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Time-dependent statistical properties of the electric microfield seen by a neutral radiator
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We study the dynamical properties of the electric microfield at a fixed neutral point immersed in a
one-component plasma. We introduce an effective-field approach for describing the correlations be-
tween the microfield densities at two different times. In this approach, the essential features of the
dynamics of the charges that produce the microfleld are incorporated via suitable choices of the
effective field. We present two versions of the theory which, in the static limits, reduce to the
mean-force and adjustable-parameter exponential (APEX) approximations for the equilibrium dis-

tribution of the microfield. Both versions rely on a few ingredients determined through existent
theories for the dynamics and the statics of the particles. The comparison to the molecular-
dynamics data shows that the dynamical extension of APEX is the most reliable theory. The pre-
dictions of the Brissaud and Frisch model [J.Quant. Spectrosc. Radiat. Transfer 11, 1767 (1971)]for
the microfield dynamics are also tested against the simulation results. This model turns out to be
rather reasonable. However, it is not as accurate as APEX, and it misses oscillatory behaviors
(originating from the plasmon modes) which, on the contrary, are qualitatively reproduced by the
latter theory.

I. INTRODUCTION

The statistical properties of the time-dependent electric
microfield C(t) seen by a radiator (atom or ion) immersed
in a plasma play a key role in the determination of the
spectral line shapes. In principle, all the correlations in-
volving an arbitrary number of values of the microfield at
different times are necessary for a complete description of
the broadening and shifting mechanisms. Brissaud and
Frisch proposed a model for the time evolution of C(t),
making the assumption that C(t) is a stationary Markov
process. The central quantity is then the joint probability
P(Et ~EoO)dEdEo for C(t) to be in dE and for C(0) to be
in dEO. This is specified via a Fokker-Planck equation
that determines P{Et~Eo0) in terms of the static distribu-
tion W(E) and of the autocorrelation function
r(t)=(C(t) C(0)).

The Brissaud and Frisch model for Stark broadening is
particularly attractive for the following reasons. First, it
relies on ingredients which are reasonably known: I (t)
can be computed from plasma kinetic theory, and there
has been a large amount of theoretical work dedicated to
the determination of 8'(E). Second, it allows a simple
and unified calculation of the entire line shapes. Finally,
the resulting profiles have high-frequency wings that re-
duced to those computed from the quasistatic approxima-
tion, '' and their cores include effects which go beyond
the impact approximation. Consequently, this model has
been widely used in the calculations of atomic lines. It
gives quite accurate results for electron broadening

(which is reasonably described by impact theories) and
greatly improved results (compared with other theories)
in the description of ion broadening. Nevertheless, there
are still important discrepancies with experimental data
for ion broadening, especially when the motion of the
ions cannot be treated as a small perturbation (in general,
the ions are assumed to be static during the relevant radi-
ation times).

The discrepancies between the above model and the ex-
perimental data can be of various origins which will not
be discussed here. However, as already noted by Smith,
Talin, and Cooper, the Markovian description of
P(Et ~EcO) is rather crude, and is surely responsible for at
least part of the discrepancies. The main purpose of this
paper is to formulate an alternative approximation
scheme for- the joint probability density P(Et

~
EoO), by ex-

plicitly taking into account that C(t) is the sum of the
electric fields created by the charges of the plasma. This
suggests an effective-field approach, in which the dynam-
ics of the microfield is directly related to the motion of
the plasma particles on the basis of reasonable physical
arguments, without making an unfounded mathematical
assumption about the nature of the process. The
effective-fie1d method provides simple and tractable rep-
resentations of P(Et ~EcO) which should be useful in the
calculations of line shapes.

The effective-field method which we present here ex-
tends to the dynamical case an approach used previously
for the derivation of approximate forms of the static dis-
tribution of the microfield. ' '" It gives a generic approxi-
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mate representation of P(Et~EOO) in terms of a time-
dependent effective-field e,*(r). As in the static case, the
method allows various choices for e,*(r). We propose
essentially two determinations of the latter, which reduce
to their mean-force" and adjustable-parameter exponen-
tial' (APEX) approximations static counterparts respec-
tively at t =0. The mean-force choice is inspired by a
natural systematic expansion, while the APEX-like one is
motivated by the very accurate description of W(E) by
APEX (including, in particular, the regime where the
plasma particles are strongly correlated). The resulting
effective-field expressions for P(Et~EOO) incorporate the
basic mechanisms which govern the statistics and the dy-
namics of the charges, e.g., the screening effects and the
collective plasma oscillations. Moreover, their in-
gredients can be expressed in terms of well-known static
quantities involving the particles.

As far as an accurate calculation of the whole spectral
lines is concerned, it is necessary (and sometimes also
sufficient ) that the approximate forms of P(Et ~EoO) ac-
curately describe the statics, in the zero- and infinite-time
limits, and the autocorrelation function I (t), through
their covariances. Here these conditions will be used for
determining the best effective fields e,*(r). In this con-
text, 1 (t) takes on special importance. This motivated a
detailed study' in this paper: we compute its short-time
expansion and investigate the behavior of the probability
distribution P, (g) of C(r) C(0). In the same spirit, the
equilibrium distribution of the time derivative of the
microfield, G( f), is another reduced dynamical quantity
of interest whose determination does not require the full
knowledge of P(Et~EoO). While I (t) is the crucial in-
gredient of the impact approximation valid for fast mov-
ing charges, G( f) is an important object in opposite situ-
ations where short-time expansions around the quasistat-
ic approximation can be used. ' Here, we derive a
specific approximation for G( f) which is independent of
the effective-field theory of P(Et ~EoO). In addition to its
own interest, the corresponding form of G( f) might be
used for imposing an additional constraint on the choice
of the best effective-field e,*(r).

For the sake of simplicity, our calculations are restrict-
ed to the model one-component plasma (OCP). The OCP
is a system of identical point charges immersed in a neu-
tralizing rigid background. Here 6'(t) is the total electric
field created at a fixed neutral point by the mobile
charges and the background. This model is a good proto-
type for mimicking the statistical properties of the elec-
tric microfield seen by a radiating neutral atom immersed
in a mixture of ions and electrons when the latter are
strongly degenerate.

