2D packing of
monodisperse spheres or cylinders exhibits a regular hex-
agonal lattice structure and that a 3D one is quite disor-
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dered. Furthermore, it is also commonly observed that
the insertion of a flat surface in a disordered 3D packing
reorganizes this random structure into an ordered tri-
angular lattice near the flat surface. Moreover, it has also
been measured that such a flat surface no longer
influences the 3D disordered structure after a thickness
of two or three layers,? so that x, =4 may correspond to
twice this number of layers.

So, it seems to us that (in the small-Q limit) the large
values of (80) observed for small x =I/d values are
likely induced by a strong influence of the packing
geometry on the avalanche process. Therefore, the varia-
tions of {80 ) versus //d =x at small x reflect an order-
to-disorder transition and not a real two-dimensional to
three-dimensional crossover behavior. However, these
results could also be induced by a change of density or a
change of pore connectivity between the 2D and 3D
packings.

Nevertheless, we think that the important quantity is
the so-called dilatancy,®!®~!® which is an empirical quan-
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tity that varies from material to material and from pack-
ing to packing. This is supported by the similarity of be-
havior we have found between our results and classical
results on yieldings of soil, as we will argue and develop
in the next sections. For instance, soil-mechanics special-
ists know how to get a 2D disordered packing of po-
lydisperse cylinders that behaves as a 3D packing of
spheres or grains; this is the so-called Schneebeli materi-
al.?® It would be interesting to determine the avalanche
characteristics in such a medium and to compare them to
our data.

E. Crossover region between the intermittent
flow regime and the continuous-flow regime:
Bistability and finite-size effects

Our experimental data that concern the avalanche
statistics in the fast-Q limit have exhibited in a few cases
large fluctuations from one series of experiment to anoth-
er, as if our results were depending on some hidden and
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FIG. 9. Small-Q limit. Plot of the mean angle of rotation (80) per avalanche vs (a) the drum length [, vs (b) the sphere diameter
d,vs(c)l/d,and vs (d) I /d?. (+,]=2mm; A, [=4 mm; O, /=8 mm; 00, /=16 mm; *, /=32 mm.)
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uncontrolled parameter. Therefore it seems to us that
much more work is needed to elucidate the different pos-
sible behaviors and their range of observation in the
large-Q limit. But now we will try to sketch a few ideas
and features.

First, we have always observed that the mean angle per
avalanche (8©) always increased when € increased;
most of the time, the increase was linear with , until the
measure was no longer possible since the system had
reached the continuous-flow regime. However, in a few
cases that were always concerned with small / /d values
(I/d =1 or 2), we observed a divergence of this mean an-
gle (60©) when Q approached a well-defined .. When
this divergence was observable, the statistics of the
avalanche duration D and of the time T'; separating two
running avalanches were quite similar: They contained a
large peak at short time followed by a long tail. The
characteristics of the peak were approximately the same
as the characteristics of the principal peak of Fig. 4. The
long tail has an amplitude of about 0.2 times the ampli-
tude of the principal peak and it spreads over a charac-
teristic time that drastically depends on . We explain
the similarity of the two statistics (on D and on T) by
the fact that the flow is more or less continuous with er-
ratic stoppages, so that the real avalanche duration lies
very near the time between the beginning of two
avalanches.

However, this result seems to us rather surprising since
we have also obtained that the avalanche-continuous-
flow transition exhibits a bistability that is observed
within a precise range of {):

0.,<02<Q,, (9a)
with

Q.=0.50,, (9b)
and

Q,=~1.6/s=~(80)/D,, . (9c)

This means that when the rotation speed ) lies between
these two extreme values ., and (.,, one may observe
either a continuous flow or a series of avalanches, and
one may also observe a change of flow regime when hit-
ting the drum. Furthermore, if one starts at Q=0 and
begins increasing () slowly and continuously (without hit-
ting the drum), one observes the avalanche regime until
Q reaches (1,; this regime then suddenly becomes un-
stale and a continuous flow is then observed at larger Q.
Similarly, one observes continuous flow until Q=Q_
when one continuously decreases ) from a value faster
than (_,, but below (1., one can only observe a series of
avalanches.

This hysteresis loop [Eq. (9)] is the signature of a first-
order transition.?’” The process which governs it is not
yet determined. Nevertheless, this hysteresis loop shall
also be observed for any size of spheres as long as no
finite-size effect occur; this explains why we have not ob-
served any divergence of the avalanche duration D and of
the mean angle (80 ) between two avalanches in most
experimental cases. But we may also conclude that the
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divergences of D and (80 ) obtained in a few cases are
likely due to an enhancement of fluctuation effects which
reduce the first-order transition to a second-order one.
As this reduction to a second-order transition is only ob-
served at small enough / /d ratios, it then reveals either a
change between 2D and 3D physics, or it may be simply
induced by a finite-size effect. Considering the second hy-
pothesis (finite-size effect) and taking into account the
2.5° per avalanche, the sphere diameter d =2 mm, the
drum radius R_;~100 mm, and the drum length / =4
mm lead to an avalanche size of 100 spheres. Therefore,
100 beads is the maximum size where finite-size effects
may be observed.

We cannot finish this section without quoting two oth-
er important works that reveal perhaps some other
finite-size effects. The first work concerns the results ob-
tained by Fauve, Douady, and Laroche?® in much longer
cylinders; they found that their series of avalanches be-
come more periodic at large (2, so that the distribution of
T, becomes more regular. Furthermore, they observed a
transverse propagation of their avalanches along the hor-
izontal direction of the pile’s free surface; this obviously
means the existence of a transverse horizontal coupling of
flows. As these effects have not been observed with our
setup, they are likely to reveal another finite-size effect in
our experiment.

Recently a 1/f noise has been recorded for a flow of
sand at a free surface of a finite conic sandpile;?° this 1/f
noise disappears when the pile height increases. We
think that this 1/f noise is due to the occurrence of a
quantification effect that is induced by a height A of the
pile that is too small compared to the sphere diameter d.
We consider a finite conic pile and label © the angle of
the cone surface to the horizontal plane; this angle © can-
not be determined with better accuracy than
80, =d sin© /h. Hence, if this §0, becomes larger than
the mean variation (80) of the surface angle after the
avalanche (i.e., 2.5°=(80) >86,), we may expect that
(80) no longer has any physical meaning, so that the
system behaves in a different manner. We think that the
1/f noise reported in Ref. 29 is due to such finite-size
effects, and perhaps quantification makes the system obey
the BTW model. In our experimental case
h/sin©=2R ., so that our experimental (86 ) values
have been always larger than 86, ~d /(2R ), even when
we have used 10-mm-diam spheres due to the larger
values of (80 ) at small I /d ratios.

IV. CLASSICAL TRIAXIAL TEST RESULTS
IN SOIL MECHANICS

To interpret these avalanche results in more detail, let
us introduce the triaxial testing method of soil mechan-
ics,'®" 18 and describe the behavior this method may pre-

dict or reveal.

A. Triaxial test method

A triaxial cell allows us to apply to a granular sample
three different stresses (0;,0,,0;) in the three different
principal directions (x,,x,,x;) perpendicular to one
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another. The experiment consists of varying any of these
stresses continuously, keeping the others constant, and
measuring the three strains (g, €,,€;) induced along these
three principal directions. However, most of the experi-
mental devices use a cylindrical geometry, so if the sam-
ple is kept homogeneous all along the test, the axial sym-
metry is preserved and one has 0,=0; and g,=¢;. We
will only consider here such an axial setup.

