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We study the dynamical properties of the electric microfield at a fixed neutral point immersed in a
one-component plasma. We introduce an effective-field approach for describing the correlations be-
tween the microfield densities at two different times. In this approach, the essential features of the
dynamics of the charges that produce the microfield are incorporated via suitable choices of the
effective field. We present two versions of the theory which, in the static limits, reduce to the
mean-force and adjustable-parameter exponential (APEX) approximations for the equilibrium dis-
tribution of the microfield. Both versions rely on a few ingredients determined through existent
theories for the dynamics and the statics of the particles. The comparison to the molecular-
dynamics data shows that the dynamical extension of APEX is the most reliable theory. The pre-
dictions of the Brissaud and Frisch model [J. Quant. Spectrosc. Radiat. Transfer 11, 1767 (1971)] for
the microfield dynamics are also tested against the simulation results. This model turns out to be
rather reasonable. However, it is not as accurate as APEX, and it misses oscillatory behaviors
(originating from the plasmon modes) which, on the contrary, are qualitatively reproduced by the
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latter theory.

I. INTRODUCTION

The statistical properties of the time-dependent electric
microfield &(¢) seen by a radiator (atom or ion) immersed
in a plasma play a key role in the determination of the
spectral line shapes.! In principle, all the correlations in-
volving an arbitrary number of values of the microfield at
different times are necessary for a complete description of
the broadening and shifting mechanisms. Brissaud and
Frisch? proposed a model for the time evolution of &(1),
making the assumption that &(¢) is a stationary Markov
process. The central quantity is then the joint probability
P(Et|Ey0)dEdE, for 6(t) to be in dE and for &(0) to be
in dE,. This is specified via a Fokker-Planck equation
that determines P(Et|Ey0) in terms of the static distribu-
tion W(E) and of the autocorrelation function
L(1)=(&(1)-6(0)).

The Brissaud and Frisch model for Stark broadening is
particularly attractive for the following reasons. First, it
relies on ingredients which are reasonably known: I'(z)
can be computed from plasma kinetic theory,? and there
has been a large amount of theoretical work* dedicated to
the determination of W(E). Second, it allows a simple
and unified calculation of the entire line shapes. Finally,
the resulting profiles have high-frequency wings that re-
duced to those computed from the quasistatic approxima-
tion,>! and their cores include effects which go beyond
the impact approximation. Consequently, this model has
been widely used in the calculations of atomic lines. It
gives quite accurate results for electron broadening®
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(which is reasonably described by impact theories) and
greatly improved results (compared with other theories)
in the description of ion broadening.” Nevertheless, there
are still important discrepancies with experimental data
for ion broadening,® especially when the motion of the
ions cannot be treated as a small perturbation (in general,
the ions are assumed to be static during the relevant radi-
ation times).

The discrepancies between the above model and the ex-
perimental data can be of various origins which will not
be discussed here. However, as already noted by Smith,
Talin, and Cooper,8 the Markovian description of
P(Et|E,0) is rather crude, and is surely responsible for at
least part of the discrepancies. The main purpose of this
paper is to formulate an alternative approximation
scheme for the joint probability density P(E¢|E,0), by ex-
plicitly taking into account that &(¢) is the sum of the
electric fields created by the charges of the plasma. This
suggests an effective-field approach, in which the dynam-
ics of the microfield is directly related to the motion of
the plasma particles on the basis of reasonable physical
arguments, without making an unfounded mathematical
assumption about the nature of the process. The
effective-field method provides simple and tractable rep-
resentations of P(Et[EOO) which should be useful in the
calculations of line shapes.

The effective-field method which we present here ex-
tends to the dynamical case an approach® used previously
for the derivation of approximate forms of the static dis-
tribution of the microfield.'>!! It gives a generic approxi-
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mate representation of P(E¢|E,0) in terms of a time-
dependent effective-field €] (r). As in the static case, the
method allows various choices for ef(r). We propose
essentially two determinations of the latter, which reduce
to their mean-force!! and adjustable-parameter exponen-
tial’® (APEX) approximations static counterparts respec-
tively at ¢ =0. The mean-force choice is inspired by a
natural systematic expansion, while the APEX-like one is
motivated by the very accurate description of W(E) by
APEX (including, in particular, the regime where the
plasma particles are strongly correlated). The resulting
effective-field expressions for P(Et|E,0) incorporate the
basic mechanisms which govern the statistics and the dy-
namics of the charges, e.g., the screening effects and the
collective plasma oscillations. Moreover, their in-
gredients can be expressed in terms of well-known static
quantities involving the particles.

As far as an accurate calculation of the whole spectral
lines is concerned, it is necessary (and sometimes also
sufficient®) that the approximate forms of P(Et|E,0) ac-
curately describe the statics, in the zero- and infinite-time
limits, and the autocorrelation function I'(¢), through
their covariances. Here these conditions will be used for
determining the best effective fields e}(r). In this con-
text, I'(¢) takes on special importance. This motivated a
detailed study!? in this paper: we compute its short-time
expansion and investigate the behavior of the probability
distribution P,(§) of &(¢)-&(0). In the same spirit, the
equilibrium distribution of the time derivative of the
microfield, G(f), is another reduced dynamical quantity
of interest whose determination does not require the full
knowledge of P(Et|Ey0). While I'(¢) is the crucial in-
gredient of the impact approximation' valid for fast mov-
ing charges, G(f) is an important object in opposite situ-
ations where short-time expansions around the quasistat-
ic approximation can be used.!*> Here, we derive a
specific approximation for G(f) which is independent of
the effective-field theory of P(Et|E,0). In addition to its
own interest, the corresponding form of G(f) might be
used for imposing an additional constraint on the choice
of the best effective-field e} (r).

For the sake of simplicity, our calculations are restrict-
ed to the model one-component plasma (OCP). The OCP
is a system of identical point charges immersed in a neu-
tralizing rigid background. Here &(¢) is the total electric
field created at a fixed neutral point by the mobile
charges and the background. This model is a good proto-
type for mimicking the statistical properties of the elec-
tric microfield seen by a radiating neutral atom immersed
in a mixture of ions and electrons when the latter are
strongly degenerate.

The paper is arranged as follows. In Sec. II, we define
the model as well as the quantities of interest. Their rela-
tionships and some exact results are also established; in
particular, the short-time expansion of (&(¢)-6(0))
(which diverges at ¢ =0) is given up to the quadratic
term. The general effective-field theory for P(Et?|Ey0) is
described in Sec. III, where the mean-force and APEX
choices of e} (r) are presented and justified. The physical
interpretation of the former is also briefly discussed. In
Sec. 1V, we present the molecular-dynamics (MD) calcu-
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lations of the above quantities. These data are used for
testing the accuracy of our approximate theories and of
the Brissaud and Frisch model. Rather than comparing
P(EtIEOO) itself, we study its Fourier transform with
respect to the fields which is more directly accessible by
both the MD simulations and the effective-field ap-
proaches. The successes and deficiencies of the above ap-
proximations are summarized in Sec. V. We also make
there some concluding comments and remarks which
concern the effective-field approach and its usefulness for
line-shape calculations.

II. DEFINITIONS AND GENERAL SETTING

A. Model

The model considered throughout this paper is the
one-component plasma. The OCP is a system of identical
point particles of charge e and mass m, embedded in a
uniform rigid background of the opposite charge. For a
finite system made of N particles in a box with volume A,
the background charge density is chosen equal to —ep
where p=N /A is the mean-particle density: this ensures
overall neutrality. The total interaction potential of the
system is then given by

N
Ve, ..., ty)=+ 3 ol —r;)— 3 fAdrpv([r——r,.l)

i (#)) i=1

+4 [ drdrpvlr—r), (2.1)

where 1; is the spatial position of the ith particle, and

v(ry=e?/r (2.2)

is the Coulomb potential.
In the following, we shall be interested in statistical
properties of the time-dependent electric microfield &(¢)
produced at a fixed neutral point (the origin, for instance)
by all the mobile charges and the background, i.e.,
N
6(1)= Y elr;(1))+65 .

j=1

(2.3)

In (2.3), r;(2) is the spatial position of the jth particle at
time ¢ [all the particles moving in the potential (2.1)]
while e(r) and &5 are the electric fields at the origin
created, respectively, by a particle located at r,

e(r)=—e= (2.4)
r
and the background,
r
= —_ . (2.5)
Ep=e fAdrp 3

We shall consider that the system is in thermal equilib-
rium at temperature T (3=1/kgT). The quantities of in-
terest will be computed in the thermodynamic limit, i.e.,
N— o, A— o with p=N/A kept fixed. We shall as-
sume that the former are well defined in this limit.!* For
notational convenience, it will not be explicitly specified
in the equations that the above limit must be taken.
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B. Joint probability density P(Et|E,0)

It follows from the definition of P(E¢|E,0) given in the
Introduction that

P(Et|Ex0)=(8(&(1)—E)8(6(0)—E,)) , (2.6)

where ( ) means a thermal equilibrium average over all
the initial positions and velocities of the particles. At

t =0, P(Et|E.0) reduces to
P(Et|E0)=8(E—E,)WI(E,) , 2.7)

where W(E,) is the static distribution of the electric
microfield,
W(Ey)=(8(&(0)—E,)) . (2.8)

When t— oo, the microfields &(¢) and &(0) should be-
come uncorrelated. This implies that

lim P(Et|Ey0)=P(Ew |[EJ0)=W(E)W(E,) .

t— 0

(2.9)

It is useful to introduce the Fourier transform
A,(K,Q) of P(Et|E0),

4,(K,Q)= [ dEdEgexp(iK-E+iQ-Ey)P(Et|E)

=(exp[iK-6(1)+iQ-6(0)]) (2.10)

[the last line of (2.10) follows from the definition (2.6)].
Using the time-reversal invariance of the classical equa-
tions of motion and the spatial symmetries, it is easy to
see that 4,(K,Q) is a real symmetric function of K and
Q. Similarly to (2.7) and (2.9), 4,(K,Q) can at t =0 and
t = oo be expressed in terms of equilibrium static quanti-
ties. More precisely, one has