The paper is arranged as follows. In Sec. II, we define
the model as well as the quantities of interest. Their rela-
tionships and some exact results are also established; in
particular, the short-time expansion of (C(t) C(0))
(which diverges at t =0) is given up to the quadratic
term. The general effective-field theory for P(Er ~EoO) is
described in Sec. III, where the mean-force and APEX
choices of e,'(r) are presented and justified. The physical
interpretation of the former is also brieAy discussed. In
Sec. IV, we present the molecular-dynamics (MD) calcu-

II. DEFINITIONS AND GENERAL SETTING

A. Model

The model considered throughout this paper is the
one-component plasma. The OCP is a system of identical
point particles of charge e and mass I, embedded in a
uniform rigid background of the opposite charge. For a
finite system made of N particles in a box with volume A,
the background charge density is chosen equal to —ep
where p =N/A is the mean-particle density: this ensures
overall neutrality. The total interaction potential of the
system is then given by

V(r„. . . , rz)= —,
' g v(~r; —r. ~)

—g f drpu(~r —r, ~)
i (Wj) i =1

+ —,
' f,drdr'p u((r —r'(), (2.1)

where r, is the spatial position of the ith particle, and

v(r)=e /r (2.2)

is the Coulomb potential.
In the following, we shall be interested in statistical

properties of the time-dependent electric microfield C(t)
produced at a fixed neutral point (the origin, for instance)
by all the mobile charges and the background, i.e.,

N

C(t) = g e(r.(t))+6's . (2.3)

In (2.3), r (r) is the spatial position of the jth particle at
time t [all the particles moving in the potential (2.1)j
while e(r) and gz are the electric fields at the origin
created, respectively, by a particle located at r,

re(r) = —e
3

(2.4)

and the background,

C, =ef drp —', .
r

(2.5)

We shall consider that the system is in thermal equilib-
rium at temperature T (P= 1/kii T). The quantities of in-
terest will be computed in the thermodynamic limit, i.e.,
N —+~, A~~ with p=N/A kept fixed. We shall as-
sume that the former are well defined in this limit. ' For
notational convenience, it will not be explicitly specified
in the equations that the above limit must be taken.

lations of the above quantities. These data are used for
testing the accuracy of our approximate theories and of
the Brissaud and Frisch model. Rather than comparing
P(Et~EOO) itself, we study its Fourier transform with
respect to the fields which is more directly accessible by
both the MD simulations and the effective-field ap-
proaches. The successes and deficiencies of the above ap-
proximations are summarized in Sec. V. We also make
there some concluding comments and remarks which
concern the effective-field approach and its usefulness for
line-shape calculations.
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P(Et iE 0)= ( 5( g(t) —E)5((0(0)—E ) ), (2.6)

where ( ) means a thermal equilibrium average over all
the initial positions and velocities of the particles. At
t =0, P(Er ~EoO) reduces to

B. Joint probability density P(Er ~E00)

It follows from the definition of P(Et ~EoO) given in the
Introduction that

and

A()(K, Q) = T(K+Q)

A (K,Q) = T(K)T(Q),
where T(K) is the Fourier transform of W(E),

T(K)= fdEexp(iK E)W(E)

=(exp[iK (0(0)]) .

(2.11)

(2.12)

(2.13)
P(Et iEo0) =5(E—E())W(Eo), (2.7)

where W(Eo) is the static distribution of the electric
microfield,

Because of the rotation invariance of the infinite sys-
tem, one has T(K)=T(E) and W(E)=W(E), while
A, (K,Q) and P(Et ~EoO) only depend on the modulus of
the vectors involved and on their relative angles.

W(E )=(5(C(0)—E )) . (2.8)

When t ~00, the microfields C(t) and (0(0) should be-
come uncorrelated. This implies that

C. Reduced dynamical quantities

The autocorrelation function of the electric microfield,

lim P(Et ~Eo0) =P(E0O ~E&0) = W(E) W(Eo) . (2.9)
taboo

It is useful to introduce the Fourier transform
A, (K,Q) of P(Er iEoO),

A, (K,Q)= fdEdEoexp(iK E+iQ Eo)P(Et~Eo0)

r(r) = ( C(r) ~ C(0) ),
is just the covariance of P(Er ~Eo0), i.e. ,

I (t)= fdEdE E E P(E&IEo) .

(2.14)

(2.15)

= (exp[iK (0(t)+iQ. (0(0)] ) (2.10)

[the last line of (2.10) follows from the definition (2.6)].
Using the time-reversal invariance of the classical equa-
tions of motion and the spatial symmetries, it is easy to
see that A, (K,Q) is a real symmetric function of K and
Q. Similarly to (2.7) and (2.9), A, (K, Q) can at t =0 and
t = ~ be expressed in terms of equilibrium static quanti-
ties. More precisely, one has

On the other hand, using the expression (2.3) of the
microfields in the definition (2.14), one can express I (t) in
terms of the time-displaced correlation functions of the
particles with the result

I (t)=8e pf dkS(k, t) . (2.16)
0

In (2.16), S(k, t) is the usual dynamical structure factor
defined by

N

pS(k, t) =f rdex (pi lrt) + 5(r (t) —r) —
p

j=1
+5(r;(0)—0)—p )

.
i=1

(2.17)

When t~(x), I (t) goes to zero while for t~O+, I (t)
diverges because the covariance ([(0(0)] ) of the static
distribution W(E) is infinite. The small-time behavior of
I (r) is studied in Appendix A. We find the following
short-time expansion for t )0:

P, (g) = (5(g—C(r). C(0))), (2.19)

is characterized by the coupling constant I". The linear
term which again depends only on co is due to the in-
teractions. There is no quadratic term.