In this case, five parameters are important: p, g, q/p,
€g> and €,. One defines the mean stress as
p =(o,+20,)/3, which is a quantity similar to the pres-
sure in a liquid; the deviatoric stress ¢ =o;—o03 is the
shearing force; the deviatoric level g /p is the shearing
level. In a granular material, we expect that this devia-
toric level g /p cannot overpass a given value that is relat-
ed to the friction coefficient in the classical Coulomb ap-
proach. The deviatoric strain e, =2(g,;—¢3)/3 controls
more or less the sample contraction or extension along
x,; at last, the volumetric strain g, =¢;+2¢; measures
the change of volume of the sample. A typical setup is
sketched in Fig. 10. A plastic bag of cylindrical shape
contains the granular material. The top and bottom sur-
faces of the bag are made up of two rigid plates that act
as pistons, so that one may add some weight g on the top
piston. This bag is immersed in a container full of liquid,
the pressure of which p is controlled and may be varied.
€, is given by the change of the volume of liquid in the
container and ¢, is obtained by measuring the variation of

c
3 q=0,-C,

p=(0‘1 +20‘3)/3 q=G,-0;

8V=€1 +283 €q=€1-Ev/3

FIG. 10. Sketch of a triaxial cell. A cylindrical plastic bag is
closed by two horizontal flat pistons and contains the granular
material under investigation. It is immersed in a container full
of liquid. One controls the liquid pressure p and the weight ¢
added on the upper piston. One measures then the change €; of
distance between the two pistons and the amount €, of liquid
which flows from the container as function of g, p, or g /p.
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distance between the two pistons. One may then com-
pute g, from the ¢, and ¢, values (¢,=¢,—¢,/3). We
will use the classic sign convention of soil-mechanics spe-
cialists: €, will be chosen as positive when the system
contracts and when liquid flows into the container.

Triaxial extension or compression tests may be carried
out by keeping constant either the stress rate do,/dt or
the strain rate deg,/dt. But these rates are kept
sufficiently small so that the sample stays in a quasistatic
equilibrium at any time. During an experiment, one mea-
sures p, ¢, €;, and g, as functions of time ¢z. One then
plots the deviatoric stress ratio g /p and the volumetric
strain ¢, as functions of the deviatoric strain
g,=¢€;—¢,/3.

B. Typical experimental results obtained with a triaxial cell

We report in Fig. 11 three typical behaviors of granu-
lar samples obtained with a triaxial cell. Each behavior is
characterized by a set of two curves, i.e., g /p versus €g
and g, versus g,; they have been obtained by keeping
small and constant the de,/dt rate. They concern the
same material initially packed in three different ways (the
solid lines correspond to an initial very dense packing,
the dashed lines to an initially very loose material, and
the dotted lines to an intermediate density). Further-
more, the grains of this material may be considered per-
fectly rigid so that we are only testing perfect plastic dis-
torsions.

The q/p versus g, variations of Fig. 11 indicate that
the deviatoric stress ratio g /p tends toward the same lim-
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FIG. 11. Three typical behaviors for the same material

packed in three different ways, as one finds when one uses a tri-
axial cell ( , dense packing; — — —, loose packing;
—.—-—., intermediate packing density). p (and gq) is the mean
(and deviatoric) stress, €, is the strain in direction 1, €, is the
volume decrease, and €, =€;—¢€,/3.
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it value M at large ¢, strains, independent of the initial
density of the packing. Furthermore, a systematic inves-
tigation has demonstrated that M is independent of the
mean stress p; it depends only on the nature of the ma-
terial and may then be considered as an intrinsic parame-
ter which corresponds to the macroscopic friction
coefficient. Soil-mechanics specialists say that the materi-
al is in its “critical” state when the material has yielded
and when its g /p value has reached M; it appears also
that the density p, of the pile in its critical state depends
only on the value of the mean stress p.

However, the way the material reaches the critical
state depends on the initial packing density. Figure 11
shows that when the initial sample is very loose, the ratio
q /p increases monotonically and the material is always
contracting (as one can see from the g, versus ¢, varia-
tions). On the contrary, for an initial sufficiently dense
packing, the deviatoric stress ratio g /p begins increasing,
crosses the g /p =M line, then reaches a maximum gq,,/p
which depends on the initial packing density and then de-
creases before reaching the M value asymptotically. If
one looks at the same time at variations of the volumetric
strain €, (cf. Fig. 11), one sees that the material is first
contracting (g, increases within our sign convention), un-
til the g /p ratio crosses the g /p =M horizontal line. Itis
then dilatant since it reaches an asymptotic value. Look-
ing now at the density p, of the material at this final state
(i.e., the so-called soil-mechanics “critical” state!”), one
finds experimentally that it is independent of the initial
density, so that the different asymptotic values of ¢, are
only reflecting the differences of the volume change be-
tween the initial and the “critical” states, which depends
only on the initial density.

At this stage of the paper, we want to emphasize two
points. First, we have considered a material with rigid
grains, such as sand. The elastic strain of this material is
then negligible so that most of the strain in Fig. 11 in-
volves plastic irreversible yielding. It might then occur
(and it does) that under some special test procedure a
finite value of the deviatoric stress ratio q,/p is required
to get a small yielding. Thus, the curves in Fig. 11 may
contain a segment of the vertical axis from O to the ordi-
nate g, /p. For instance, this is observed when the test is
carried out after a first loading-unloading cycle or when
the material is built in a given hardening way.

The second point concerns the instability of a packing
which has reached its g,, /p maximum value and has been
submitted to a do,/dt =const triaxial test: a slight in-
crease of g is no longer possible at this maximum of ¢ and
a microscopic de, response is impossible too, so that the
packing is unstable and a macroscopic motion, which is
often a failure, occurs. This is the rather large difference
between triaxial tests carried out under strain- and
stress-rate control.

Before we give a theoretical basis for understanding
these results let us return briefly to the problem of bead
avalanches and to its physical analogy with the triaxial
test results. For instance, one is interested in the instabil-
ity of the inclined free surface of a pile in the avalanche
problem. It is obvious that the mean stress p and the de-
viatoric stress g of a point of the pile both tend toward 0
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when the distance of this point to the free surface ap-
proaches 0, since these two quantities p and g depend on
the weight and height of the matter above the considered
point. However, it is also obvious that shearing exists
near this free surface so that g /p is different from O near
the free surface and tends toward a given limit that is
controlled by the angle © of inclination of the free sur-
face: the larger © is, the larger the g /p ratio will be. On
the other hand, we have sketched in Fig. 1 a typical setup
for the avalanche study. This setup works by controlling
the rotation speed Q) =d© /dr so that it also controls the
rate of increase d (g /p) /dt of the deviatoric stress ratio.

So, let us assume that the initial packing is initially
dense enough so that ¢ /p may exceed M (p>p,). Ac-
cording to Fig. 11, only very small yielding will occur as
far as g /p as not reached its maximum value g,,/p, but a
macroscopic event (the avalanche) will occur just when
q /p tries to exceed g,,/p. We then interpret the angle
Op at which the avalanche begins as the value at which
g/p has just reached its maximum value g,,/p, for a
given density; the avalanche that occurs after may only
be stopped when q /p reaches a value smaller than M. So
the avalanche stops at an angle O at most equal to P,
where we have labeled ® the angle of the free surface
which corresponds to ¢ /p =M. ® is Coulomb’s angle of
friction.