J

N
> 8(r;(t)—r)—p

p§(k,t)=fdrexp(ik-r)<
j=1

i=1

When t— oo, I'(¢) goes to zero while for t -0+, I'(¢)
diverges because the covariance {([&(0)]?) of the static
distribution W (E) is infinite. The small-time behavior of
I'(z) is studied in Appendix A. We find the following
short-time expansion for ¢ > 0:

1/2
F(l) — 1 + 271 uexc(r) (Upl
42m)' ek, @yt 3 3”2 72
+0(£3), (2.18)
1/2

where kp=(4mpBe?) is the Debye wave number,
co[,=(4'rrpe2/m)1/2 is the plasma frequency, I'=Be?/a
(a=[3/(4mp)]'/?) is the coupling constant, and Uy (T)
is the excess internal energy per particle in units of kz T
of the OCP. In units of wp_l, the singular term of (2.18) is
independent of p or 3. It arises entirely from free motion
and corresponds to the exact expression for I'(z) at all
times for “free” particles.!® The constant term in (2.18)
depends on the thermodynamic state of the plasma which

N
> 6(r;(0)—0)—p
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4,(K,Q)=T(K+Q) (2.11)
and
4,(K,Q)=T(K)T(Q), (2.12)
where T(K) is the Fourier transform of W(E),
T(K)= [ dEexp(iK-E)W(E)
=(exp[iK-6(0)]) . (2.13)

Because of the rotation invariance of the infinite sys-
tem, one has T(K)=T(K) and W(E)=W(E), while
A4,(K,Q) and P(Et|E,0) only depend on the modulus of
the vectors involved and on their relative angles.

C. Reduced dynamical quantities

The autocorrelation function of the electric microfield,

C()=(&(t)-6(0)) , (2.14)
is just the covariance of P(Et|Ey0), i.e.,
I(1)= [dEdEE-E\P(Et|E,) . (2.15)

On the other hand, using the expression (2.3) of the
microfields in the definition (2.14), one can express I'(¢) in
terms of the time-displaced correlation functions of the

particles with the result?
L(n=8e% [ “ak S(k,1) . (2.16)

In (2.16), S(k,?) is the usual dynamical structure factor
defined by

> . (2.17)

—

is characterized by the coupling constant I'. The linear
term which again depends only on w, is due to the in-
teractions. There is no quadratic term.

The probability distribution of &(¢)-&(0) is

P,(£)=(8(£—&(1)-6(0))) , (2.19)
which can be rewritten as
P,(&)= [ dEdES(£—E-E()P(Et|E) . (2.20)

At t=0 and t= o, P,(£) can be expressed entirely in
terms of W(E). Using successively (2.7) and (2.9) in
(2.20), as well as the rotation invariance of the homogene-
ous infinite system, we obtain

0, £<0

Py(8)= 2511/2 P(§1/2) , 0<E

(2.21)

and
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Pw(§):f0wdE%P(E)Wx [% ' , (2.22) 3K ( )=(iK-&(t)exp[iK-6(t)+iQ-6(0)]) ,
. e e (3.1a)
where P(E) is the probability distribution of the modulus a4
of the field, P(E)=47E?W(E), and W, is the probability t — A,
distribution of one Cartesian component of the field. aQ )= (iQ-6(0)exp[iK-E()+iQ-£(0)]) .

Finally, we introduce the probability distribution of the
time derivative of the electric microfield,

dé

f__
dt

G(f)= <a > . (2.23)

Because of the invariance of the equilibrium state under
time evolution, G (f) does not depend on the time. Its
Fourier transform is given by

n= [dfexp(il-£)G(f)

=<exp i-2.(0) > (2.24)
Inserting d & /dt(0)=1lim,_,{[E(¢)—&(0)]/t} in (2.24),

we immediately obtain

r_1
A

Furthermore, the calculation of d & /dt from (2.3) also
gives

zwze P

H(D)=lim 4, (2.25)
t—

N
il- 3 (v;V;)e(r;)

j=1

H(1)=<exp

=<e"p 2m B

In deriving (2.26), we have used the fact that the
velocity-dependent part of the equilibrium Gibbs measure
is the product of the Gaussian factors exp( —/J’mvj2 /2).

> . (226

III. APPROXIMATE THEORIES

In this section, we formulate an effective-field approach
of the time-dependent joint probability, which is a
dynamical generalization of a similar method applied to
the equilibrium distribution of the microfield. As in the
static case, the general approach leads to various approx-
imate theories according to the different possible choices
of the effective field.

A. The effective-field approach

Our starting point is based on the coupling-parameter
integration technique, first introduced in static microfield
calculations by Igle,§ias.9 Using (2.10), we find for fixed
unit vectors K and Q

(K,Q)=exp |L[F(K)+F(Q)]+

f dK’ fdrKer)[p, (rlK’,Q

(3.1b)

Dividing both sides of (3.1a) and (3.1b) by 4,(K,Q) gives

9 14, (K,Q)=i(R-&(1

3K (3.2a)

)KQ’

9 1n4,(K,Q)=i{Q-6(0 (3.2b)

oQ
where the measure which defines the average ( )k q is
the usual equilibrium Gibbs measure du multiplied by

exp[iK-6(1)+iQ-&E(0)]
(exp[iK-6(1)+iQ-6(0)])

Writing Eq. (3.2a) for the couple (K',Q) with K’=K’ﬁ,
and integrating the resulting equation from O to K, we
obtain

1nA,<K,Q)=1nT(Q)+ifde'(f(-é(:))K,,Q .

>KQ>

(3.3a)

In deriving (3.3a), we have used A4,(0,Q)=T(Q), which
follows directly from the definitions (2.10) and (2.13)
similar manipulation of Eq. (3.2b) yields

In 4,(K,Q)=InT(K)+i [ °dQ"(Q-6(0)

Since the electric microfield is a sum of one-body terms,
the averages ( )x/ o and ( )g o appearing in (3.3a), and
(3.3b) can be expressed in terms of generalized one-body
densities. Using (2.3) we find

dkq -  (3.3b)

(R-6(0))g o= [dr[K-e()][p] (r|K',Q)—p], (.42)
(Q:6(0)g o= [dr[Q-em)]pS(rIK,Q)—p], (3.4b)
where the one-body densities p;” and p,° are
N
pf(rIK,Q)=<za(rjm—r)> : (3.50)
j=1 K,Q
N
p,<<r|K,Q)=<25<r,(0)—r)> . (3.5b)
j=1 K,Q
Note that
pS(rlK,Q)=p; (r|Q,K) (3.6)

as a consequence of the invariance properties of both the
equations of motion and the equilibrium state. Using
(3.4a) and (3.4b) in (3.3a) and (3.3b), respectively, and
adding the resulting equations we finally obtain

i rQ,., pal !
p]+3fo dQ’ [ drQ-e(r)[pS(r|K,Q")—p]

(3.7
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with
F(K)=InT(K) . (3.8)

The expression (3.7) for 4,(K,Q), which is formally
exact, is the dynamical generalization of the following
representation of T'(K):°

K , A

T(K)=exp [z JFak’ [arReemipen—pl| . (3.9
In (3.9), pg/(r) is the one-body density of the particles
when the extra coupling —iK’-&(0)/f3 is added to the in-
teraction potential V. In both (3.7) and (3.9), the (—p)
terms arise from the contributions of the background and
ensure the absolute convergence of the spatial integrals.
From now on, these terms can be omitted if we require
that the angular integrations be performed first.

At this level, we have reduced the calculation of
A,(K,Q) to the determination of the one-body densities
p; and p°. Although an exact evaluation of the latter
quantities remain impossible, this reduction turns out to
J

K-e(r)
Dk

AXK,Q)=exp |+ [drp R oet(e)
0

+%fdrp~?L(r)—[exp[iQ-e3(r)]—l}{exp[iK-e;"(r)]+1} .

Q-ej(r)

The expression (3.12) is the required effective-field ap-
proximation for the Fourier transform (with respect to
the fields) of the time-dependent conditional probability.
It is easy to check that

A (K,Q=T*|K+Q|) (3.13)

and

A% (K,Q =T*(K)T*(Q), (3.14)

where T*(K) is the effective-field form of T(K),
K-e(r)

T*(K)=exp fdrp—,\'—

Ree3(r) {exp[iK-e(r)]—1} | .

(3.15)

Equations (3.13) and (3.14) have the same structure as the
exact equations (2.11) and (2.12). Therefore the effective-
field approach does give the right limits at zero and
infinite times, provided that the static distribution of the
microfield is computed in the framework of this approxi-
mation. Aside from these requirements, the effective field
ef(r) is, up to now, rather arbitrary. In Sec. III B, we
propose several reasonable reasonable choices of e](r),
which take into account both the dynamics of the parti-
cles and the static properties.