The probability distribution of C(t) (0(0) is

r(r)
4(2vr)'"e2plrD

1 2~
pt 3

'"
u,„.(r)

I 3/2
p which can be rewritten as

P, (g)= fdEdEo5(g —E Eo)P(EtlEo0) . (2.20)

+O(r'), (2.18)

where IrD = (4vrp/3e )
' is the Debye wave number,

co& =(4vrpe /m )' is the plasma frequency, I =/3e /a
(a =[3/(4vrp)]' ) is the coupling constant, and u,„,(I )
is the excess internal energy per particle in units of kz T
of the OCP. In units of co ', the singular term of (2.18) is
independent of p or P. It arises entirely from free motion
and corresponds to the exact expression for I (t) at all
times for "free" particles. ' The constant term in (2.18)
depends on the thermodynamic state of the plasma which

0, $~0
Po(k) 1 P(gl/2) 0(g

2g i /2

(2.21)

and

At t =0 and t= 00, P, (g) can be expressed entirely in
terms of W(E). Using successively (2.7) and (2.9) in
(2.20), as well as the rotation invariance of the homogene-
ous infinite system, we obtain



2676 ALASTUEY, LEBOWITZ, AND LEVESQUE 43

P„(g)=f dE P(E)W,E E (2.22)
aw,

(K,Q)=(iK A(t)exp[iK C(t)+ig 8(0)]),

(3.la)
where P(E) is the probability distribution of the modulus
of the field, P(E)=4irE W(E), and W is the probability
distribution of one Cartesian component of the field.

Finally, we introduce the probability distribution of the
time derivative of the electric microfield,

aa,
(K,Q)=(ig C(0)exp[iK C(t)+ig. g'(0)]) .

(3.1b)

G(f(=(5 f- d
dt

(2.23)
ln A, (K, Q) =i(K C(t) )K g, (3.2a)

Dividing both sides of (3.1a) and (3.1b) by A, (K,Q) gives

d
exp il. 0

dt
(2.24)

Inserting d@/dt(0)=lim, o[[@(t)—C(0)]/t] in (2.24),
we immediately obtain

Because of the invariance of the equilibrium state under
time evolution, G(f) does not depend on the time. Its
Fourier transform is given by

H(l)= fdf exp(il f)G(f)

lnA, (K,Q) =i(Q C(0) )~ &, (3.2b)

where the measure which defines the average ( ) K & is
the usual equilibrium Cxibbs measure

dpi'

multiplied by

exp[iK C(t)+ig C(0)]
(exp[iK C(t)+ig 8(0)])

Writing Eq. (3.2a) for the couple (K', Q) with K'=K'K,
and integrating the resulting equation from 0 to K, we
obtain

I 1H(l) =lim 2,
0 t t

(2.25) InA, (K,Q)=lnT(Q) +i f dK'(K C(t))& & .
0

(3.3a)

= (exp
N

X (v, (( e(r, &('
)

.
2m

(2.26)

In deriving (2.26), we have used the fact that the
velocity-dependent part of the equilibrium Gibbs measure
is the product of the Gaussian factors exp( —Ijmv, /2).

III. APPROXIMATE THEORIES

Furthermore, the calculation of d6" /dt from (2.3) also
gives

( }H=((exp il X(v, p((e(r, (
)j= i

(k.g(t) )~, &= fdr[k e(r)][p, (r~K', Q) —p],
(Q g(0))z&, = f dr[Q e(r)][p, (r~K, Q') —p],

(3.4a)

(3.4b)

In deriving (3.3a), we have used A, (O, Q)=T(Q), which
follows directly from the definitions (2.10) and (2.13). A
similar manipulation of Eq. (3.2b) yields

lnA, (K,Q)=lnT(IC)+i f dQ'(Q g(0))& &, . (3.3b)
0

Since the electric microfield is a sum of one-body terms,
the averages ( )~ Q and ( )K & appearing in (3.3a), and
(3.3b) can be expressed in terms of generalized one-body
densities. Using (2.3) we find

In this section, we formulate an effective-field approach
of the time-dependent joint probability, which is a
dynamical generalization of a similar method applied to
the equilibrium distribution of the microfield. As in the
static case, the general approach leads to various approx-
imate theories according to the different possible choices
of the effective field.

A. The effective-field approach

where the one-body densities p, and p, are

N

p, (r~K, Q)= +5(r,.(t) —r)
j=l K, Q

N

p, (r~K, Q)= +5(r (0)—r)
j=1 K, Q

Note that

p, (r~K, Q)=p, (r~g, K)

(3.5a)

(3.5b)

(3.6)

Our starting point is based on the coupling-parameter
integration technique, first introduced in static microfield
calculations by Iglesias. Using (2.10), we find for fixed
unit vectors K and Q

as a consequence of the invariance properties of both the
equations of motion and the equilibrium state. Using
(3 4a) and (3.4b) in (3.3a) and (3.3b), respectively, and
adding the resulting equations we finally obtain

A, (K,Q)=exp —'[F(K)+F(Q)]+—f dK'f drk. e(r)[p, (r~K', Q) —p]+ —f dQ'f drQ e(r)[p, (r~Krg') —p]
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with

F(K)=lnT(K) . (3.8)

The expression (3.7) for A, (K,Q), which is formally
exact, is the dynamical generalization of the following
representation of T (K):

T(K) =exp i f dK' fdr K e(r)[pz, (r) —p] . (3.9)
0

In (3.9), p~(r) is the one-body density of the particles
when the extra coupling —iK' C(0)/P is added to the in-
teraction potential V. In both (3.7) and (3.9), the (

—p)
terms arise from the contributions of the background and
ensure the absolute convergence of the spatial integrals.
From now on, these terms can be omitted if we require
that the angular integrations be performed first.