C. The Granta gravel (Ref. 30) model and triaxial cell

In the preceding section, we saw that any granular ma-
terial submitted to large plastic yielding and kept homo-
geneous reaches a state where the stress-strain law no
longer depends on the initial state. This state has been
called the ““critical” state of soil, and it is characterized
by its specific volume v, and its internal friction angle ®.
It has been found experimentally that v, is independent
of the initial specific volume v of the soil but depends on
the mean stress p at which yielding occurs. Remarkably,
@ has been found to be independent of the initial state, of
v., and of p, so that it may be considered as an intrinsic
parameter playing the part of a perfect internal friction
angle in the manner described by Coulomb.

This has led Schofield and Wroth!” to introduce a sim-
ple model to describe drained noncohesive granular ma-
terials: their so-called “Granta gravel” model assumes
that the medium is made up of rigid grains and that it is
either rigid or submitted to a plastic strain (no elastic
strain). Furthermore, they have assumed that this Gran-
ta gravel reaches a “critical” state at large yieldings
which is isotropic and defined by the laws

(10a)
(10b)

9.=Mp ,
v.=T'—plnp ,

where M, T', and p are adjustable parameters which de-
pend only on the material nature. In Sec. IV A (cf. Fig.
10), we have defined the deviatoric stress as ¢ =0 ,—0,
the mean stress as p =(o; +203)/3, the volumetric strain
as g,=g;+2¢;, and the distortional strain as g,
=2(g;—¢€3)/3. 0,,0,,0; are the three principal stresses

and €y, €,,€; are the three principle strains of the material.
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The index c labels the “critical” state; g, and v, are then
the deviatoric stress and the specific volume of the “criti-
cal” state of the Granta gravel model at mean stress p.

Taking into account these assumptions, Schofield and
Wroth!” have calculated the plastic yield curve of Granta
gravel as follows. Consider a Granta gravel at a given
specific volume v; apply to it a stress so that it stays at the
limit of stability (i.e., without exhibiting strain). It is then
characterized by the set (p,q,e,=0, g,=0). Apply to it
now a slight increment of stress (8p,dq) so that it yields
to (8¢,,8¢, ). The yielding is stable if!l7

op 8¢, +8q 8e, 20, (11a)

but the total energy that is released is dissipated through
friction, so that we have

pde,+gq 88q=Mp|88q| . (11b)

We will now focus on what is occurring in a triaxial con-
traction test, i.e., the case of a length reduction. In such
a case one has 8¢, >0 for soil-mechanics specialists. At
the limit of stability [i.e., Eq. (11a)=0], Eq. (11) leads to
op b¢e, +8q 6e,=0, (12a)
8¢, =(M —q/p)de, . (12b)

Therefore, combining the two preceding equations leads
to
dq _
dp

mM-—4 . (13)
p

The integration of Eq. (13) leads to the family of yield
surfaces (py,qy)

qy/(Mpy)+In(py)=const=In(p,)+1, (14)

where the constant of integration (const) has been rewrit-
ten as In(p,)+1. A sketch of the yield curve is given in
Fig. 12. The maximum value of p is p), =ep,. gy is max-
imum at py=p, and its maximum value is Mp,. This
point (gy=Mp,, py =p, ) is the critical state (¢, p =p, ),
since there is no volume change according to Eq. (12b).
We will see later that it is an attractive point, but let us
first demonstrate that yielding occurs when the (p,q) tra-
jectory crosses the yield curve from the inner part to the
outer part of the plane (i.e., stable configurations are con-

Ay

9c=Mpy

Pu ®Py Py

FIG. 12. The yield curve (py,qy) of the Granta gravel model,
i.e., the set of (p,q) points of the pg plane for which the Granta
gravel model becomes unstable. The amplitude p, is a parame-
ter which depends on the Granta gravel density (the denser it is,
the larger p, is).
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tained between the p axis and the yield curve, which we
call the inner part of the plane). In the case of length
reduction (88q>0), yielding occurs when Eq. (11a) is
strictly positive:

8p e, +8g 8, >0 . (15)

Yielding also obeys the dissipation equation [Eq. (11b)]
which implies that 6e,=(M —q/p)de,. Replacing 8¢,
by (M —q/p)8e, in the inequality (15) and remembering
that 8¢, is positive lead to

8p (M —q/p)+8q >0 . (16)

Equation (16) shows what we wanted to prove: that
yielding occurs when the (p,q) trajectory crosses the yield
curve from the inner part to the outer part of the plane,
in the case of a length reduction.

We still consider a length reduction and a state on the
yielding surface (py,qy). According to Eq. (11b), which
is the equation that governs dissipation processes, one has

SEUZ(M_QY/py)aﬁq . (17)

As g, is positive when the specific volume decreases, Eq.
(17) leads to three different variations of the specific
volume v of the material depending on the value of py
compared to p,,:

(i) v increases when py <p, and gy > Mpy ;
(ii) v does not change when py=p, and gy=Mpy ;
(iii) v decreases when py>p, and gy <Mpy .

Therefore the point (py=p,, gy =Mp,) is the critical
state. Its specific volume is given by Eq. (10b):
v.=I—pln(p,). We will say that case (i) is the case of a
material which is strong at yield since it exhibits a pseu-
dofriction coefficient M’ =gqy /py larger than M. This is
due to the fact that the material has to dilate when yield-
ing occurs. Case (ii) is the “critical” state case; the sys-
tem exhibits its real friction coefficient M and it neither
dilates nor contracts. Case (iii) corresponds to a material
which contracts when it yields. It is said to be weak at
yield since it exhibits a pseudofriction coefficient
M'=gqy /py smaller than the real one.

The yield curve that corresponds to Eq. (14) has been
obtained for a given material characterized by its specific
volume v;. So, Eq. (14) is the set of points (py,qy) which
is at the limit of stability for this material. We take this
material and apply to it a stress characterized by p =p,
and ¢g=0. We then increase g and keep p constant. Ac-
cording to Fig. 12, the material will not yield till
qg =Mp,, i.e., till it reaches its “critical” state. v, is then
related to p, by Eq. (10b). One gets

(18a)
(18b)

pu.=(C—v)/u,
q9.=Mp, ,

and the yield curve is then completely determined by v;.
Consider now the same material at a new specific

volume v,. Its yield curve will be also expressed by Eq.

(14), but with a different constant p,=(T—v,)/u. The
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two yield curves then have the same shapes; they both
start at the origin (py =0, gy =0); their ¢ maxima have
the respective  coordinates (p,,q.=Mp,) and
(p.,q9.=Mp, ). Their p maxima are, respectively, (ep,,0)
and (ep,,0). These two curves do not cross each other
and are tangent at the origin. The larger curve delimits a
surface with the horizontal axis which contains the other
curve. We will call the larger curve the outer curve and
the smaller curve the inner curve. They correspond, re-
spectively, to the denser medium and to the looser medi-
um, according to Eq. (18).

One may now consider a whole set of the same materi-
al at different specific volumes and conclude that this ma-
terial is characterized by a whole set of ‘“‘concentric”
yield curves which obey Eq. (14). The larger the yield
curve, the denser the material.