B. Determination of the effective fields

1. Mean-force approximation

Our first choice of ef(r) is inspired by a cumulantlike
expansion of the generalized one-body densities p;” and
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be quite useful for our purpose. Indeed, there exists a
very simple prototype approximation for p;” and p,S°
which preserves the essential features of the dynamics of
the microfield. This prototype approximation is a natural
extension of the effective-field approximation for pg.(r)
which reads!®

px(r)=pexp[iK'-ej(r)], (3.10)

where ej(r) is an effective field parallel to the bare
Coulomb field e(r). Here we write

p. (rlK',Q)=pexp[iK'-e}(r)+iQ-ef(r)], (3.11a)

p (rIK,Q)=pexp[iK-ef(r)+iQ"-ej(r)], (3.11b)

where ef(r) is a time-dependent effective field which
reduces to e}(r) at =0 and vanishes when t — o [note
that (3.11a) and (3.11b) satisfy the exact relation (3.6)].
Using (3.10) in (3.9), and (3.11a) and (3.11b) in (3.7), we
obtain

{exp[iK-e}(r)]—1}{exp[iQ-ef(r)]+1}

(3.12)

[
p.". Indeed, the expression (3.5a) and (3.5b) can be
rewritten as

(exp[iK-6(1)+iQ-6(0)]);
P expliK-6(1)+iQ-6(0)]) °
_ (expliK-6(1)+iQ-6(0)])°
TP {expliK-6()+iQ-6(0)])

p; (r|K,Q)= (3.16a)

pS(rlK,Q) (3.16b)

where { ); and ( ), denote averages with the measures

N
dug X 6(r;(¢t)—r)/p

j=1
and

N
dug 3, 8(r,(0)—1)/p ,
ji=1

respectively. The cumulant expansions of both the
numerators and the denominators of (3.16a) and (3.16b)
give

p; (rlK,Q)=pexp[iK-(&(1))] +iQ-(EO0)). + -],
(3.17a)

pS(r|K,Q)=pexp[iK-(E(2))~+iQ-(&(0))~+ -]
(3.17b)
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[the terms omitted in (3.17a) and (3.17b) are at least of
second order with respect to K and Q]. Keeping only the
first terms, linear in K and Q, in the above expansions,
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er(r)=eM(r)=(6(1))°

=(6(0))>

we obtain an approximate representation of p; and p,° = [drer)s(Ir—r'l,0) (3.18)
which is of the effective-field type (3.11) with and where
J
N
S(r—r'l,0) < S 8(r,(0—1)—p | | 3 8(r,(0)—r)—p ) (3.19)
p j=1 i=1

is the truncated total Van Hove function of the particles
[the dynamical structure factor S(k,?) is nothing but the
spatial Fourier transform of S(r,t)]. The expression
(3.18) of ef(r) appears as a natural extension of the
mean-force field approximation!! for the static effective
field which reads [S(r)=S(r,t=0)]

MF(r)= [dre(r)S(r'—1|) . (3.20)

Furthermore, let us emphasize that the corresponding ap-
proximate joint probability has the right covariance
(2.16). This can be easily checked by calculating the
coefficient of the (K-Q) term in the expansion of
AMF(K,Q) at small K and Q [this coefficient, up to a

J

f

minus sign, is equal to the covariance of PMF(Et|E,0)].

For practical purposes, it still remains to find a simple
and accurate representation of S(7,¢). In fact, such a rep-
resentation exists in the literature; it is known as the
“three-pole” approximation.!” The latter is based on the
Mori continuous fraction expansion'® of

Stk,0)=@2m) ' [ 7 dtexpliot)S(k,t),

which is truncated at the third order. The corresponding
rational fraction in @, S 3p(k,®), has the right second and
fourth moments (which are expressible in terms of static
quantities), and has three pairs of complex-conjugate
poles in the complex plane. The Fourier transform of the
former with respect to w gives (see Appendix B)

po _ 2036 exp(—yt) exp(—dt) . , . ;
Siplk,t)= (7 —b) ” +2a8(a2+82)Re{(a—zﬁ)[a-i—z(y—8)][a—1(y+8)]exp(zat)} (3.21)
In (3.21) one has
k2

while a, ¥, and 8 can be expressed in terms of the frequencies wy, and w;; and of the relaxation time 7;p defined through

k2
WY =" (3.22b)
mpBS(k)
2 sin kr) 3cos(kr)  3sin(kr)
@ 1 + — —2 dr— - h(r) |, 3.22
ne ) (kr)? (kr)® (220
T3P e 1 (3.22d)
T ) -
where A (r) is the Ursell function [S(r)=38(r)+ph(r)]. B % — 30, )
One finds b= — 3 s (3.24a)
3713p 2713p
y= 1 (b*44c3/27)'*—b , 1
B c=0l— =5, (3.24b)
373p 2 7 37'%}:
(b2+4¢3/27)12+b and the expressions for 8 and « are obtained by replacing
) , (323 (3.23)in
1 Y
i = - 3.25
with b 27—31’ 2 ( )
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and
172

S G A |
4 27'3}) 41’%1,

As seen from Egs. (3.21)-(3.26), the sole ingredient of
the “three-pole” approximation is the static structure fac-
tor S(k). In the following, we shall use the mean-force
approximation for P(Et|Ey0) only for I" < 1, because the
corresponding description of the static limits at # =0 and

= oo becomes too bad in the intermediate coupling re-
gime [even when accurate representations for S(k) are
used’”]. It is then legitimate to replace S(k) by its
Debye-Hiickel form which is asymptotically exact in the
weak-coupling limit.

a (o%, (3.26)

2. APEX-like approximation

A second choice is inspired by the APEX theory!® of
the static distribution W(E). In the latter, the static
effective field is assumed to have the form

e3(r)=efP(r)=—-(1+k rlexp(—k 7R,  (327)
r
where « 4 is the APEX wave number, !
2U g (T)
KA——WKD . (3.28)

In order to determine a time-dependent effective field
which reduces to the field (3.27) at t =0, we rewrite the
latter as

efP(r)= [dr'e(r')D ,(Ir'—1|) , (3.29)

where the distribution D ,(r) is such that
R _k?

ferA(r)exp(,k.r)—DA(k)—;EJr—KzA (3.30)
We now make the ad hoc assumption

e}"(r)=ef‘P(r)=fdr’e(r')DA(Ir’—rl,t) , (3.31)
where the Fourier transform

D (k)= [drexp(ik-r)D 4(r,t) (3.32)
is given by
= t
D, (k,t)=B ,(k —

A( t) A( )exp fA(k) l
+C  (k)exp |— TAt(k) cos[w ,(k)t]. (3.33)

The form (3.33) is inspired from both the three-pole and
the hydrodynamical expressions®® of S(k,z). The ampli-
tude coefficients B ,(k) and C ,(k), as well as the relaxa-
tion time 7 4 (k) and the frequency w ,(k), are determined
through the following requirements. First, one has the
zero-time constraint

k2

B, (k)+C  (k)y=—"——
4 4 k2+K2A

) (3.34)
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which ensures that eP(r) does reduce to (3.27) at r =0.
Second, we impose that

2

Dk, ~~_cos(w,1), k—0 .
K4

(3.35)

This behavior is similar to the exact behavior of S(k,?)
(Ref. 21) (apart from the replacement of kj by « ,); it in-
corporates the fact that the dynamics for long wave-
lengths are governed by the undamped plasmon oscilla-
tions at the plasma frequency wp.zz Third, the frequency
o 4(k) is such that

1 da)A:X(} a

=L 2 3.36
w, dk  xp 3T (3.36)

at k=0, where x%/xr is the ratio of the isothermal
compressibilities of an ideal gas and of the OCP. This
takes into account the main features of the plasmon
dispersion relation @,j,smon(k), since the right-hand side
(rhs) of (3.36) is the average over [0,2/a] of a simplified
version of a phenomenological hydrodynamic expres-
sion? of [d@piasmontk) /dk ] /w, (the notion of plasmon
mode does not make sense®? for ka >2). Finally, we op-
timize the autocorrelation function

A1) =p [ dre(r)-erP(r)

=8e% [ “dk D 4(k,t 3.37
epf ) (3.37)
by reproducing the exact short-time expansion (2.18) of
I'(2), up to the constant term included. The above re-
quirements are satisfied by the simple functions

2 2
B (k)= |1—exp N4 5 , (3.38a)
Kp
C (k)=—* i 1T (3.38b)
= —eX - - N .
4 k2+k2 P74 K%
1/2
k=T “p (3.38¢)
4 2 w,k ’ ’
1 X¥ k
wA(k)=a)p 1+T/—‘3—?EE (3.38d)

where the dimensionless parameter 77, controls the first
zero of I'*P(¢) and will be determined later. Note that all
the other ingredients of the present approximation only
depend on static quantities, namely, u, and x%/xr,
which are rather well known.

C. Comments

The mean-force choice (3.18) for the effective field ap-
pears to be more natural than the APEX one (3.31) since
it involves the dynamical structure factor of the particles.
However, this does not guarantee that the corresponding
mean-force theory is better than APEX, as illustrated by
the static case where APEX is the more accurate approx-
imation. In fact, the description of the dynamics of the
microfield in terms of a finite number of time-displaced
particle correlations obviously is incomplete. Conse-
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quently, there is no fundamental need to define effective
fields which incorporate in a precise way the above corre-
lations. This justifies the introduction of APEX which,
in addition to its simplicity, takes into account basic
physical mechanisms such as screening effects and plasma
oscillations.

In the static case, the effective-field theory has a simple
interpretation. It amounts to introducing an auxiliary
system of independent quasiparticles with density
ple(r)/el(r)] and creating the field ef(r). The
effective-field form of the distribution of the electric
microfield created by the plasma particles is then identi-
cal to the Holtsmark distribution of the field created by
the quasiparticles [see Eq. (3.15)]. In the present dynami-
cal case, such an interpretation no longer holds. In other
words, the effective-field expression (3.12) cannot be
identified with the distribution of any auxiliary system of
independent quasiparticles. This is due to the fact that
the effective-field approach incorporates essential features
of the dynamics of the particles (like the collision pro-
cesses) which are not reducible to the trivial dynamics of
independent quasiparticles moving on straight lines.

IV. COMPARISON OF THE APPROXIMATE
THEORIES TO MD DATA

In this section we compare the predictions of various
approximate theories, among which are the effective-field
approaches derived in Sec. III, to the results of MD cal-
culations. First, we briefly describe the method used in
the MD simulations. Then, we turn to the results, con-
sidering successively the static quantities T(K), Py(§),
and P (&), the reduced dynamical objects I'(¢) and H (1),
and finally the full distribution 4,(K,Q). Comparisons
are restricted to the weak-coupling and intermediate cou-
pling regimes (I" < 10).

A. The MD method

The OCP has been studied by numerical simula-
tion?*~2% and today its equilibrium and dynamical prop-
erties are known with very good precision. The details of
the application of the MD method to the OCP are given
in Ref. 24 and we summarize here only the main points of
the procedures used for the numerical calculations of
A,(K,Q), I'(z), etc.

In the present simulations, we have computed the tra-
jectories of 256 ions enclosed in a cubic volume A. To
take into account the periodic boundary conditions of A,
the interaction between the ions was not the simple
Coulomb potential but the “Ewald” Coulomb potential.?®
The electric field &(¢) needed for the computation of
P(Et|E0) or 4,(K,Q) is the field at a neutral point r of
A; from Eq. (2.3) this field is

N
6(1)= 3 e’[r;(t)—r], (4.1)

j=1

where e“[r;(z)—r] is the field due to the jth ion at the
point r derived from the “Ewald” potential. In A all the
points r are equivalent; we have calculated, at each in-
tegration step of the simulations, 1024 values of &(¢) for

ALASTUEY, LEBOWITZ, AND LEVESQUE 43

1024 different points r. These points were located to the
nodes of a bcc lattice inside A. This particular choice of
points r was allowed because our simulations were made
in the fluid phase of the OCP. The quantities
A,(K,Q), T(K),I'(¢),... were estimated from averages
over these values of &(z).