At this level, we have reduced the calculation of
A, (K,Q) to the determination of the one-body densities

p, and p, . Although an exact evaluation of the latter
quantities remain impossible, this reduction turns out to

l

be quite useful for our purpose. Indeed, there exists a
very simple prototype approximation for p, and p,
which preserves the essential features of the dynamics of
the microfield. This prototype approximation is a natural
extension of the effective-field approximation for p~(r)
which reads'

pK(r)=pexp[iK' eo(r)], (3.10)

where eo(r) is an effective field parallel to the bare
Coulomb field e(r). Here we write

p, (r~K', Q)=pexp[iK' eo(r)+iQ e,*(r)], (3.11a)

p, (r~K, Q')=pexp[iK e,*(r)+iQ' eo(r)], (3.11b)

where e,*(r) is a time-dependent effective field which
reduces to eo(r) at t =0 and vanishes when t~ ~ [note
that (3.11a) and (3.11b) satisfy the exact relation (3.6)].
Using (3.10) in (3.9), and (3.11a) and (3.11b) in (3.7), we
obtain

g,*(K,Q)=exp ,' f d—rp [exp[iK.eo(r)] —1I [exp[iQ e,*(r)]+I]k.e(r)
K.eo(r)

+ —,
' f drp [exp[iQ eo(r)] —1I [exp[iK e,"(r)]+1Ie(r)

Q.e,*(r)
(3.12)

and

~0(K,Q) =T*(IK+Ql) (3.13)

The expression (3.12) is the required effective-field ap-
proximation for the Fourier transform (with respect to
the fields) of the time-dependent conditional probability.
It is easy to check that ( exp[i K C(t)+ iQ 4'(0) ] ),

( [ K 8( )+'Q 8( )])
(exp[iK C(t)+iQ. @(0)]),
(exp[i'K C(t)+i'Q @(0)])

(3.16a)

(3.16b)

I

p, . Indeed, the expression (3.5a) and (3.5b) can be
rewritten as

A * (K, Q) = T*(K)T*(Q), (3.14)

where T*(K) is the effective-field form of T(K),

T*(K)=exp fdrp [exp[iK eo(r)] —1I
K.e(r)
k eo(r)

where ( ), and ( ), denote averages with the measures

N

dpG g 6(r (t) —r)/p
j=1

(3.15)

Equations (3.13) and (3.14) have the same structure as the
exact equations (2.11) and (2.12). Therefore the effective-
field approach does give the right limits at zero and
infinite times, provided that the static distribution of the
microfield is computed in the framework of this approxi-
mation. Aside from these requirements, the effective field
e,*(r) is, up to now, rather arbitrary. In Sec. III B, we
propose several reasonable reasonable choices of e,"(r),
which take into account both the dynamics of the parti-
cles and the static properties.

B. Determination of the effective fields

N

dpG g 5(rj(0) r)/p, —

respectively. The cumulant expansions of both the
numerators and the denominators of (3.16a) and (3.16b)
give

p~(r~K, Q)=pexp[iK (C(t)), +iQ (C(0)), + ' ' ],
(3.17a)

1. Mean force approximation-
Our first choice of e,*(r) is inspired by a cumulantlike

expansion of the generalized one-body densities p, and

p, (r~K, Q)=pexp[iK (C(t)), +iQ (C(0)), + ]

(3.17b)
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[the terms omitted in (3.17a) and (3.17b) are at least of
second order with respect to K and Q]. Keeping only the
first terms, linear in K and Q, in the above expansions,
we obtain an approximate representation of p, and p,
which is of the effective-field type (3.11) with

e,*(r)=e, "(r)= ( g(t) };
= Jdr'e(r')S(~r —r'~, t),

and where

(3.18)

N

S(~r —r'~, t)= — g 5(rj(t) —r}—
p

P

N

+5(r, (0)—r') —p )i=1
(3.19)

is the truncated total Van Hove function of the particles
[the dynamical structure factor S(k, t) is nothing but the
spatial Fourier transform of S(r, t) ]. The expression
(3.18) of e,"(r) appears as a natural extension of the
mean-force field approximation" for the static effective
field which reads [S(r):S(r, t =—0) ]

minus sign, is equal to the covariance of P "(Et~EOO)].
For practical purposes, it still remains to find a simple

and accurate representation of S(r, t). In fact, such a rep-
resentation exists in the literature; it is known as the
"three-pole" approximation. ' The latter is based on the
Mori continuous fraction expansion' of

eo "(r)= Jdr'e(r')S(~r' —r~) . (3.20) S(k,co)=(2') ' I dt exp(idiot)S(k, t),

Furthermore, let us emphasize that the corresponding ap-
proximate joint probability has the right covariance
(2.16). This can be easily checked by calculating the
coefficient of the (K Q) term in the expansion of
A, (K,Q) at small K and Q [this coefficient, up to a

which is truncated at the third order. The corresponding
rational fraction in co, S3p(k, co), has the right second and
fourth moments (which are expressible in terms of static
quantities), and has three pairs of complex-conjugate
poles in the complex plane. The Fourier transform of the
former with respect to co gives (see Appendix B)

2CO05
S3p(k, t) =

a +(y —5)
exp( y t ) exp( —5t)—+

z z ReI(a —i5)[a+i(y —5)][a—i(y+5)]exp(iat)]
2a5(a +5 )

(3.21)

In (3.21}one has

k
CO I (3.22a)

while e, y, and 6 can be expressed in terms of the frequencies coo1 and co» and of the relaxation time ~3P defined through

2 = k

m/3S(k)

3k
CO —

CO 1 +» p 2
KD

1 sin(kr) 3 cos(kr)dr—
0 r kr (kr)~

3 sin(kr)
(kr)

(3.22b)

(3.22c)

1/2
1

(~2 2 )1/2
COO1

(3.22d)

1/3
1 (b +4c /27)'~ b-+

2
'V=

3 T3P

(b +4c /27)' +b
2

1/3

(3.23)

where h (r) is the Ursell function [S(r)=5(r)+ph(r)].
One finds

2 2
3COO1b=

3+3P

2
3277 3p

(3.24a)

(3.24b)
1

C —CO»
3+3P

and the expressions for 6 and a are obtained by replacing
(3.23) in

with
5= 1

3P

r
2

(3.25)
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and
1/2

which ensures that e, (r) does reduce to (3.27) at t =0.
Second, we impose that

(3.26)
D„(k,t)- cos(co t), k —+0 .

k
(3.35)

2. APEX-like approximation

A second choice is inspired by the APEX theory' of
the static distribution W(E). In the latter, the static
effective field is assumed to have the form

—eeo(r)=eo (r)= ( I+i~~r)exp( —~„r)r, (3.27)

where K„ is the APEX wave number, "

As seen from Eqs. (3.21)—(3.26), the sole ingredient of
the "three-pole" approximation is the static structure fac-
tor S(k). In the following, we shall use the mean-force
approximation for P (Et

~
EOO) only for I ~ 1, because the

corresponding description of the static limits at t =0 and
t = ~ becomes too bad in the intermediate coupling re-
gime [even when accurate representations for S(k) are
used' ]. It is then legitimate to replace S(k) by its
Debye-Huckel form which is asymptotically exact in the
weak-coupling limit.