Consider a material of a given specific volume v. This
defines p,,, according to Eq. (18). Apply to this medium a
mean stress p larger than p, so that the medium is called
“weak at yield.” Then increase g continuously until
yielding occurs. When the material begins yielding, it
also contracts itself due to Eq. (17) so that it will become
denser and its new yielding curve will be outside the last
one. Thus, this means that an increase of g is required to
get a new yielding; the medium is stable and the transfor-
mation stops when achieved. Consider now the same ma-
terial which is “strong at yield” (p <p,) and increase g
until yielding occurs. In this case, yielding induces dila-
tancy, according to Eq. (17), so that the material evolves
and tries getting a new yield curve which will be inside
the preceding one. This means that yielding will still con-
tinue as far as ¢ is kept constant and is not reduced
quickly. This case eventually leads to a macroscopic
event and the only way to prevent such a macroscopic
yielding is to control precisely the strain rate.

These results may be summarized in the same manner
as the experimental triaxial test results. We report then
in Fig. 13 the three typical results Schofield and Wroth!”

q/p 4
(a.u.) r

8\, {V

FIG. 13. The three typical behaviors of the Granta gravel
model when it is submitted to a triaxial test. , dense pack-
ing; — — —, loose packing; —+—-—- , the Granta gravel model
at critical density. p (and g) is the mean (and deviatoric) stress.
€, is the strain in direction x,, €, is the volume decrease, and
€,=€—¢€,/3.
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have predicted by applying their Granta gravel model.
We have plotted the g /p ratio as a function of €., and ¢,
as a function of €g5 for a Granta gravel model with three
different densities. Indeed, these theoretical curves com-
pare well to experimental data (Fig. 11).

V. RETURN TO AVALANCHES USING GRANTA
GRAVEL MODEL

We reported in Sec. IV typical experimental results ob-
tained with a triaxial cell on noncohesive soils and the
way soil-mechanics specialists have explained these re-
sults. Indeed, their interpretation is not only in complete
agreement with the pioneering works of Coulomb? and
Reynolds,6 but it links them together within a unified
scheme where the effect of dilatancy is taken into account
and where losses have been assumed to depend exclusive-
ly on solid friction, characterized by a unique friction
coefficient characterized by M. The slight differences be-
tween the experimental results and the model may be at-
tributed to the existence of stress-induced anisotropy in
real systems, the effect of which has been neglected in the
model for the sake of simplicity.

However, even as it is (i.e., under the isotropy assump-
tion), the model may look slightly intricate due to the
large amount of specific notation which has been intro-
duced in order to keep it general and to describe any kind
of yielding. At this stage of the paper, it is worth recal-
ling that a triaxial test looks like a bulldozing problem
where the earth is loaded on top. So, even if bulldozing
(and triaxial test) is a simple experiment, it remains more
intricate than the problem of the stability of an inclined
free surface. For instance, Coulomb? had already demon-
strated that bulldozing exhibits two different inclinations
of the sliding plane depending on whether the bulldozer
is pushing the earth forwards or if it moves backward-
pushed by the falling earth. This is why most of our dis-
cussion in Sec. IV and most of the equations derived
there are only valid in a contraction triaxial test, or in the
case of a backward motion of a bulldozer pushed by a pile
of earth submitted to a vertical loading. Our theoretical
approach of Sec. IV completes the Bagnold approach of
the bulldozing problem.® It especially quantifies the effect
of the pile density on the periodicity of the motion and
relates it to the mean stress applied to the pile.

Thus, the problem of the stability of an inclined free
surface is conceptually simpler than the bulldozing prob-
lem, since there is only one way of sliding. It is then
worthwhile to derive a theory simpler than the general
one reported in Sec. IV, which describes the avalanche
problem.

A. Granta gravel (Ref. 30) model of the stability
of an inclined free surface: dilatancy effects
in the avalanche process

In this paper, we want to apply the Granta gravel mod-
el to the problem of avalanches in a simpler manner than
in Sec. IV in order to demonstrate that the avalanche size
depends on the difference (v —v.) between the real
specific volume v near the free surface and the specific
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volume v, of the so-called critical state of Granta gravel.
However, we will try to keep the notation as similar to
that in Sec. IV as possible in order to make the theoreti-
cal part of Sec. IV more readable.

The outline of this part is as follows. First of all, we
will recall the basic assumptions of the Granta gravel
model on which we will base our calculations. We will
then consider the equilibrium of a pile with an inclined
free surface. However, this problem is still too intricate
to be treated as a whole. The second part will then be de-
voted to determining the stability and the instability of a
slice of material at a given distance 4 from the free sur-
face and parallel to this free surface. We will see that the
stability of this slice will depend not only on the angle ©
of the free surface but also on the density of the slice
through a parameter P,. Furthermore, we will see that
when the slice is dense enough and when its inclination
has reached the limit of stability of the slice, this one will
no longer be stable since its inclination has to decrease of
a finite quantity 88. We will then relate 86 to the
avalanche size and to the avalanche duration D. The
third part will be devoted to discussing what occurs for
another slice at a different depth A and demonstrating
that noise may enhance instabilities of the slice at small
h.

1. Granta gravel assumptions

According to the Granta gravel model, !’ the grains are
rigid, the sample strains are due to plastic yielding only,
and the energy losses are governed by a unique friction
coefficient tang®, which is independent of the material
specific volume. The sample might exhibit dilatancy,®®
but it reaches asymptotically the so-called critical state of
soil at large plastic yielding. The existence of this critical
state, which is only a characteristic state, is a major result
of many experimental studies using the triaxial cell tech-
nique on soil and sand!®"!° (cf. Sec. IVB). It is also a
major hypothesis in this theory. This critical state is
characterized by its specific volume v,. v, is independent
of the material history but depends on the pressure p (i.e.,
mean stress). We will assume that there is a one-to-one
correspondence between p and v, (i.e., bijection). The
reason for this hypothesis will only appear in part (3) of
this section. This critical state will be assumed isotropic
for the sake of simplicity. The specific volume v of the in-
itial packing may be of course different from the critical-
state one v,.

2. Statics and dynamics of a slice of material

Consider now a pile with a constant specific volume v
and a flat free surface inclined at an angle © to the hor-
izontal plane as is sketched in Fig. 14. There is a plane
(labeled PLANE in the figure) parallel to and at a dis-
tance h from the free surface. This defines a slice of ma-
terial that lies on the plane. P and Q are the forces per-
pendicular and parallel to the free surface which are ap-
plied by the slice of material to the plane (or to the bot-
tom part of the pile). Positive directions for P and Q will
be downwards. P and Q will then always be positive.
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FIG. 14. Sketch of a pile with a free surface inclined at an
angle © to the horizontal plane. The forces P and Q are applied
to the bottom part of the pile by the slice of material delimited
by the plane parallel to the free surface and this free surface.