Three sets of MD runs were performed for I in the vi-
cinity of 1, 5, and 10; for each value of I" the cumulate
number of integration steps of these runs was 20000. At
these temperatures this number was sufficient to estimate
the dynamical and equilibrium quantities with an uncer-
tainty of a few percent. For instance, the values of u,,
were —0.579, —3.743, and —7.989 for the precise values
of I'=1.007, 4.985, and 10.006.

B. Static quantities

The static functions T(K), Py(£), and P, (£) evaluated
by MD are presented in Figs. 1, 2, and 3, respectively.
The decrease of T'(K) is faster for =1 than for '=5
and I'=10. The domain of K where the values of T (K)
are larger than the statistical noise is K < 5a?/e. The sta-
tistical error on this function is estimated of the order of
2%. The distribution P (&) is obtained from the com-
parison between the MD data for P,(§) at successive
large times. This comparison shows that P,(£) has
reached its asymptotic value (with a precision of 1 or 2%)
for t ~275 at I'=1, and for t ~571, at [ =5, 10, where the
relaxation time 7, is defined by

TK)

FIG. 1. The Fourier transform 7(K) of the probability dis-
tribution of the electric field at I'=1, 5, and 10. K is in units of
a?/e. Solid line and triangles, MD; dotted line, APEX. Dashed
line, Holtzmark; dash-dotted line, mean-force.
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=—. (4.2)

The distributions Py(&) and P, (&) are rather broad. For

J

sin[ Ke
TMEAP(g) = exp 1 [Keg

MF,AP(’,)] B
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instance, at ¢t =0, the most probable value of & differs
strongly from the average value.

The mean-force and APEX versions of the effective-
field form (3.15) of T(K) are obtained by replacing ef(r)
by e}¥(r) and e}¥(r), respectively. This gives

4mpe fo dr oMEAT ()

where e$F () is given by (3.27), while e)¥ (r) has a simi-
lar expression with kj, in place of « ;. We recall that this
expression of e}F(7) amounts to replacing S(|r'—r|) by
its Debye-Hiickel form in (3.20). The corresponding
form of TMF(K) is particularly simple, since it does not
involve any ingredient which has to be determined by
other theories. The sole ingredient of TAP(K) is the ratio
K 4 /kp which, according to (3.28), requires knowledge of
uo.(T). A sophisticated fit of the latter?’ gives

0.660 1
K4 4/kp=10.387 I'= 35 (4.4)
0.292, 10 .

The curves representing TMF(K) and TAP(K) (with K in
units of a?/e) are shown in Fig. 1. At =1, the agree-
ment between APEX and the MD results is excellent,

FIG. 2. The probability distribution Py(£) of [6(0)] at
I'=1, 5, and 10. £ is in units of e?/a*. Solid line, MD; dotted
line, APEX; dash-dotted line, mean-force; dashed line, Holts-
mark. The mean-force and Holtsmark curves are not shown at
I'=5and 10.

Keg™AP(r)

4.3)

3k

within statistical error. The mean-force approximation
slightly overestimates the values of 7'(K). This defect be-
comes very important at I'=5,10 [even when a more ac-
curate description of S(|r'—r|) than Debye-Hiickel is
used'®] and the corresponding curves are not shown. For
these values of I', a significative disagreement between
APEX and MD progressively appears for large K. How-
ever, the APEX predictions remain quite reasonable over
a wide range of K.

The static distributions WMF(E) and WAP(E) are easi-
ly computed by taking (numerically) the three-
dimensional inverse Fourier transform with respect to K
of (4.3), i.e.,

WMEAP(f) = ] [ “dK K sin(KE)TMPAR(K) . (4.5)

27%E Yo
Similarly, the corresponding distribution of a Cartesian
component E, of E is given by one-dimensional Fourier
transform, i.e.,

WMEAP(E )= % f 0°°dK cos(KE, ) TME-AP(K) . (4.6)

I =100

FIG. 3. The same as Fig. 2 for the probability distribution
P (&) of E(x)-6(0).
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The distributions PYFAP(£) and PMFAF(£) are then cal-
culated by inserting (4.5) and (4.6) into (2.21) and (2.22).
The results are displayed in Figs. 2 and 3. At I'=1,
PYF(&) and PMF(£) are too large for small values of &,
because the whole distribution WMF(E) is shifted to low
fields with respect to the “exact” MD distribution. When
£ increases, the accuracy of the mean-force theory im-
proves. As could be expected from the above study of
T(K), the accuracy of APEX over the full range of £ is
remarkable at '=1. At I'=35, 10, this accuracy becomes
less spectacular, but the relative disagreements with the
MD data do not exceed a few percent.

C. Reduced dynamical quantities

1. The autororrelation function of the field

The function I'(#) has been calculated for the three
values of I" and the MD results are plotted in Figs. 4 and
5. The exact value of (6%0)) is infinite due to the fact
that during the evolution of the system at some values of
t the position of an ion can coincide with any point of A.
In the MD simulation, due to the finite duration of the
runs and the limited number of points r used for the sam-
pling of &(t), these events do not occur. This shortcom-
ing of the MD simulation increases the statistical uncer-
tainty on I'(#) at small time where rare but very large
contributions are missing in the statistical averages. The
comparison between the results of independent simula-
tions at constant I" and also with the exact small-time ex-
pansion (2.18) of I'(¢) leads to the conclusion that the
MD data for this function are not reliable for ¢ <0.27,
and that the statistical error on I'(¢) for ¢ =7, is about
10-15 %.

In principle, the mean-force effective-field theory
should give the right covariance I'(¢) of P(Et|Ey0), pro-
vided that the exact Van Hove function S(|r—r'|,¢) is
used in (3.18). Here, the replacement of the latter by the
“three-pole” form (3.21) leads to an approximate covari-
ance,

™ (t)=p [ dre(r)-eM(r)

—g,2 @ 3

8e pfo dk Sip(k,t) . @.7)
At T'=1, TM¥(z) reproduces the oscillatory behavior of
I'(z) (see Fig. 4). The amplitude of the negative first oscil-
lation is well described, while the amplitude of the posi-
tive second oscillation is overestimated. Furthermore,
there is a phase difference between the oscillations of
I'MF(¢) and those of I'(¢); in particular, the zeros of
I'MF(¢) are shifted to smaller times with respect to the
MD ones. These shortcomings of I'M¥(¢) are due mainly
to the “three-pole” approximation itself, rather than to
the use of the Debye-Hiickel form for S(k) [we have
checked that the replacement of S(k) by its hypernetted-
chain (HNC) expression does not modify significantly
MF(1)).

In the APEX effective-field approach, the function I'(z)
plays the role of an ingredient, which is used as a con-
straint for choosing e**(r). In particular, the expression
(3.31) of efP(r) together with (3.33) and (3.38) gives
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I =10
2 704
5
g
S ]
5.0
3.0
10 -
-10 — e ———
0.0 10 2.0 3.0

FIG. 4. The autocorrelation function (&(0)-&(z)) of the
electric field at T=1. (&(0)-6(¢)) and ¢ are in units of e?/a*
and 7, respectively. Solid line, MD; dotted line, APEX; dashed
line, small-time expansion (2.18); short-dashed—long-dashed
line, mean-force; dash-dotted line, Brissaud-Frisch.

[through (3.37)] an APEX covariance I'*P(¢), whose
small-term expansion reproduces the exact one (2.18) up
to the constant term included. The free parameter 7 , in
(3.38) is now determined through a compromise between
the location of the first zero and the amplitude of the neg-
ative first oscillation in I'P(¢) compared to their MD
counterparts.”* The two other APEX parameters  , /k;,
and (dw 4 /dk)(kp /wp) are computed from the fits?® of
U o(T') and X% /x 1 as (4.4) and

0.420 1
Kp dw 4
o ak —0.184 TI'= 15 (4.8)
P —0.478 , 10,
respectively. We then find
\ I' =10.0

<60-60>

T =10
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0

1,

FIG. 5. The same as Fig. 4 at I’'=35 and 10, without the
mean-force curve.



1.9 1
n4= 70.4 r'=is (4.9)
0.24, 10 .

The curves representing I'“F(¢) are shown in Figs. 4 and
5. At I'=1, the APEX form is quite good and is better
than the mean-force one. At I'=5, I'*P(¢) almost fits the
MD results up to the first zero of I'(¢). However, the
positive second oscillation of I'F(¢) (which has the right
location) is too large by a factor 3. At I'=10, the MD
I'(¢) tends to be monotonic in the sense that its oscilla-
tions have very small amplitudes. The APEX representa-
tion fails in describing this peculiar behavior, since the
oscillations in T'AF(¢) remain rather large (except the neg-
ative first one, of course).

As in APEX, I'(?) is used as an ingredient in the Bris-
saud and Frisch model for P(Et? IEOO) which is described
in Appendix C. The Brissaud and Frisch covariance
reads

FBF(t)=f0°°dE E*PP¥(E)exp[ —v(E)t] , (4.10)

where the field-dependent jumping time density v(E) has
to be determined from the exact data relative to I'().
Since I'BF(¢) obviously is always positive, the oscillations
of I'(t) cannot be reproduced by any choice of v(E).
Therefore, and for the sake of simplicity in the calcula-
tions, we just require that T'BF(¢) reduces to the expres-
sion

27 172 U o(T)

3

__4(2mBm ) %e?p
rBF(¢)= 37

t

exp w,t

>

(4.11)

which reproduces the short-time expansion (2.18) up to
the constant term included. The corresponding v(E) is
given by (see Appendix C)

172
_ 2T uexc(r)
WE)=wp | — EY SN
1 E i 2 pBF 1o
+—————— | dE'E'"*P”(E")
4(277,)1/262ka fO

(4.12)

The functions I'BF(z) are represented in Figs. 4 and 5. At

small times, the agreement with the MD results is of
|

l

HMF,AP( l) =1lim AtlviF,AP
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HO

FIG. 6. The Fourier transform H(!) of the probability distri-
bution of the time derivative of the electric field at =1, 5, and
10. [ is in units of (ma’/e*)!”%. Solid line and triangles, MD;
dotted line, exponentiated response; dashed line, free particles.

course satisfactory. At intermediate times (75 =t = 57),
the comparisons with the MD data are very poor because
of the absence of oscillations in T'BF(z).