This behavior is similar to the exact behavior of S(k, t)
(Ref. 21) (apart from the replacement of ~D by ~„);it in-
corporates the fact that the dynamics for long wave-
lengths are governed by the undamped plasmon oscilla-
tions at the plasma frequency cop Third, the frequency
co~(k) is such that

d COg

cog dk

0
+T a

yT 3I
(3.36)

at k =0, where gT/yT is the ratio of the isothermal
compressibilities of an ideal gas and of the OCP. This
takes into account the main features of the plasmon
dispersion relation co ~„,„(k), since the right-hand side
(rhs) of (3.36) is the average over [0,2/a] of a simplified
version of a phenomenological hydrodynamic expres-
sion of [dco ~„,„(k)/dk]/to (the notion of plasmon
mode does not make sense for ka ~2). Finally, we op-
timize the autocorrelation function

2u, „,(I )

3 ] /2P3/2 D (3.28)
I (t)=p fdre(r) e, (r)

=8e p f dk D~(k, t) (3.37)

eo (r)= fdr'e(r')D„(~r' —r ),
where the distribution D„(r) is such that

(3.29)

In order to determine a time-dependent effective field
which reduces to the field (3.27) at t =0, we rewrite the
latter as

kB„(k)= 1 —exp
KD

(3.38a)

by reproducing the exact short-time expansion (2.18) of
I (t), up to the constant term included. The above re-
quirements are satisfied by the simple functions

2

drD r exp ik. r =D k = k
k +K~

We now make the ad hoc assumption

e,*(r)=e, (r)= fdr'e(r')D„(~r' r~, t), —

(3.30)

(3.31)

kC„(k)=
k +k

1/2
7j(k)= KD

co k

k2
1 exp

KD
(3.38b)

(3.38c)

where the Fourier transform

Dz(k, t)= f drexp(ik r)D&(r, t) (3.32)
co„(k)=co 1+ 1 XT k

31 +T &t)
(3.38d)

is given by

D„(k,t) =B~ (k)exp
~~(k)

where the dimensionless parameter g~ controls the first
zero of I (t) and will be determined later. Note that all
the other ingredients of the present approximation only
depend on static quantities, namely, u „and g T /g T,
which are rather well known.

+C~ (k)exp — cos[to„(k)t ] . (3.33)
(rk C. Comments

k
Bq (k)+C„(k)=

k2+K2 (3.34)

The form (3.33) is inspired from both the three-pole and
the hydrodynamical expressions of S(k, t). The ampli-
tude coefficients B„(k)and C„(k), as well as the relaxa-
tion time ~„(k) and the frequency to„(k), are determined
through the following requirements. First, one has the
zero-time constraint

The mean-force choice (3.18) for the effective field ap-
pears to be more natural than the APEX one (3.31) since
it involves the dynamical structure factor of the particles.
However, this does not guarantee that the corresponding
mean-force theory is better than APEX, as illustrated by
the static case where APEX is the more accurate approx-
imation. In fact, the description of the dynamics of the
microfield in terms of a finite number of time-displaced
particle correlations obviously is incomplete. Conse-
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quently, there is no fundamental need to define effective
fields which incorporate in a precise way the above corre-
lations. This justifies the introduction of APEX which,
in addition to its simplicity, takes into account basic
physical mechanisms such as screening effects and plasma
oscillations.

In the static case, the effective-field theory has a simple
interpretation. It amounts to introducing an auxiliary
system of independent quasiparticles with density
p[e(r)/eo (r)] and creating the field eo(r). The
effective-field form of the distribution of the electric
microfield created by the plasma particles is then identi-
cal to the Holtsmark distribution of the field created by
the quasiparticles [see Eq. (3.15)]. In the present dynami-
cal case, such an interpretation no longer holds. In other
words, the e(fective-field expression (3.12) cannot be
identified with the distribution of any auxiliary system of
independent quasiparticles. This is due to the fact that
the effective-field approach incorporates essential features
of the dynamics of the particles (like the collision pro-
cesses) which are not reducible to the trivial dynamics of
independent quasiparticles moving on straight lines.

IV. COMPARISON OF THE APPROXIMATE
THEORIES TO MD DATA

In this section we compare the predictions of various
approximate theories, among which are the effective-field
approaches derived in Sec. III, to the results of MD cal-
culations. First, we brieAy describe the method used in
the MD simulations. Then, we turn to the results, con-
sidering successively the static quantities T(K), Po(g),
and P„(g), the reduced dynamical objects I (t) and H (l),
and finally the full distribution A, (K,Q). Comparisons
are restricted to the weak-coupling and intermediate cou-
pling regimes (I ~ 10).

1024 different points r. These points were located to the
nodes of a bcc lattice inside A. This particular choice of
points r was allowed because our simulations were made
in the Quid phase of the OCP. The quantities
A, (K,Q), T(K), I (t), . . . were estimated from averages
over these values of C(t)

Three sets of MD runs were performed for I in the vi-
cinity of 1, 5, and 10; for each value of I the cumulate
number of integration steps of these runs was 20000. At
these temperatures this number was sufficient to estimate
the dynamical and equilibrium quantities with an uncer-
tainty of a few percent. For instance, the values of u,„
were —0.579, —3.743, and —7.989 for the precise values
of I =1.007, 4.985, and 10.006.

B. Static quantities

The static functions T(K), Po(g), and P (g) evaluated
by MD are presented in Figs. 1, 2, and 3, respectively.
The decrease of T(K) is faster for I =1 than for I =5
and I =10. The domain of K where the values of T(K)
are larger than the statistical noise is K (5a /e. The sta-
tistical error on this function is estimated of the order of
2%. The distribution P„(g) is obtained from the com-
parison between the MD data for P, (g) at successive
large times. This comparison shows that P, ( g) has
reached its asymptotic value (with a precision of 1 or 2%)
for t-2~p at I =1, and for t-5~p at I =5, 10, where the
relaxation time Tp is defined by

'l.0

0.5

A. The MD method

The OCP has been studied by numerical simula-
tion and today its equilibrium and dynamical prop-
erties are known with very good precision. The details of
the application of the MD method to the OCP are given
in Ref. 24 and we summarize here only the main points of
the procedures used for the numerical calculations of
A, (K, Q), I (t), etc.