Consider now a slight variation 8P and 8Q of P and Q.
We will consider that 8P and 8Q are independent and
that the pile is near yielding. Therefore, one can assume
that 8P and 8Q induce a small yielding which we will
characterize by a volume change 8¢, equivalent to an
upward displacement, and a small sliding 8¢, parallel to
the plane; both are localized near the plane. We chose
positive 8g; as volume contractions and positive 8¢ as
downhill slidings; negative 8¢, will then indicate diala-
tancy. So, according to the plasticity theory, any plastic
yielding has to obey a criterion of stability which states
that no yielding occurs if

8P 8y, +8Q 8ey =0 . (19a)

We assume that during yielding, some energy is lost due
to friction so that the law of energy conservation implies

P 8ey+Q 8ep,=MP8¢,| . (19b)

In the case of Eq. (19b), M is the real friction coefficient,
as it is usually defined in soil mechanics and it is related
to the friction angle ® through M =tan®;3! M is as-
sumed to be a constant according to the Granta gravel
model.

We will now calculate the yielding curve, that is to say
the set of (Py,Qy) of two forces which brings the slice
just at the limit of equilibrium. We will consider a
sliding-down case so that |88Q|=8£Q >0. According to
Eq. (19b), one has

A set (Py,Qy) which is at the limit of stability will be
kept at the limit of stability by a (8P,8Q) change if the
quality of Eq. (19a) is satisfied, so that yielding curve of
the slice obeys

8P by +8Q 6ey =0 . (21)
Replacing 8¢, by Eq. (20) in Eq. (21) and dividing by deg
leads to the differential equation

SQY:——(M_QY/PY)SPY . (22)

Equation (22) is similar to Eq. (13) and its integration
leads to the family of yield curves, an example of which is
sketched in Fig. 12. Its equation is
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Qy/(MPy)+In(Py)=1+In(P,) , (23)

where In(P,)+1 is the constant of integration. We will
assume that P, depends on the specific volume v, of the
critical state of the pile in a monotonic way and that the
smaller v,, the larger P,. The reason for this choice will
only appear in the next paragraph with the interpretation
of Eq. (24), but let us first describe the yield curve. The
maximum of Py is eP, for Q=0 and the maximum of
Qy is Q. =MP,=MPy and is obtained for Py=P,. We
will see that this last point (P,,Q.=MP,) is the critical
state, but first let us define tan©z by tan©;=Qy /Py.
tan©p plays the part of a pseudofriction coefficient for
the yielding point (Py,Qy). Near the free surface in-
clined at © the ratio Q /P is tan© so that the angle ©
cannot overpass ©p without sliding occurring. ©y is the
maximum angle of repose for this slice characterized by
P,.

Consider now a slice which is at the limit of sliding. It
is characterized by a (P,Q) set which is on the yielding
curve (Py,Qy). Then increase slightly © above 65 in or-
der to get yielding. Equation (20) lets us predict three
different behaviors for the sliding of this slice depending
on whether O is larger than, equal to, or smaller than

the friction angle ® [M =tang (P)]:

oe, =0 if MPy=Qy==specific volume

is unchanged , (24a)
6ey <0 if MPy < Qy==slice dilates , (24b)
8eyp >0 if MP, > Qy==slice contracts . (24c¢)

The slice that obeys Eq. (24a) is in the critical state
since its volume does not change when yielding occurs.
Therefore, v =v,, M =tan®, Q. =MPy=MP, at sliding
and sliding occurs when © 5 =®.

The slice that obeys Eq. (24b) dilates. It is then denser
than the critical state. It is characterized by
Qy/Py=tanOy > M and O3 > ®. It will be called strong
at yield since it will only yield for © larger than ®.

The slice that obeys Eq. (24c) contracts. It is then less
dense than the critical state. It is characterized by
Qy /Py <M and yields at an angle © smaller than ®. It
will then be called weak at yield. However, when the
slice yields, densification of the material occurs so that P,
increases and the pseudofriction angle © increases too.
The material then becomes stronger as time goes on.
Therefore, the slice will stop yielding spontaneously.

On the contrary, consider a slice that is strong at yield
(i.e., with ©5>®). It will begin yielding only when
© =0y, but, it will dilate when yielding occurs according
to Eq. (20) so that its P, and then ©p decreases as the
time goes on. The slice cannot stop sliding and an
avalanche is created. Yielding will only stop if the angle
O of the free surface is tilted quickly to a value smaller
than the new Oy, otherwise this theory predicts the oc-
currence of a macroscopic event which will only end
when the slope reaches a value smaller than ¢. Taking
into account the length L of this slope, the size of the
macroscopic event is predicted to scale as
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LY ©z—®)l /4, (25a)

where / is the transverse size of the free surface.

So, according to this critical-state approach, we expect
that the avalanche is a macroscopic plastic yielding
governed by friction forces and controlled by the sliding
of a typical layer inclined at an angle © . Op exceeds the
friction angle ®. This leads to evaluation of the duration
D of the avalanche as the time required to get this slice
having slided over a distance L. So, one expects D to
obey

D=A[L/(2g)]'"?, (25b)

with

A =2cos'(®)/sin'"H(Oz— D), (25¢)

where g is the gravity.

Indeed, Eq. (25b) is Eq. (5) of Sec. III. As Eq. (5) corre-
sponds to the experimental law of the avalanche dura-
tions, we get a rather good agreement between this theory
and the experimental data. Furthermore, consider the
rotating drum device which we used in Secs. II and III.
It generates avalanches that are stopped partly by col-
lisions with the drum wall and partly due to bead-bead
friction so that one may consider that the angle O of the
free surface at which the avalanche stops lies in the range
of ®>6,>2*®—60,. So, one may evaluate the experi-
mental values of O3 —® to lie between 1.2° and 2.5°. In
turn, this implies that A lies between 9 and 13. These
values compare rather well with the experimental mea-
sure of 4 (A=17) [see Sec. III, Eq. (5)]. The experimen-
tal durations D are slightly longer than the theoretical
ones as it is expected since our theoretical approach has
not taken into account any building time which would
have enlarged the theoretical prediction. Furthermore,
this plastic yielding approach predicts an avalanche dura-
tion which is independent of the bead size and of the
drum length / as we have experimentally observed. At
last, this model contradicts the theoretical approach of
Jagger et al.’® where dissipation has been assumed to
obey a fluidlike viscosity.

So, we have established Eq. (24) by taking into account
(i) friction losses which are characterized by a unique
friction coefficient M, (ii) dilatancy effects, and (iii) the ex-
istence of the so-called critical state defined by its specific
volume v, and toward which a system evolves asymptoti-
cally. In turn, Eq. (24) predicts the existence of macro-
socpic avalanches, the size of which scales as the pile
volume, when the pile is denser than its critical state and
when the free surface is inclined continuously.

We want to finish this part by summarizing these be-
haviors in the manner used by soil-mechanics specialists
and reported in Figs. 11 and 13. Assume then that one is
able to control the slope © of the pile in such a way that
the slice of pile is kept at its limit of yielding. One may
then draw the variations of Qy/Py=tan(Oy) and €, as
functions of €, for a given specific volume v. (Such an
experiment is not difficult to perform when v >v,, but re-
quires us to decrease quickly © when © reaches O when
v <v,, otherwise the avalanche will start.) Performing
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such an experiment will lead to curves similar to those
sketched in Fig. 13.

When v <v,, €y and tan(©z)=Qy /Py decrease con-
tinuously with time since the pile slice continues dilating
and softening. O and v tend, respectively, to ® and v,
at long time.

When v >v,, €, and tan(©z)=Qy /Py increase con-
tinuously with time since the slice of pile continues con-
tracting and hardening; © 5 and v tend, respectively, to ®
and v, at long time.