2. The probability distribution G ( f)
of the time derivative of the field

The Fourier transform H () of G (f) evaluated by MD
is presented in Fig. 6 for the three values of I'. The sta-
tistical error on this function is of the order of 2% and
the domain of / where the values of H (/) are significant
corresponds to I <57ya’/e. The function H (/) is mono-
tonically decaying, with a kink at / =0. The decay is fas-
ter when I’ is lowered. This implies that G (f) then shifts
to high values of f and broadens.

The effective-field descriptions of 4,(K,Q) provide ap-
proximate representations of H (/) through the identity

1 sin{I[8eMFAP(r) /31 1], =0}

p =exp |4mpe fo dr oMiF.

t—0

where the last line of (4.13) follows from the replacement
of AMFAY(1/t,—1/t) by (3.12) with e}(r)=eMFAP(r)
and K=—Q=I[/t. In the mean-force scheme,
3eMF(r)/dt|,—, identically vanishes and consequently
HMF(]) reduces to 1. In the APEX scheme, deA¥(r) /0t
diverges when ¢ goes to zero at any r#0. We then find

(4.13)

AP(p)

(2.25). We find
_1 ,
1[8eMPAP(r) /3t 1], o ’ ]

HAP(0)=1 and HAP(I)=0 for I50. Both mean-force
and APEX forms of H (/) turn out to be quite bad.

In fact, specific approximations for H (/) can be de-
rived from Eq. (2.26), independently of the general
effective-field approaches mentioned above. The first one
is equivalent to the Holtsmark treatment of 7(K) and
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amounts to neglect of the interactions between the parti-
cles. The corresponding free-particle expression of H (/)

is
172
/|

(4.14)
As shown in Appendix D, a second one can be obtained
by starting from the integral representation of H (/) over
the coupling parameter A varying from O to /2 In this
representation, the particles of the system are coupled to
an external potential with magnitude proportional to A,
which can be interpreted as the potential created by a
fictitious scatterer fixed at the origin. Making a simple
ansatz (inspired by linear-response theory) for the corre-
sponding pair correlation g,(r) between the scatterer
and one particle, we find (see Appendix D) the
exponentiated-response (ER) expression
3

’IT€2

arg sinhV3
2Bma’

2V'3

1+

Hf(I)=exp

92

Bma’

arg sinhV/3
2V73

HER(])=exp 1+

, (4.15)

? © .1 ER
xfo dkfo dr—2g 28 ()

where gER(r) is given by (D9). Both approximate forms
(4.14) and (4.15) are represented in Fig. 6. The free (fr)
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modulus of f has a maximum whose location and width
are too small. The exponentiated-response form im-
proves over the free one. At I'=1, the accuracy of the
former is excellent. At I'=5,10, this accuracy becomes
less spectacular, but the overall quantitative agreement
with the MD data remains quite reasonable.

D. The full time-dependent joint probability

The direct evaluation of P(Et|E,0) by MD would be
rather involved; so for the purpose of the comparison be-
tween theory and simulation, we have calculated the
equivalent quantity 4,(K,Q). A part of the MD data are
given in Tables I-III. The limit behavior (2.12) of
A,(K,Q) when t— o is reached within statistical error
for t=7, and t=27,,37, respectively for I'=1 and
I'=5,10; these results give a reliable estimate of the re-
laxation time of 4,(K,Q) at these couplings. The relaxa-
tion of 4,(K,Q) is generally monotonic when K and Q
are such that T(|K+Q|) is larger than T(K)T(Q).
When this last relation is not verified the relaxation can
show strongly damped oscillations. The data in the
tables show that the range of values of K and Q where
A4,(K,Q) differs significantly from the statistical noise is
between 0 and 5a?2/e.

approximation is qualitatively correct but overestimates

The mean-force and APEX forms of 4,(K,Q) can be
H(l). The corresponding distribution 47f2G(f) of the

rewritten from (3.12) with eM™AP(r) in place of e*(r) as

TABLE 1. The Fourier transform 4,(K,Q) of the joint probability density P(Et|Ey0) at I'=1, for various values of X ,Q (in units
of a?/e) and 6 as a function of the time ¢ (in units of 7,). Each line corresponds to a given set (K,Q,6) while each column corre-
sponds to a given time. In each box: top-left corner, MD; top-right corner, APEX; bottom-left corner, mean-force; bottom-right
corner, Brissaud-Frisch.

K Q 6 0 0.15 0.30 0.50 0.80 1.0 0
0.786 0.780
0.5 0.0 0 0.805 0.780
0.677 0.672 0.650 0.655 0.649 0.619 0.629 0.609 0.617 0.607 0.615 0.607 0.617 0.608
05 05 @/2 0713 0.672 0.707 0.642 0.652 0.628 0.649 0.619 0.648 0.613 0.648 0.610 0.648 0.608
0.491 0484 0483 0465 0467 0437 0443 0419 0.424 0417 0421 0417 0421 0416
05 1.0 =#/2 0546 0484 0.543 0457 0.484 0.443 0477 0432 0476 0425 0476 0421 0476 0416
0.200 0.204 0.200 0.195 0.195 0.185 0.182 0.172 0.167 0.169 0.166 0.169 0.164 0.168
05 20 wm/2 0276 0.204 0275 0.192 0.245 0.186 0.234 0.180 0.233 0.176 0.233 0.173 0233 0.168
0.536 0.534
1.0 0.0 0 0.591 0.534
0272 0.279 0.273 0.270 0.276 0.260 0.276 0.265 0.284 0.292 0.290 0.301 0.287 0.285
1.0 1.0 #/3 0353 0279 0353 0270 0.289 0268 0.325 0269 0.366 0273 0370 0.275 0.350 0.285
0.373 0374 0.364 0.351 0.345 0316 0.318 0.290 0.292 0.286 0.289 0.286 0.287 0.285
1.0 1.0 =7/2 0445 0.374 0443 0344 0.369 0.327 0350 0.313 0349 0.300 0349 0.296 0.350 0.285
0.274 0.279 0.268 0.247 0.226 0.198 0.175 0.141 0.126 0.111 0.112 0.104 0.111 0.115
1.0 20 27/3 0353 0279 0.353 0241 0300 0.215 0205 0.189 0.158 0.163 0.152 0.151 0.170 0.115
0.208 0.216
2.0 0.0 0 0.289 0.216
0.084 0.094 0.077 0.082 0.070 0.067 0.061 0.051 0.047 0.047 0.042 0.047 0.043 0.047
20 20 w/2 0152 0.094 0.152 0.082 0.127 0.075 0.087 0.068 0.085 0.060 0.084 0.057 0.083 0.047
0.218 0.216 0.195 0.177 0.149 0.119 0.094 0.065 0.049 0.043 0.040 0.039 0.043 0.047
20 20 27/3 0289 0216 0.289 0.181 0.245 0.156 0.125 0.129 0.073 0.100 0.067 0.089 0.083 0.047
0.018 0.023 0.015 0.021 0.015 0.019 0.013 0.016 0010 0.013 0.010 0.014 0.011 0.012
40 10 w/2 0.052 0023 0.052 0.021 0.046 0.019 0.036 0.018 0.035 0.017 0.028 0.016 0.034 0.012
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TABLE II. The same as Table I at I'=35 without the mean-force results.
K Q (7] 0 0.40 0.80 1.00 2.00
0.814 0.795
0.5 0.0 0 0.795
0.724 0.697 0.709 0.671 0.684 0.642 0.675 0.637 0.659 0.633 0.662 0.632
0.5 0.5 w/2 0.697 0.661 0.68 0.684 0.643 0.634 0.632
0.562 0.523 0.549 0.501 0.523 0.470 0.509 0.462 0.489 0.454 0.494 0.453
0.5 1.0 T/2 0.523 0.487 0.517 0.467 0.456 0.453
0.290 0.248 0.287 0.234 0.271 0.226 0.262 0.219 0.244 0.209 0.244 0.207
0.5 2.0 T/2 0.248 0.234 0.250 0.219 0.211 0.207
0.607 0.569
1.0 0.0 0 0.569
0.369 0.325 0.366 0.313 0.366 0.296 0.367 0.294 0.380 0.309 0.368 0.324
1.0 1.0 w/3 0.325 0.312 0.310 0.311 0.315 0.324
0.460 0.418 0.443 0.393 0.411 0.354 0.395 0.341 0.363 0.326 0.368 0.324
1.0 1.0 7/2 0.418 0.377 0.356 0.349 0.331 0.324
0.370 0.325 0.336 0.293 0.264 0.245 0.229 0.219 0.164 0.164 0.182 0.148
1.0 2.0 27/3 0.33 0.266 0.230 0.217 0.177 0.148
0.300 0.261
2.0 0.0 0 0.261
0.158 0.129 0.150 0.117 0.128 0.101 0.117 0.091 0.081 0.071 0.090 0.068
2.0 2.0 T/2 0.129 0.108 0.096 0.091 0.071 0.068
0.306 0.261 0.252 0.222 0.165 0.165 0.131 0.135 0.074 0.080 0.090 0.068
2.0 2.0 2w/3 0.261 0.201 0.163 0.149 0.078 0.068
0.050 0.040 0.049 0.037 0.045 0.033 0.041 0.032 0.031 0.030 0.033 0.025
4.0 1.0 w/2 0.040 0.035 0.031 0.031 0.028 0.025
TABLE III. The same as Table IT at I"'=10.
K Q 0 0 0.40 0.80 1.00 2.00
0.822 0.799
0.5 0.0 0 0.799
0.739 0.704 0.729 0.688 0.712 0.662 0.702 0.653 0.680 0.641 0.675 0.640
0.5 0.5 T/2 0.704 0.674 0.660 0.655 0.644 0.640
0.585 0.533 0.578 0.519 0.516 0.500 0.551 0.488 0.518 0.467 0.517 0.463
0.5 1.0 m/2 0.533 0.503 0.488 0.483 0.470 0.463
0.325 0.261 0.324 0.253 0.315 0.245 0.309 0.242 0.278 0.224 0.273 0.219
0.5 2.0 T/2 0.261 0.245 0.237 0.234 0.225 0.219
0.629 0.579
1.0 0.0 0 0.579
0.403 0.337 0.401 0.327 0.401 0.314 0.403 0.305 0.404 0.294 0.395 0.335
1.0 1.0 T/3 0.337 0.326 0.332 0.322 0.324 0.335
0.489 0.430 0.479 0.414 0.456 0.393 0.443 0.377 0.394 0.343 0.395 0.335
1.0 1.0 T/2 0.430 0.397 0.376 0.369 0.348 0.335
0.403 0.337 0.380 0.322 0.324 0.302 0.296 0.288 0.204 0.221 0.208 0.158
1.0 2.0 2w/3 0.337 0.289 0.257 0.244 0.202 0.158
0.332 0.274
2.0 0.0 0 0.274
0.191 0.139 0.180 0.132 0.159 0.124 0.153 0.120 0.109 0.088 0.111 0.075
2.0 2.0 7/2 0.139 0.121 0.109 0.105 0.080 0.075
0.335 0.273 0.300 0.256 0.231 0.232 0.200 0.219 0.107 0.137 0.111 0.075
2.0 2.0 2w/3 0.273 0.224 0.190 0.176 0.129 0.075
0.071 0.032 0.069 0.069 0.063 0.041 0.061 0.041 0.043 0.035 0.047 0.029
4.0 1.0 T/2 0.032 0.041 0.038 0.037 0.033 0.029
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w 1 sin[ [KeMF-AP(r)+ Qe dF-AP ()| ]
AMPAR(K,Q)=exp |2mpe f dr—irar MtF AP MF, AP
0 eMFAP(y) |KeMF-AP(7) 4+ Qe MF-AP (1))