In the present simulations, we have computed the tra-
jectories of 256 ions enclosed in a cubic volume A. To
take into account the periodic boundary conditions of A,
the interaction between the ions was not the simple
Coulomb potential but the "Ewald" Coulomb potential.
The electric field C(t) needed for the computation of
P(Et ~EOO) or A, (K,Q) is the field at a neutral point r of
A; from Eq. (2.3) this field is

0.5

0.0
0.0

1.0

0.5

0.0
0.0

0.0
0.0

1.0
1.0

1.0

1.0

I

2.0

I

2.0

2.0

3.0

3.0

3.0

I

4.0

]

4.0

4.0

(4.1)

where e"[r (t) —r] is the field due to the jth ion at the
point r derived from the "Ewald" potential. In A all the
points r are equivalent; we have calculated, at each in-
tegration step of the simulations, 1024 values of C(t) for

FICz. 1. The Fourier transform T(K) of the probability dis-
tribution of the electric field at I =1, 5, and 10. K is in units of
a'/e. Solid line and triangles, MD; dotted line, APEX. Dashed
line, Holtzmark; dash-dotted line, mean-force.
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1.9
04
0.24,

r= s
10 .

(4.9)

1.0

0.5

The curves representing I (t) are shown in Figs. 4 and
5. At I =1, the APEX form is quite good and is better
than the mean-force one. At I =5, I (t) almost fits the
MD results up to the first zero of I (t). However, the
positive second oscillation of I (t) (which has the right
location) is too large by a factor 3. At I"=10, the MD
I (t) tends to be monotonic in the sense that its oscilla-
tions have very small amplitudes. The APEX representa-
tion fails in describing this peculiar behavior, since the
oscillations in I (t) remain rather large (except the neg-
ative first one, of course).

As in APEX, I (t) is used as an ingredient in the Bris-
saud and Frisch model for P(Et ~EOO) which is described
in Appendix C. The Brissaud and Frisch covariance
reads

0.0

1.0

0.5

1.0

0.5

0.0

0.0

0.0

I

1.0

1.0

I

2.0

I

2.0
1 =10

3.0

3.0

I sF(t)= f dE E P "(E)exp[ v(E)t], —
0

(4.10)
0.0 2.0 3.0

where the field-dependent jumping time density v(E) has
to be determined from the exact data relative to r(t).
Since I "(t) obviously is always positive, the oscillations
of I (t) cannot be reproduced by any choice of v(E).
Therefore, and for the sake of simplicity in the calcula-
tions, we just require that I "(t) reduces to the expres-
sion

FICr. 6. The Fourier transform H(l) of the probability distri-
bution of the time derivative of the electric field at I = 1, 5, and
10. l is in units of (ma /e )' . Solid line and triangles, MD;
dotted line, exponentiated response; dashed line, free particles.

rBF 4(2mpm )' e pI exp
2'
3

'"
u,„.(r)

I 3/2

course satisfactory. At intermediate times (so& t &5'),
the comparisons with the MD data are very poor because
of the absence of oscillations in I "(t).

(4. 1 1)

which reproduces the short-time expansion (2.18) up to
the constant term included. The corresponding v(E) is
given by (see Appendix C)

1/2
u,„,(r)

I 3/2
2m

3
v(E) =cop

I dE'E' P (E')
4(2' )

'~ e p~D

(4.12)

The functions I "(t) are represented in Figs. 4 and 5. At
small times, the agreement with the MD results is of

I

2. The probability distribution G (f )

of the time derivative of the field

The Fourier transform H (1) of G (f) evaluated by MD
is presented in Fig. 6 for the three values of I . The sta-
tistical error on this function is of the order of 2% and
the domain of 1 where the values of H (1) are significant
corresponds to 1 &5roa /e. The function H(1) is mono-
tonically decaying, with a kink at I =0. The decay is fas-
ter when I is lowered. This implies that G (f) then shifts
to high values off and broadens.

The effective-field descriptions of A, (K,Q) provide ap-
proximate representations of H (1) through the identity
(2.25). We find

o
H " (1)=limA, "' ——— =exp 4irpe dr

p e MF, AP
( r)0

sint 1[Be, " (r)IBt]~, o] —1
1[B MF, AP( )/Bt ] ~

(4.13)

where the last line of (4.13) follows from the replacement
of A, "' (1/t, —1/t) by (3.12) with e,*(r)=e, " (r)
and K= Q=1/t In —the m. ean-force scheme,
Be, "(r)/Bt ~, 0 identically vanishes and consequently
H "(1) reduces to 1. In the APEX scheme, Be, (r)IBt
diverges when t goes to zero at any rXO We then find.

H (0)= 1 and H (1)=0 for 1%0. Both mean-force
and APEX forms of H (1) turn out to be quite bad.

In fact, specific approximations for H(l) can be de-
rived from Eq. (2.26), independently of the general
effective-field approaches mentioned above. The first one
is equivalent to the Holtsmark treatment of T(E) and
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Ht, (l) I+ arg sinh 3

2 3

me

2Pma'

(4.14)
As shown in Appendix D, a second one can be obtained
by starting from the integral representation of H(l) over
the coupling parameter A, varying from 0 to l . In this
representation, the particles of the system are coupled to
an external potential with magnitude proportional to A, ,
which can be interpreted as the potential created by a
fictitious scatterer fixed at the origin. Making a simple
ansatz (inspired by linear-response theory) for the corre-
sponding pair correlation gi, (r) between the scatterer
and one particle, we find (see Appendix D) the
exponentiated-response (ER) expression

3 arg sinh&3
2 2v'3

2

13ma

J2
X f dA f dr g& (r), (415)

where g i ( r) is given by (D9). Both approximate forms
(4.14) and (4.15) are represented in Fig. 6. The free (fr)
approximation is qualitatively correct but overestimates
H(l). The corresponding distribution 4vrf G "(f) of the

amounts to neglect of the interactions between the parti-
cles. The corresponding free-particle expression of H(l)
Is

1/2

modulus of f has a maximum whose location and width
are too small. The exponentiated-response form im-
proves over the free one. At I = 1, the accuracy of the
former is excellent. At I =5, 10, this accuracy becomes
less spectacular, but the overall quantitative agreement
with the MD data remains quite reasonable.