When v =v,, €, and tan(©p)=Qy/Py=® are kept
constant, independent of time since the slice of pile is in
its critical state.

3. Influence of the depth h on the slice stability

As we have already mentioned, it has been experimen-
tally observed that the specific volume v, of the critical
state depends on P. 16=19 Moreover, one assumes in gen-
eral that the critical state obeys the law!’ given by Eq.
(10), at large P (Ref. 17) (cf. Sec. IV C):

Q. =MP,
v.=I'—puln(P) .

(10a’)
(10b")

However, Eq. (10b) cannot hold near a free surface where
P tends to O and where we expect v, to tend to a finite
value v,, as found experimentally by Onoda and
Liniger.>? But it is still expected that v, decreases slight-
ly when increasing P, near P=0. So one is led to replace
Eq. (10b) by a new equation at small P:

v, =v,+f(P), (10b")

where f(P) is a function which tends to O when P tends
to 0.

But a new problem arises. Consider now a homogene-
ous pile that is strong at yield, with an inclined free sur-
face characterized by © and exhibiting a constant density
k and a constant specific volume v. Consider also
different parallel slices characterized by different
thicknesses 4. They exhibit the same Q /P value but
different values of P according to

P =kgh cos(O) , (26)

where P is defined for a unit area of the plane and of the
slice. Thus, P depends on the slice height 4 according to
Eq. (26), and the specific volume v, of the “critical” state
depends on P according to Eqgs. (10b’) or (10b"”’). There-
fore, the deeper the slice, the smaller its critical specific
volume v,. This means that the deeper the slice, the
nearer from its critical state it is, so the maximum angle
of repose O is smaller at large / than for slices near the
free surface. A question arises then:2?2 why do we ob-
serve surface avalanches rather than deep slidings?

There are different possible explanations. The first ex-
planation involves returning to the hypothesis and assum-
ing that a real pile that exhibits avalanches is not homo-
geneous. Its density increases with depth, so that ©z(h)
increases with A.

The second type of explanation may make use of the
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experimental observation of Reynolds,® who discovered
that the dilatancy effect is less important near a flat free
surface than inside a pile itself. v, could exhibit a discon-
tinuity at the interface so that the free surface would be
characterized by a larger v, and would be more unstable
than the inner part of the pile. This explanation could be
supported by the experimental result of Habib?' who has
reported that tilting a sandpile leads to an avalanche
when the sand is noncohesive, but that tilting the same
noncohesive sandpile leads to landslides when a tiny
amount of water is sprayed on the free surface and makes
it cohesive.?!

However, it seems to us that another plausible explana-
tion is based on a noise analysis. Let us assume that one
grain in the pile becomes unstable and loses some poten-
tial energy E,. An order of magnitude of E, is

E,=kgd*, (27)

where d is the grain size. Ep has to be dissipated inside
the pile and creates a small dilatation 8¢ localized on a
surface S proportional to 4% (S =S,h?). An order of
magnitude of d¢y is then 8e) =E, /(PS). Combining this
estimate of e, with Eqgs. (26) and (27), one gets

dey=(d/h)*/S, . (28)

This means that 8g, depends drastically on A and the
nearer from the free surface the grain is, the larger 8¢, is.
This fluctuation process could then enhance the creation
of avalanches at the free surface.

Other reasons could also be invoked. For instance, the
effect of a slight grain elasticity may be important at high
pressure and high pile height.3>3*

B. The Granta gravel critical-state approach
towards self-organized criticality

Let us come back to the discussion of the problem of
the avalanche size in a finite pile. It is clear from what
has been said in the preceding section that one may ob-
serve an avalanche rolling down at the free surface of a
pile when tilting the pile. This requires at least that the
specific volume v of this pile is denser than the specific
volume v, of the “critical” state everywhere and that the
weaker part of the pile stands near the free surface. One
then gets a macroscopic event, the volume of which
scales as LY (©p—®)/4, with ©5—®~v,—v. This
event scales then as the pile volume L?2/sin®/2 and
releases a huge amount of potential energy. This scaling
implies then a first-order transition problem. (This has
already been suggested by Jaéger, Liu, and Nagel® on the
basis of the difference between the initial and final slopes.)

We know also from soil-mechanics theory that the di-
latancy effect of the Granta gravel model could have been
taken into account by the introduction of some cohesion
o between grains: o is positive (0 =0 ) for grains at rest
in a state strong at yield and o =0 when the critical state
is reached. This is analogous to an avalanche with a
first-order transition, since abruptly releasing o from o
to 0 when the avalanche occurs abruptly releases an
amount of energy E. This is analogous to a latent heat of
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transition, since this process is equivalent to unglueing
the grains.

This analogy may even be sketched from another point
of view: the pile which is flowing down is in its “critical”
state, so that yielding (or flow) occurs at a constant
volume. In turn, this implies a Poisson coefficient equal
to 0.5 which is the Poisson coefficient of a perfect liquid,
but before the avalanche occurs the pile has to dilate and
its Poisson coefficient differs from 0.5. So, the energy E
corresponding to the grain decohesion process of the last
paragraph may be viewed as a true latent heat of fusion.

Let us now come to the avalanche problem of a pile in
its critical state. Its free surface slides exactly at O35 =&
and the energy E needed for grain decohesion is 0. So,
the transition between sliding and not sliding will become
second order. This pile may perhaps obey the scaling law
of the BTW model’~ '# and the avalanche size may exhib-
it critical fluctuations. Indeed, critical fluctuations have
already been observed in finite piles,? where © ; —® may
be considered as O within the experimental uncertainty
due to the finite-size effect, as we have discussed in Sec.
IIIE. It seems then to us that a sandpile-avalanche pro-
cess is similar to a liquid-gas transition which occurs at a
given pressure P for a given temperature 7. This liquid-
gas transition exhibits a latent heat of liquefaction E; in
most cases. However, a critical temperature 7, exists at
which E; =0 and where the transition is second order.
So, it is tempting to draw an analogy between the sand-
pile yielding and this liquid-gas transition: v<>T and
v,<>T,. It is worth trying to consider the critical state of
Granta gravel for the yielding problem as a true critical
point of a phase-transition model.

Thus, we think self-organized critical behaviors may be
observed in sandpile avalanches under a few restrictive
conditions among which one finds that precise control of
the surface and volume densities is required in order to
keep the pile surface in the “critical” state and the pile
volume at a specific volume smaller than the “critical”
specific volume. In such a case, the surface will look like
a fluid when ©=0©;=® and the continuous model of
Hwa and Kardar!* may describe the flow. However, this
is probably not the only requirement and much more
work remains to be done in order to precisely define the
observation range of the BTW model. For instance, it is
not still perfectly clear to us that the macroscopic ap-
proach based on a 3D continuous medium, which obeys
plastic yielding and assumes that the topology of each
neighborhood is invariant with time, is strictly compati-
ble with a sliding process of one grain after one grain as it
is assumed in the BTW model.

C. Scaling effects: deep slidings, landslides,
macroscopic avalanches, and 1/ f noise

In Sec. V A, we have seen that a high pile may have its
deeper part weaker at yield than its part standing near
the free surface. So, there are different ways in which a
pile may slide in order to restore its equilibrium. We dis-
cuss briefly a few of these processes on the basis of ener-
getic meanings.