sin[ |QeMFAP(r)+ KedFAP(£)|]  sin[KeYFAP(r)]
|QeMPAR(r)+Keg™AP (1) Keg™ AP (r)
sin[QedFAP(7)]  sin[KeMFAP(r)] sin[Qe,MF’AP(r)}_ ‘

QeMFAP (1) - KeMFAP(y) QeMF-AP ()

>

(4.16)
where the effective fields are given by
ME, +__ 2e o sin(kr) ~
el (r)—;;fo dk | === —cos(kr) |S3p(k,1) 4.17a)
AP 2_2_6 © Sin(kr) _ = 4.17b
e ==" [ “dk |25 —costkr) |D (k1) (4.17b)

The expressions (4.17a) and (4.17b) are readily obtained by replacing the convolution integrals in the rhs of (3.18) and
(3.31), by integrals over k of the product of the Fourier transforms of the bare Coulomb field e(r’) and of the space dis-
tributions S(|r'—r|,7) and D ,(|r'—r|,#). Moreover, S;p(k,t) and D ,(k,t) are determined through the sets of equa-
tions (3.21)-(3.26) and (3.33), (3.38), respectively, while the APEX parameters are given in Egs. (4.4), (4.8), and (4.9) for
the three considered values of I'. The Brissaud and Frisch form for 4,(K,Q) is derived in Appendix C with the result
sin(|[K+Q|E)

IK+Q|E

sin(KE,) sin(QE)
KE, QOFE

V(E)[v(E)—{v)BF]
(V)BF[WE)—v(E)]

APF(K,Q)=TPFK)TBF(Q)+ f0°°dE PBF(E)exp[ — v E)t]

_ *© «© BF, BF
JTdE [ “dEPPREPPT(E,)

WE) [V(Eq)—{v)PF]
(v)BF [v(E,)—v(E)]

exp[ —v(E)t]+

exp[—v(EO)t]] . (4.18)

The static distribution PBF(E) of the modulus of the elec-
tric microfield plays the role of an ingredient in the Bris-
saud and Frisch theory. Here, we choose PBF(E) equal to

PAP(E), which is the best approximate representation of 06 oty

the exact distribution (see Sec. IV B). The jumping densi- ] I ——
ty v(E) is then given by (4.12) with PPF(E)=PAP(E). 0.2 — — ,
The latter choice of PBF(E) implies that 4PF(K,Q) and 0.0 10 2.0 3.0

AP(K,Q) have the same static limits at t =0 and t = .

Tables I-III summarize the comparison of theory and 10 =50
simulation for various values of K,Q and of the angle 1
between K and Q. At I'=1, the agreement between 0.6

simulations and theory is satisfactory. The mean-force R A
approximation cannot be very accurate because its
description of the static limits is only semiquantitative
(see Sec. IV B); however, it reproduces the qualitative
variations of 4,(K,Q) with respect to . The APEX and

—§ =
Brissaud-Frisch theories give more accurate results. For 10 b=t
angles between 7/3 and 27 /3, the oscillatory behavior of i < o
A,(K,Q) observed in MD is not well described by the BF 061 .. a
form which is almost monotonic. The APEX form has 1 R
the right oscillations but their amplitude is overestimat- 0.2 — — o

ed. For angles close to O or 7 (K parallel or antiparallel
to Q), APEX is slightly more accurate than BF, and its

overall agreement with the MD results is quite reasonable FIG. 7. The Fourier transform 4,(K,Q) of the }.oint proba-

(see Fig. 7). At I'=5,10 the above qualitative features
remain almost unchanged, with the only difference that
the MD 4,(K,Q) exhibits less structure than at I'=1.
For these values of I, the predictions of APEX and BF
are only semiquantitative (see Tables II and III). Finally,

bility density P(Et|E,0) at T =1,A5,Aand 10, for two sets of
values of (K,Q,0) with 6=arccos(K-Q). The time ¢ is in units
of 75. Open circles, MD; solid line, APEX (results for
K=Q=a’/e and 6=w). Open triangles, MD; dotted line,
APEX (results for K=0Q=0.5a%/e and 0=27/3).
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APEX appears to be the most accurate theory. Its main
shortcomings are, first, to overestimate both the varia-
tions of 4,(K,Q) at small times (¢ <0.57,) and the ampli-
tude of its oscillations at intermediate times
(0.57,<t<1.57y), second, to miss small large-time
(1.57¢<1) oscillations when I" increases.

V. CONCLUSION

The effective-field approach provides simple and reli-
able expressions for the Fourier transform A4,(K,Q) of
the joint probability density P(Et|E,0). The mean-force
version of this approach has a range of validity which is
restricted to the weak-coupling regime (I" small), because
its description of the static limits at zero and infinite time
becomes rather poor when I' increases. The APEX
effective-field theory overcomes this defect and remains
reasonably accurate in the intermediate coupling regime
(1=I'<10). In particular, APEX reproduces the oscilla-
tory behavior of 4,(K,Q) which is linked to the plasmon
oscillations. Moreover, this theory relies on a very few
ingredients which, in a simplified version, can be ulti-
mately expressed in terms of the excess internal energy
U (') only (see Refs. 28 and 29).

Despite its rather crude representation of the dynamics
of the microfield, the Brissaud and Frisch model gives
reasonable results for 4,(K,Q), if one uses the APEX
form of the static distribution 7 (K) [these results should
be improved by including in 7 (K) the first corrections to
APEX calculated in Ref. 16]. In fact, similarly to what
happens in the case of the time-displaced particle correla-
tions (see Ref. 20, for instance), a good description of the
static limits guarantees a minimal accuracy at intermedi-
ate times (this also explains in part the success of the
dynamical APEX theory). The Brissaud and Frisch mod-
el is not as accurate as the APEX effective-field approach,
for the main reason that it misses the oscillatory behav-
iors of 4,(K,Q) and of the covariance I'(¢) (however, the
quantitative differences between both approximations are
not very spectacular because the amplitudes of the corre-
sponding oscillations turn out to be rather small). More-
over, the former theory predicts that the zero-time delta
peak 8(E—E,) in P(Et|Ey0) survives for all times with
an exponentially decaying amplitude (see Appendix C),
whereas APEX correctly describes (from a qualitative
point of view) the shifting and broadening of this peak at
t0.

Although the global predictions relative to P(Et|Ey0)
of the APEX theory are satisfactory, one has to be care-
ful when calculating reduced dynamical quantities within
this approximation. This is well illustrated by the case of
the distribution G(f) of the time derivative of the
microfield, which is poorly represented by APEX [similar
results should also be observed for the conditional mo-
ments of Chandrasekhar and von Neumann!?® which can
be deduced from lim,_o4,(K+1/¢t,—1/t)]. In fact,
specific representations of the above quantities should be
useful for improving the present choice of the APEX
effective-field e‘;‘P(r). For instance, the exponentiated-
response form of G(f) and a hydrodynamic expression
[via S (k,t)] of the autocorrelation function I'(¢) provide
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constraints on, respectively, the small- and large-time be-
haviors of e*P(r) [the present APEX description of I'(¢)
at large times becomes poor when I' increases].

Compared to other theories the effective-field approach
has the following main advantages. First, this method
directly provides explicit expressions for the quantities of
interest without having to solve complicated evolution
equations as would be the case in a standard Kinetic
theory. Second, it allows one to incorporate, in a phe-
nomenological way, the essential features of the particle
dynamics like, for instance, the screening effects®® or the
plasmon oscillations and the qualitative shapes of the re-
lated dispersion curves. This cannot be done in ap-
proaches of the Brissaud-Frisch type which “forget” the
origin of the microfield. Finally, the flexibility in the
choice of the effective field should be useful in the appli-
cation of the theory to other situations than the one stud-
ied in this paper, e.g., multicomponent systems or radiat-
ing ions [in the latter case &(¢) would be the electric field
“seen” by a moving charge of the system].