D. The full time-dependent joint probability

The direct evaluation of P(Et~EcO) by MD would be
rather involved; so for the purpose of the comparison be-
tween theory and simulation, we have calculated the
equivalent quantity A, (K,Q). A part of the MD data are
given in Tables I—III. The limit behavior (2.12) of
A, (K, Q) when tab ac is reached within statistical error
for t ~ ~0 and t & 2~0, 3&0, respectively for I =1 and
I =5, 10; these results give a reliable estimate of the re-
laxation time of A, (K,Q) at these couplings. The relaxa-
tion of A, (K,Q) is generally monotonic when K and Q
are such that T(~K+Q~) is larger than T(E)T(Q).
When this last relation is not verified the relaxation can
show strongly damped oscillations. The data in the
tables show that the range of values of X and Q where
A, (K,Q) difFers significantly from the statistical noise is
between 0 and 5a /e.

The mean-force and APEX forms of A, (K,Q) can be
rewritten from (3.12) with e, "' (r) in place of e,*(r) as

TABLE I. The Fourier transform A, (K,Q) of the joint probability density P(Et~E00) at I = I, for various values of K, Q (in units
of a /e) and 8 as a function of the time t (in units of ro). Each line corresponds to a given set (K, Q, g) while each column corre-
sponds to a given time. In each box: top-left corner, MD; top-right corner, APEX; bottom-left corner, mean-force; bottom-right
corner, Brissaud-Frisch.
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0.065
0.129
0.016
0.018

0.617
0.648
0.424
0.476
0.167
0.233

0.284
0.366
0.292
0.349
0.126
0.158

0.047
0.085
0.049
0.073
0.010
0.035

0.607
0.613
0.417
0.425
0.169
0.176

0.292
0.273
0.286
0.300
0.111
0.163

0.047
0.060
0.043
0.100
0.013
0.017

0.615
0.648
0.421
0.476
0.166
0.233

0.290
0.370
0.289
0.349
0.112
0.152

0.042
0.084
0.040
0.067
0.010
0.028

0.607
0.610
0.417
0.421
0.169
0.173

0.301
0.275
0.286
0.296
0.104
0.151

0.047
0.057
0.039
0.089
0.014
0.016

0.617
0.648
0.421
0.476
0.164
0.233

0.287
0.350
0.287
0.350
0.111
0.170

0.043
0.083
0.043
0.083
0.011
0.034

0.608
0.608
0.416
0.416
0.168
0.168

0.285
0.285
0.285
0.285
0.115
0.115

0.047
0.047
0.047
0.047
0.012
0.012
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TABLE II. The same as Table I at I =5 without the mean-force results.

0.40 0.80 1.00 2.00

0.5 0.0

0.5 0.5 vr/2

0.5 1.0

0.5 2.0

1.0 0.0

1.0 1.0 m/3

1.0 1.0 m/2

1.0 2.0 2m /3

2.0 0.0

2.0 2.0 m/2

4.0 1.0

2.0 2.0 2~/3

0.814

0.724

0.562

0.290

0.607

0.369

0.460

0.370

0.300

0.158

0.306

0.050

0.795
0.795
0.697
0.697
0.523
0.523
0.248
0.248
0.569
0.569
0.325
0.325
0.418
0.418
0.325
0.33
0.261
0.261
0.129
0.129
0.261
0.261
0.040
0.040

0.709

0.549

0.287

0.366

0.443

0.336

0.150

0.252

0.049

0.671
0.661
0.501
0.487
0.234
0.234

0.313
0.312
0.393
0.377
0.293
0.266

0.117
0.108
0.222
0.201
0.037
0.035

0.684
0.68
0.523

0.271

0.366

0.411

0.264

0.128

0.165

0.045

0.642
0.684
0.470
0.517
0.226
0.250

0.296
0.310
0.354
0.356
0.245
0.230

0.101
0.096
0.165
0.163
0.033
0.031

0.675

0.509

0.262

0.367

0.395

0.229

0.117

0.131

0.041

0.637
0.643
0.462
0.467
0.219
0.219

0.294
0.311
0.341
0.349
0.219
0.217

0.091
0.091
0.135
0.149
0.032
0.031

0.659

0.489

0.244

0.380

0.363

0.164

0.081

0.074

0.031

0.633
0.634
0.454
0.456
0.209
0.211

0.309
0.315
0.326
0.331
0.164
0.177

0.071
0.071
0.080
0.078
0.030
0.028

0.662

0.494

0.244

0.368

0.368

0.182

0.090

0.090

0.033

0.632
0.632
0.453
0.453
0.207
0.207

0.324
0.324
0.324
0.324
0.148
0.148

0.068
0.068
0.068
0.068
0.025
0.025

TABLE III. The same as Table II at I = 10.