For instance, we have sketched three ways in Fig. 15.
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FIG. 15. Different kinds of slidings: (a) deep sliding for
which the yielding is localized along a surface at a depth H pro-
portional to the pile size, (b) grain-after-grain sliding as in the
BTW model, Oz=~® (L6O<d), and (c) macroscopic
avalanches characterized by a slope O3 larger than the friction
angle ®. The sliding occurs along the slope over a thickness of
few or many layers (L5O > d).

Let us assume that the pile restructures itself so that it re-
stores the angle of repose of its free surface from an angle
©Op larger than the friction angle ® to an angle O lower
than ®. Let us also call 80 the difference ©5—O.
During this process, the pile loses some potential energy
E,; E, is dissipated in the pile during the plastic yielding
due to friction work E £ SO that E,=E; when the equi-
librium is restored. Let us assume that 8O is small and
let us call L the length of the pile slope and !/ its trans-
verse length. H, k, and g will be, respectively, the pile
height [H =L sin(®)], the pile density, and the gravity.
The loss of potential energy is then

E,=gkIHL?86 /6 . (29)

We now turn to evaluate the friction loss in the three
different cases. We will consider that these losses always
obey an intergrain solid friction law governed by a fric-
tion coefficient M, as we have assumed so far in this pa-
per.

The first process [Fig. 15(a)] concerns the deep sliding
of the upper part of the pile on a sliding surface*> which
is located deep into the pile. Some controversy exists in
the real thickness of the yield surface, but the value of
this thickness does not enter into the final result of the
friction losses as long as this width is much smaller than
the depth H at which sliding occurs. As in Fig. 15(a), the
typical depth H is approximately the length L of the
slope; the typical weight P this surface is bearing is
P =kgHLI /2. This value of P allows us to estimate that
the friction loss to the product of the friction force is
~MP by the sliding length € is e<~L80O. So E, is

E;=BMgkIHL*80 , (30a)

where 8 is a numerical factor which depends on the real
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geometry of the sliding surface. We see that Egs. (29)
and (30a) are similar. We may then conclude that such a
sliding is always possible as far as L is large enough.

In the second sliding process, we consider individual
grains sliding along the free surface as it is assumed in the
BTW model, but we do not consider any size fluctuation.
In this case, each grain of mass m slides along an average
distance € which is e=2L /3; it loses a friction energy of
~2sin(®)gmL /3. As the number N, of grains which
have to slide is Ny =kIL?80 /(4m) and as H ~L sin(®),
the energy dissipation due to friction losses is

E;~gkIHL?86/6 . (30b)

Obviously, Eq. (30b) is also equal to Eq. (29) so that this
process is always allowed energetically, without any re-
striction on the pile size.

Let us now study the last process sketch in Fig. 15(c).
It is an event that looks like an avalanche. Beads are
flowing together at the free surface, but due to the large
length L of the slope and to the finite value of 80, this
flow concerns more than one bead layer (since the diame-
ter d of the grain is d <L&86). In order to estimate the
energy losses due to friction, let us try to perform a
mean-field approximation. Thus the average pressure
(P) inside the sliding layer is (P ) ~kgL 80 /4 cos(®).
Let us also call (€) the mean displacement of each grain
compared to the others. So, the mean friction work per
grain is about B'M{(P){e)d? with B’ some adjustable
coefficient. As there are about L2801/(4d3) grains
which are sliding, the mean-field approximation leads to
a friction energy E :

E;~B'MkgIL’66%(e) /(4d) . (30¢)

Equating Eqgs. (29) and (30c) leads to a finite value of
(€)~d /80. This is only possible if L > (€), which re-
quires either a minimum length L (and then a minimum
size d%1 /8O of avalanches), or large enough 8O values.
This was not the case for processes (30a) and (30b), where
the friction dissipation could be large enough whatever
the value of 80. Another interesting point brought about
by our mean-field approach of process (30c) is the ex-
istence of a finite mean displacement {€) of each grain
compared to the others when L is large. This implies
that grains which are sliding remain in the same neigh-
borhood as time goes on. In turn, this is a way to confirm
the plastic yielding process and this disagrees with the
hypothesis of a Brownian motion of grains. The specific
behavior of process (30c) is brought about by the ex-
istence of a thick sliding zone which couples together the
two friction losses of processes (30a) and (30b). In (30a)
the losses are generated by small displacements of the
sliding zone submitted to high stress P, while they are in-
duced by large displacements of areas submitted to very
low stresses in (30b). It is then likely that our mean-field
approach of process (30c) hides large variations of grain
motion € and stress P: large € will more likely occur near
the free surface and vice versa, and small € will be located
deeper in the pile.
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VI. CONCLUSION

We have used a drum partly filled with glass spheres
and rotating slowly around its horizontal axis to study
the stability of the inclined free surface of a sandpile and
the problem of avalanches. For instance, we have deter-
mined the statistics of the avalanche durations D and of
the avalanche size 80 as functions of the sphere diameter
d and of the rotation speed Q of the drum. We have
demonstrated that these statistics are rather broad and
independent of the parameters Q and d, for drums that
are long enough. They may then be characterized by a
mean duration (D )=1.5 s and a mean avalanche size
(80 )=2.5°, which is the difference between the angles
O3 and Oy at which the avalanche starts and stops. We
have then found that the flow motion is neither perfectly
periodic nor exhibits 1/f noise, since the statistics are
broad but do not show any long tail. We have also con-
cluded that the avalanche dynamics is governed by iner-
tia and that the avalanche size scales as does the pile size
since it is really defined by 86 =0©; —O[. This last point
means that avalanches are really macroscopic events. We
have then demonstrated the existence of a change be-
tween a 2D avalanche process and a 3D one by studying
the avalanche statistics as a function of the number of
transverse layers flowing down in parallel at the free sur-
face of the pile (this last parameter is given by the ratio
x =1/d of the drum length to the sphere diameter). The
crossover occurs at a small value of x, x, =4 so that this
phenomenon is likely induced by a change of packing
characteristics which involves an order-to-disorder tran-
sition. At last, we discuss the existence of different
finite-size effects. Especially, we argue that the slope
length L has to be larger than the ratio d /80 of the
sphere diameter divided by the avalanche size if one does
not want to observe a finite-size effect which may be re-
sponsible for the 1/f noise reported in a recent paper.?
We have then tried to interpret these results within a
scheme coherent with other soil mechanics results.

We recalled some classical experimental results on
drained noncohesive sand, obtained with a triaxial cell by
soil-mechanics specialists. (The tests consist of applying
different loads on the top of a cylindrical sandpile main-
tained in a plastic bag at a given “hydrostatic” pressure
and measuring the strains induced by the loading
weights.) The results clearly demonstrate a dilatancy
effect which is responsible for nonlinear responses such as
localizations of yieldings. They also clearly demonstrate
the existence of a characteristic state, which is called the
*““critical” state by soil-mechanics specialists. This state
of soil is always reached at large yielding; it is character-
ized by a unique friction coefficient which is character-
ized by a coefficient M. M has been found to depend on
the soil nature, but not to depend on the value of the
mean stress p (i.e., p =~pressure). The critical state is also
characterized by its specific volume v, which depends on
p-

We give then a model of noncohesive soil, the so-called
Granta gravel model of Schofield and Wroth,!” which ex-
hibits the main features of the experimental data. This
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model assumes (i) that strains are due to plastic yielding
and are governed by plasticity theory, it postulates (ii) the
existence of a critical state which is always reached at
large yielding in accordance with the experimental evi-
dence and which is characterized by a specific volume v,
it assumes (iii) that the material may expand or contract
during yielding depending on whether it is initially denser
or looser than the critical state, and (iv) that energy losses
are uniquely due to friction during yielding. This friction
is taken into account by introducing (v) a unique macro-
scopic coefficient M independent of the mean stress p (M
is related to the macroscopic friction coefficient tan® ac-
cording to Refs. 1, 17, and 31, where @ is the friction an-
gle). At last, the material is assumed (vi) to be isotropic
and the density of the critical state to depend in an expli-
cit way on the mean stress p, cf. Eq. (10).