Recently, Dufty and Zogaib®' have introduced an
independent-particle model for describing A4,(K,Q)
which is similar to our approach. In their model,
A,(K,Q) is expressed in terms of a static effective field
ej(r) via a suitable renormalization of a generalized
Baranger-Mozer cluster expansion of In[ 4,(K,Q)] (this
procedure extends to the dynamical case the method used
for dealing with the static distribution'®). In this model,
the dynamics of the charges is incorporated in the corre-
lations between particle densities at different times and
points r and r’ which are multiplied by weight factors
{exp[iK-e3(r)]—1} and {exp[iQ-e}(r')]—1} in in-
tegrals over r and r’. In our approach, such dynamics are
incorporated in the effective field itself which is time
dependent.

As far as line-shape calculations are concerned, it has
been shown in the literature®”3? that the Brissaud and
Frisch model may give satisfactory results. Our study is
compatible with this observation, since the corresponding
description of the dynamics of the microfield turns out to
be semiquantitative. It is then tempting to think that the
effective-field approach should be helpful for improving
the Brissaud-Frisch calculations of spectral lines, espe-
cially when the latter show strong disagreements with ex-
perimental data® (of course these disagreements arise
from various uncontrolled approximations and cannot be
entirely removed through a better representation of the
microfield dynamics). However, it still remains to derive
tractable expressions of the frequency profiles in the
framework of effective-field models. The simple expres-
sions obtained in the BF theory are indeed very specific
to the Kangaroo process.
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APPENDIX A

In this appendix, we study the small-time expansion of I'(#) and compute its first terms. For this, we start from the
expression (2.16) of I'(¢) where we split S(k,¢) in a “self”” part S,(k,¢) and a “distinct” part S;(k,¢) given by

N
pS,(k,t)= fdrexp(ik-r)( b 8(r,-(t)—r)8(r,—(0)—0)> ,

i=1

N
pS,(k,1)= [ dr explik-r) < S 8(r,(1)—1)8(r;(0)—0)

iLj=1
i#j

Let T";(#) and T";(¢) be the contributions of, respectively,
the self (A1) and distinct (A2) parts of S(k,t) to I'(z).
The small-time expansion of I',;(#) is easily inferred from
the one of S, (k,¢).

Sy(k,)="3 ¢S (k) ,
n=0

(A3)

because all the functions S ?"(k) are integrable with
respect to k. Inserting (A3) in (2.16) and inverting the
sum over n and the integral over k, we then obtain the re-
quired expansion of I";(¢),

Ty(=8e’p 3 1> [ “dk 5 §"(k) , (A4)

n=0

which contains only even powers of ¢. The first two terms
in the rhs of (A4) are immediately computed by using the
fact that S (k) /p is nothing but the Fourier transform
of the Ursell function 4 (r) while S fz)(k) vanishes [the ¢2
term in the expansion of the full S(k,¢?) entirely arises
from free motion and does not depend on the interac-
tions]. We find

[, (t)=8mpkyTu, (T)+0(t*) , (A5)

where u,, (I') is the excess internal energy of the OCP in
units of k5 T,

dry - -drydv, - dvye(v,y) - @(vylexp[ —BV(0,r,, . ..

(A1)
>—p2 (A2)
[
—Bp 4.2
o 1) =5 [ dr —h(r)
=_é)£i bl S (0)
— [ Tdk S P (A6)

[the last line of (A6) follows from Parseval’s theorem].

The expansion of I' (¢) cannot be obtained by a simple
term-by-term integration over k of the expansion of
S,(k,t) in powers of ¢ because the involved functions of k
do not decay when k-»>o. For instance, one has
S©®(k)=1 which is obviously nonintegrable. This
difficulty reflects the singular behavior of I',(¢) when
t—0 which is linked to the divergence of
['(0)=([&(0)]*) (the latter arises from “self”’ contribu-
tions of particles close to the considered neutral point).
In order to determine this behavior, it is in fact more ap-
propriate to expand S;(k,¢) around its “free-gas” expres-
sion exp(—k?t2/2mpB). First, the definition (A1) can be
rewritten as

S, (k,t)= [ dv,@(v; ) explik-r()])}, (A7)
where @(v)=(Bm /27)3%exp(—Bmv?/2) is the normal-
ized Maxwellian distribution of the velocities, r,(¢) is the
position of particle 1 at time ¢ with the initial conditions
r(0)=0 and v,(0)=v,, and the measure which defines
the average { )} is

fa'r2 -+ -dryexp[ —BV(0,r,, . ..,1y)]

»Ty)
2l (A8)

Let s,(¢) be the deviation from free motion at time ¢ defined through

ri(t)=vit+s,(1) .

(A9)

Inserting (A9) in (A7) and taking into account that the measure (A8) does not depend on v,, we obtain

S,(k,0)= [ dv,@(v;)explik-v,t){exp[ik-s,(£)])}

= [ dv,p(v,)explik-v,t) |1+ 3 %([ik-sl(t)]”ﬂ, .

n=1""

(A10)
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The Taylor expansion of s,(¢) around ¢ =0 reads

(1) X P dpsl
(=3 ———
! péz )4 ! dt?
[s;(0) and ds,/dt(0) vanish because of the definition (A9)
of s,(¢)]. The time derivatives d?s,/dt?(0) can be calcu-
lated recursively from Newton’s equations of motion,

(A11)

d2

d 2

as polynomials in the initial velocities v,v,, ..., vy with
coefficients proportional to gradients of the total interac-
tion potential V evaluated for the initial spatial
configuration (0,r,, . . . ,ry). These polynomials are odd
with respect to the change of sign of all the velocities if p
is odd, and they are even otherwise. Taking also into ac-
count the parity of ¢(v) with respect to the change of v in
—v, we then see that the short-time expansion of
]

——s()=—V V(r|(1),...,ry(1)), (A12)

2.2 © k2nt4n ©
—k2%2/2mpB) |1+ 2

S (k,t)=exp(—

}‘, Q8. (kt)t?+ 2
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([ik-s,(£)]*)} starts at the order t*" at least, and the
coefficient of the corresponding term of order 7 is a poly-
nomial in v, with the parity of g. Since, for obvious sym-
metry reasons, {[ik-s,(#)]"){ is an even (odd) function of
v, if n is even (odd), the above coefficient necessarily van-
ishes if ¢ does not have the same parity as n. Therefore
we get

(=]
kmns, ‘Pﬁ,i(vl)t”’ , n even
p=0

(=]
kmen S PP (vt , n odd
p=0

([ik-s;(t) )= (A13)

where 7% 3(v,) is a polynomlal in v; with coefficients
which depend on n and k; is n is even (odd), 7% ;(vy) is
even (odd) in v, and of order 2p (2p +1). Using (A13 in

(A10) and inverting the discrete sums and the integration
over v,, we find the required expansion of S, (k,?) as

k2n+lt4n +3 «

S Q4,41 (k>

e (A14)
Qn+11 &

n=0

where Q4, (kt) [Q%, 1 (kt)] is an even (odd) polynomial in kt of order 2p (2p + 1) defined through

372

Bm fdvlexp —Bmv3/2) )P ¢(vy)exp(ike-v,

2

=exp(

—k2t2/2mB)QP(kt) . (A15)

[The Fourier transform of a Gaussian multiplied by a polynomial has the same structural form and QZ(kt) does not de-
pend on k because of the rotation invariance of the system.] The replacement of S| (k,¢) by (A14) in (2.16) together with
a term-by-term integration over k and the variable change u =kt /(2m3)!/? finally give

4e’p(2mmB)'?
t

2m/3)

()= 1/2 2

2mB)n+1/
(2n +1)

+ 1/2 20

The Laurent expansion (A16) of I' (¢#) contains only
odd powers of ¢, and its singular 1/¢ term is entirely
determined by the free motion. At a given order in ¢, one
has to collect a finite number of contributions in the
discrete sums over n and p. For instance, the linear term
arises from the two contributions (2n =2, p =0) and
(2n +1=1, p =0). Using the Taylor expansion (A11) of
s,(2), we find after a little algebra

i N N
??,ﬁ(vl)=—6;l<21(vj-vj Wk-V)V(0,r,, ... ,1y )>(1,
=
—-——Igwpk vy (A17)
and
P plvy)= ([kV V(0,15 ...,rx) )8
=1 »
B (A18)

p2n+2 > t2pf0°°du exp( _uz)uzn+1Q;2;n+1 [2mB)2u]
p=0

020 3 0% [ “du exp(—u?)u"Q8,[(2mB)' *u]
p=0

(A16)

[

Using (A17) and (A18) in (A15) we find
09 [(2mB ) 2ul=wlu /[9(2mP)'/*] and QI[(2mPB)" *u]
= ~a) /12mp, from which we easily compute the relat-

ed Gausswn integrals over u involved in (A16). The re-
sulting expression for ' (¢) is
2 1/2 w?t?
r,()=4epQmmB) " 1, | r—tou | . (a19)

The expression (2.18) for the full I'(#) is obtained by add-
ing (A19) to (AS).
APPENDIX B
The three-pole expression of S(k,w) is
Sip(k,0)
T3p(K)d(k)[ 0l (k)— w3, (k)]
{73 p(k)[0® =0} (K) P+ [0’ —af, (k)]

’

(B1)
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where the frequencies wy(k),wq,(k),w,;,(k) and the relaxa-
tion time 7;p(k) are given in the text. The rational frac-
tion in w (B1) has three pairs of complex-conjugate poles
which are the roots of

s T;:Eia —waﬁ,(k)+i%=0 : (B2)
o+ 73:;1() —ww%,(k)—ij_)iig =0. (B3)
The three roots of (B2) take the form
o, =a+ib,
w,=—a+ib , (B4)
w3=iy ,
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where a,3,7 are real positive numbers, while their com-
plex conjugates &, = —w,, &,= —w,, ®3= —w; are the
three roots of (B3). The expression (3.23) of y directly
follows from the usual Cartan method for solving third-
degree equations. The expression (3.25) for & and (3.26)
for a are then readily obtained by writing

]
Fo,=——
Cl)1+w2 w3 TSP(k) 5 ( )
BS

010, + 0103+ 0,03 =0 (k) .