The main features of this model may be summed up in
two different ways. First, the effect of dilatancy may be
taken into account by introducing some cohesion (or
glue) between the grains of a packing initially denser than
the critical state density. The amount of cohesion which
has to be introduced depends on the difference between
the two densities. The second way consists in introduc-
ing a pseudostatic coefficient M’ governing the friction
losses which is different from the true (i.e., unique) one M
and which depends on the specific volume v of the real
pile compared to the critical state one v,. M’ is smaller
than M for a material looser than the “critical” state and
M’ is larger than M when the material is initially denser
than the critical state.

So, a material which is initially denser than its critical
state is called strong at yield since it may undergo
stronger shearing than its true coefficient M may allow.
However, when yielding starts in such a dense material, it
is combined with a dilatation of the material so that this
one becomes weaker and weaker as time goes on (the
pseudo-M’ diminishes) and so that the material ends bro-
ken. On the other hand, materials looser than the “criti-
cal” state yields for shearing forces less than the predict-
ed values (since M’ <M). However, this shearing leads to
densify the pile. This one then becomes stronger as time
goes on and yielding stops spontaneously if the shearing
force does not exceed the value predicted with M.

So, it seems to us that the model of Schofield and
Wroth links together the two main features of granular
materials since it mixes in a unified and combined scheme
the effects of solid friction and of dilatancy. These two
properties have been discovered by Coulomb? and Rey-
nolds.®

However, the formal theory of Schofield and Wroth, as
explained in Sec. IV, may look a little too intricate and
since it is based on the analysis of a triaxial test problem.
Such a test is analogous to a bulldozing problem with a
loaded pile and is a more intricate case® than the stability
of a free surface. The slope of the yielding surface of a
bulldozed pile may take two different values depending
on whether the pile is going up or down. This is why we
have derived in Sec. V a simpler version of the Schofield
and Wroth theory,!” which is specially adapted to the
avalanche problem. Nevertheless, this theory reaches the
same conclusions that are summed up in the last para-
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graph. Our interpretation of the avalanche process is
based on the following scheme. We take a pile with an
inclined free surface (angle ©), which is initially dense
enough so that it is initially strong at yield. Consider the
problem of the stability of the free surface for which M is
equal to the friction coefficient tan(®). The pile is then
characterized by a pseudostatic friction coefficient
M'=tan(©p) larger than the real one M =tan(®), which
governs the energy losses. So, the pile is stable as far as
its slope is smaller than ©5. When the slope © reaches
Op > O, the free surface becomes yielding and dilating, so
that M’ keeps on decreasing until it reaches M and the
free surface instability increases. Flow of beads occurs
and cannot stop until the slope © of the free surface be-
comes smaller than ® and until the potential energy is
completely dissipated. This leads to an ending slope O
which lies between ® and 2 —6j;. The avalanche is
then a macroscopic event whose size L2/8O scales as
does the pile size and where 66 =603 — O lies between
Op—® and 2(6z —®). This scaling has actually been
observed.

At the end of the avalanche process, some dissipated
energy is used to compact the underlaying pile. Further-
more, this compactness is increased by the natural rota-
tion of the drum which brings, alternatively, the top part
at the bottom and vice versa, the bottom at the top. This
bottom part experiences ‘“high” pressure corresponding
to the weight of the upper part and is compacted. After
that, it will become the upper layer. So, these two pro-
cesses of compaction bring the upper layer of the sample
to a density larger than the critical density and explain
why the pile is strong at yield.

So, we expect that the avalanche is a macroscopic plas-
tic yielding governed by friction forces and controlled by
the sliding of a typical layer inclined at an angle O
larger than the friction angle ®. This allows us to predict
a dynamics controlled by inertia, friction, and gravity
and given approximately by Eq. (25). This equation has
been experimentally observed [cf. Eq. (5)]. Furthermore,
this plastic sliding approach predicts that the avalanche
duration D is independent of the bead size and of the
drum thickness as it has also been experimentally ob-
served.

As a conclusion of this experimental investigation, it
seems to us that coupling the interpretation of avalanche
results and those on triaxial cells is possible. This allows
us to use a simple model based on the “critical” state of
soil mechanics and on a plastic yielding controlled by a
unique friction to understand first the existence of catas-
trophic events (i.e., the bead avalanches) and second their
dynamics.

Furthermore, the so-called “critical-state” theory of a
granular material allows us to relate the size of these
avalanches to the density of the pile at the free surface.
It also considers the pile density as a free parameter
which may be controlled and adjusted. This may be im-
portant, since diminishing the pile density will diminish
the avalanche size, so that this may tend to 0. If this
state is achieved, the energy stored in the pile and
released when the avalanche happens will tend to O too,
so that the transition between the two states (before and
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after the avalanche) may become a second-order transi-
tion instead of a first-order one. This tends then to prove
that self-organized criticality of avalanche flow may exist.
It will only require control of the pile density. These
features have allowed us to draw a parallel between the
liquid-gas transition, which is most often a first-order
transition, but which becomes second-order at T =T,
and the avalanche physics which may exhibit critical be-
haviors in the meaning of phase transition when the pile
has reached its “critical” state in soil-mechanics terms.
Recent results on 1/f noise generated by finite and small
piles seem to confirm our analysis.

However, it seems to us that much work remains to be
done in order to confirm our forecasts and to elucidate
the true physics of sandpiles. For instance, a large effort
is still needed to understand completely the process of
strain localization on yield surfaces.?! 7243335 A very im-
portant parameter in most experimental cases is gravity.
It is the true controlling parameter of the compacting
process of the granular sample with a free surface.’®3*
One will necessarily have to make it vary. This may be
done in three different ways: one may increase gravity
using large centrifuge, or diminish it by either using Ar-
chimede force and injecting a liquid inside the pores as in
the Onoda and Liniger experiments,3? or by using real
gravity-free experiments and free falling in a mine shaft,
or even the space shuttle. It seems to us that a gravity-
free experiment based on Archimede pressure is highly
difficult to perform and control in view of classical, ex-
perimental, and theoretical results in soil mechanics.!’
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This is why centrifuge experiments are now in process.

As a final comment, we would like to emphasize that
the Granta gravel model of Schofield and Wroth, which
has been applied here and which takes into account the
effect of dilatancy, also predicts nonlinear behaviors and
strain localization in triaxial cells, due to the abrupt
change of the friction coefficient when macroscopic yield-
ings occur. It is then very similar to what one may ob-
serve for the mechanics of earthquakes®®3” and of con-
tinental tectonics.3® %0 In particular, this model may
bring a real physical meaning to the stick-slip earthquake
model. 3
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