The three-pole expression of S(k,t) is given by the
Fourier transform with respect to w of (Bl), i.e., (for
t>0)

N ok [} (k) —wd, (k)]

Siptk,0)= [ * dwexpliot)

_ 2iwj(k)[wh(k)—od(k)] 3

7T7'3p(k)((0_601 )(60_51)(w_wz)(w_52)(60_603)(0)_(33)

explio;t)

73p(K)

where we have used Cauchy’s theorem together with
Jordan’s lemma. The substitution of the roots w;,®,,;
by their forms (B4) in (B6) finally leads to the expression
(3.21) for S5p(k,t).

APPENDIX C

In the Brissaud-Frisch model, the microfield &(¢) is as-
sumed to evolve according to a stepwise constant sto-
chastic process: &(¢) jumps from E; to E; ,; at the jump-
ing time ¢; ,;, and remains constant between two succes-
sive jumping times. The jumping times ¢; are uniformly
and independently distributed with density v(E, _,), while
the constants E; are random vectors chosen independent-
ly with the same probability distribution WBF(E). This
process is known as the Kangaroo process [the simplified
version in which v(E) reduces to a constant v is called the
Poisson-step process]. The corresponding Fokker-Planck
equation which governs the evolution of PBF(E¢|E,0)
reads

BF,
OPTE(ED) _ —v(E)PBY(Et|EL0)
at
+Q(E) [ dE'V(E')PPF(E't|E0) ,

(C1)
with
V(E)WPBF(E)

(E)=
e [ dEVEHWPRE")

) (c2)

and the initial condition at t =0

i=10;=o;) [] (0;—o)0;—@;) ’
1))

PBY(EO|E,0)= WP (E,)8(E—E,) . (C3)

The choice (C2) for Q (E) guarantees that the stationary
solution of (C1) (apart from an irrelevant multiplicative
constant) indeed is WBF(E)WPB¥(E,). Equation (C1) can

be solved by means of Laplace transformation. If we
define
PBF(E,Ey;s)= fo“’dt PPF(Et|E0)exp(—st)  (C4)

and take into account the initial condition (C3), the La-
place transformation of (C1) leads to

PBF(E,EO;m:—Tjg)) S(E—Eo)+————-————-~R(f_(:_;i()§.;E) ,
(C5)
with
R(Egs)= [ dEVE)P®F(E,Egs) . (C6)

The multiplication of each side of (C5) by v(E) followed
by an integration over E provides a self-consistent equa-
tion for R (Eg;s), the solution of which is

V(E,)WEBF(E,)

R(Egs)= , (€N
[s+w(E,)] 1—;< v )BF
0 (v)BF \ (s +v)
with
(v)PF= [dEVE)WPH(E) ,
V2 vXE) 8
BF BF
<(s+v)> des-f—v(E)W (E) .

Replacing R (Eg;s) by (C7) in (C5) we finally obtain
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- WBFE,) WEWE,) WEE)WBF(E,)
PBF(E, Eys)= ————8(E—E,)+ 0 9 (C9)
s+v(E) V2
(v)BF— <—>BF [s +v(E)][s+v(E{)]
(s+v)

In order to find a simple closed analytic expression for PBF(Et|Ej0), we make the approximation
(v /(s +v))BF=((v)BF)? /(s + (v)BF) [the latter is an identity in the Poisson-step process where v(E) is constant].
The second term in the rhs of (C9) then becomes a rational fraction in s which is the Laplace transform of a linear com-
bination of exponentials in z. The corresponding expression for PBF(E¢|E0) is

PBF(Et|E0)=WBF(E,)exp[ —v(E,)t ]8(E—E,)

+WEBHE)WBF(E,) |1

V(E)[V(E)—{v)BF]

V(E)[W(Ey)—{v)BF]

The Fourier transformation of (C10) with respect to E
and E, leads to the expression (4.18) for AJBF with
PPY(E)=4mE*WPN(E).

The covariance I'BF(¢) can be directly computed from
(C1) without explicitly solving this equation for
PBF(Et|E0). Indeed, if we multiply each side of (C1) by
E-E; and integrate the resulting equality over E;, we ob-
tain

d
o7 J BB EP (Bl [EgD)

=—wE) [ dEE-E,PPF(Et|E0), (C11)

where we have used that f dE'v(E’)PBF(E'tiEOO) only
depends on the modulus E (and on ¢ of course). Taking
into account the initial condition

J dEE-E,PPF(EO|E0)=E2WPF(E) , (C12)

which follows from (C2), we easily integrate the linear or-
dinary differential equation (C11) as

J dEE-E(PPF(Et |[E0)=E2WPF(E)exp[ —v(E)t] .

(C13)
We then infer

I ()= [ dE E*WPF(E)exp[ —v(E)t] . (C14)

Let us determine a function v(E) which corresponds to
the choice (4.11) of I'®F(¢). Assuming a priori that v(E) is
monotonic, we can rewrite (C14) as

BF \— [ ® 4. E(V) > BF _
B%(r) fv(o)dv S5 EXVPPRE() exp(—v1)

(C15)

where E(v) is the inverse function of V(E) [v(E(v))=wv].
We see that (C15) does reduce to (4.11) if we impose

_

N exp

—%;(L;) }fdrz---drNexp

 (W)PF[W(E)—W(E,)]

exp[ —v(E)t] exp[ —v(Ey)t]

 (v)PF[W(E,)—WE)]

A N
—BV(r,r,, ... ,rN)—mjgztp(rj)

(C10)
dv(E) _  E’PPN(E)
dE  4e?p(2mBm)'?’ (16
a l/zuexc(r)
v(0)=— T —*1:573—*(0,, . (C17)

The integration of the ordinary differential equation
(C16) with the initial condition (C17) leads to the expres-
sion (4.12) for v(E). This expression is indeed monotonic
and always positive. When E — «, v(E) diverges: this
behavior is compatible with the physical fact that large
fields are produced by charges close to the considered ra-
diator and consequently vary rapidly in time.

APPENDIX D

In this appendix, we derive the exponentiated-response
form (4.15) of H(l). Our starting point is the exact ex-
pression (2.26) for H (/). Using a coupling-parameter in-
tegration technique, we rewrite the latter as

_ 1 12
H(I)=exp _Wfo dA [ drpg,(te(r) |, (D
with
2 2
o= |1+ 3% D2)
r r

and pg,(r) is the one-body density of the particles sub-
mitted to the external potential Ap(r)/(2m3?) created by
a fictitious scatterer fixed at the origin. For a system of
free particles, g, (r) reduces to exp[ —A@(r)/(2mp3)] and
then one easily finds from (D1) the free expression (4.14)
of H(Il). For the present system of interacting particles,
we shall introduce an approximate form of g,(r) which
interpolates between exact results at small and large dis-
tances and takes into account a neutrality constraint.

The small-distance behavior of g,(r) can be obtained
from

pgi(r)=

fdrl “--dryexp | —BV(ry, ...

)rN)

(D3)

——Zm—ﬁz‘p(rj)

AN]

Jj=1
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by expanding V(r,r,,..,ry) in Taylor series around

V(0,r,, . ..,ry). This gives
g, (r)~const X exp —2%3% ] (D4)

For studying the large-distance behavior of g, (r), we use
the perturbative expansion of [g,(r)—1] in powers of
Ap(r)/(2mpB?),

()—1=—=2— [drs(r—r)p(r)+0(A?) . (DS)
8 2mpB ¢ :
Strictly speaking, the integral in the rhs of (D5) as well as
all the other spatial integrals involved in the expansion
diverge because the singularity of ¢(r’) at the origin is
nonintegrable. However, these term-by-term divergent
contributions can be resummed into a finite one involving
the Mayer function exp[—A@(r)/(2mf3)]— Taking
into account the exponential decay of all the intrinsic
particle correlations of the system (at A=0), the latter
contribution also decays exponentially when r— .
Since @(r’) decays algebraically when r’'— o, the region
r’ close to r in the integral in (D5) gives algebraic contri-
butions to [g;(r)—1]. Expanding ¢(r’) in Taylor series
around ¢(r), we obtain

A
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where we have used the charge, dipole and Stillinger-
Lovett second-moment sum rules for S(|r'—r|),

fdr'S r'—r|)=0

Jdrw—os(r—r))=0 (D7)
fdr’(r —r)28(|r’ —r|)—~—3—
27Be’p

(these sum rules are reviewed by Martin?!). The terms

O(A?) in (D5) also give algebraic contributions to
[g,(r)—1], but the latter decay faster than the leading
contribution (D6) of the linear term. The lack of ex-
ponential clustering for g,(r) is due to the non-
Coulombic nature of the external potential Ap(r)/(2m B?)
and is linked to the algebraic nature of the dynamical
screening (see Ref. 30). Finally, we have the overall neu-
trality sum rule

[ drlg,(n—1]= (D8)

valid for any value of A. This sum rule, which holds for a
wide class of localized inhomogeneities (see, for instance,
Ref. 21), can be inferred from the first Born-Green-Yvon
(BGY) equation combined with clustering assumptions
which are indeed satisfied here.

The exact behaviors (D4) and (D6) together with the
sum rule (D8) provide constraints for the choice of the
approximate g, (r). We set

(1) —1~——">—>-V2(r)
&2 8mm Ble’p ¢
=% __ i 2, s Do
2rm B pr r
J
_he? Ae?
Rir)=ex ——+C, |[1—exp |—
81 P{ mBro A p 2C)Lm/3r6

CympBr

61a’ ]

’ , (D9)

where the constant C, is determined by imposing g5® (r) to satisfy the neutrality constraint (D8). This simplified iso-
tropic form of g, (r) does behave as the isotropic terms (which do not depend on x) in the asymptotic behaviors (D4)
and (D6). In order to take into account anisotropic effects, we replace the spatial integral in (D1) by

3e?
PE

argsinhV'3

1+
2v73

f dr——4gk )7

(D10)

where the coefficient [1+(argsinhv/3)/(2V3 3)] is the ratio of the correspondlng integrals evaluated with the free ex-

pressions associated to external potentials Ag(r)
pression (4.15) for HER(]).

/(2mfB?) and Ae?/(2m %

), respectively. This finally leads to the ex-
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