0.40 0.80 1.00 2.00

0.5 0.0

0.5 0.5 m/2

0.5 1.0

0.5 2.0 m/2

1.0 0.0

1.0 1.0 m/3

1.0 1.0

10 2 0 2m/3

2.0 0.0

2.0 2.0 m/2

4.0 1.0 n. /2

2.0 2.0 2~/3

0.822

0.739

0.585

0.325

0.629

0.403

0.489

0.403

0.332

0.191

0.335

0.071

0.799
0.799
0.704
0.704
0.533
0.533
0.261
0.261
0.579
0.579
0.337
0.337
0.430
0.430
0.337
0.337
0.274
0.274
0.139
0.139
0.273
0.273
0.032
0.032

0.729

0.578

0.324

0.401

0.479

0.380

0.180

0.300

0.069

0.688
0.674
0.519
0.503
0.253
0.245

0.327
0.326
0.414
0.397
0.322
0.289

0.132
0.121
0.256
0.224
0.069
0.041

0.712

0.516

0.315

0.401

0.456

0.324

0.159

0.231

0.063

0.662
0.660
0.500
0.488
0.245
0.237

0.314
0.332
0.393
0.376
0.302
0.257

0.124
0.109
0.232
0.190
0.041
0.038

0.702

0.551

0.309

0.403

0.443

0.296

0.153

0.200

0.061

0.653
0.655
0.488
0.483
0.242
0.234

0.305
0.322
0.377
0.369
0.288
0.244

0.120
0.105
0.219
0.176
0.041
0.037

0.680

0.518

0.278

0.404

0.394

0.204

0.109

0.107

0.043

0.641
0.644
0.467
0.470
0.224
0.225

0.294
0.324
0.343
0.348
0.221
0.202

0.088
0.080
0.137
0.129
0.035
0.033

0.675

0.517

0.273

0.395

0.395

0.208

0.111

0.111

0.047

0.640
0.640
0.463
0.463
0.219
0.219

0.335
0.335
0.335
0.335
0.158
0.158

0.075
0.075
0.075
0.075
0.029
0.029
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APEX appears to be the most accurate theory. Its main
shortcomings are, first, to overestimate both the varia-
tions of A, (K,Q) at small times (t + 0.5&0) and the ampli-
tude of its oscillations at intermediate times
(0.5r0 ~ t + 1.5&0), second, to miss small large-time
(1.5r0 ~ t) oscillations when I increases.

V. CONCLUSION

The effective-field approach provides simple and reli-
able expressions for the Fourier transform A, ( K, Q } of
the joint probability density P(Et ~E00). The mean-force
version of this approach has a range of validity which is
restricted to the weak-coupling regime (I small), because
its description of the static limits at zero and infinite time
becomes rather poor when I increases. The APEX
effective-field theory overcomes this defect and remains
reasonably accurate in the intermediate coupling regime
(1 ~ I ~ 10). In particular, APEX reproduces the oscilla-
tory behavior of A, (K,Q) which is linked to the plasmon
oscillations. Moreover, this theory relies on a very few
ingredients which, in a simplified version, can be ulti-
mately expressed in terms of the excess internal energy
u,„,(I ) only (see Refs. 28 and 29).

Despite its rather crude representation of the dynamics
of the microfield, the Brissaud and Frisch model gives
reasonable results for A, (K,Q), if one uses the APEX
form of the static distribution T(E) [these results should
be improved by including in T(K) the first corrections to
APEX calculated in Ref. 16]. In fact, similarly to what
happens in the case of the time-displaced particle correla-
tions (see Ref. 20, for instance), a good description of the
static limits guarantees a minimal accuracy at intermedi-
ate times (this also explains in part the success of the
dynamical APEX theory). The Brissaud and Frisch rnod-
el is not as accurate as the APEX effective-field approach,
for the main reason that it misses the oscillatory behav-
iors of A, (K, Q) and of the covariance I (t) (however, the
quantitative differences between both approximations are
not very spectacular because the amplitudes of the corre-
sponding oscillations turn out to be rather small). More-
over, the former theory predicts that the zero-time delta
peak 5(E—E0) in P(Et ~E00) survives for all times with
an exponentially decaying amplitude (see Appendix C),
whereas APEX correctly describes (from a qualitative
point of view) the shifting and broadening of this peak at
tAO.

Although the global predictions relative to P(Et ~E00)
of the APEX theory are satisfactory, one has to be care-
ful when calculating reduced dynamical quantities within
this approximation. This is well illustrated by the case of
the distribution G (f) of the time derivative of the
microfield, which is poorly represented by APEX [similar
results should also be observed for the conditional mo-
ments of Chandrasekhar and von Neumann' which can
be deduced from lim, 02, (K+Ilt, —I/r)]. In fact,
specific representations of the above quantities should be
useful for improving the present choice of the APEX
effective-field e, (r). For instance, the exponentiated-
response form of G (f ) and a hydrodynamic expression
[via S(k, t)] of the autocorrelation function I (t} provide

constraints on, respectively, the small- and large-time be-
haviors of e, (r) [the present APEX description of I (t)
at large times becomes poor when I increases].

Compared to other theories the effective-field approach
has the following main advantages. First, this method
directly provides explicit expressions for the quantities of
interest without having to solve complicated evolution
equations as would be the case in a standard kinetic
theory. Second, it allows one to incorporate, in a phe-
nomenological way, the essential features of the particle
dynamics like, for instance, the screening effects or the
plasmon oscillations and the qualitative shapes of the re-
lated dispersion curves. This cannot be done in ap-
proaches of the Brissaud-Frisch type which "forget" the
origin of the microfield. Finally, the Aexibility in the
choice of the effective field should be useful in the appli-
cation of the theory to other situations than the one stud-
ied in this paper, e.g. , multicomponent systems or radiat-
ing ions [in the latter case C(t) would be the electric field
"seen" by a moving charge of the system].

Recently, Dufty and Zogaib ' have introduced an
independent-particle model for describing A, ( K, Q)
which is similar to our approach. In their model,
A, (K,Q) is expressed in terms of a static effective field
ea(r) via a suitable renormalization of a generalized
Baranger-Mozer cluster expansion of in[A, (K,Q)] (this
procedure extends to the dynamical case the method used
for dealing with the static distribution' ). In this model,
the dynamics of the charges is incorporated in the corre-
lations between particle densities at different times and
points r and r' which are multiplied by weight factors
[exp[iK e0(r)] —1] and [exp[iQ.e0(r')] —1 j in in-
tegrals over r and r'. In our approach, such dynamics are
incorporated in the effective field itself which is time
dependent.

As far as line-shape calculations are concerned, it has
been shown in the literature ' ' that the Brissaud and
Frisch model may give satisfactory results. Our study is
compatible with this observation, since the corresponding
description of the dynamics of the microfield turns out to
be semiquantitative. It is then tempting to think that the
effective-field approach should be helpful for improving
the Brissaud-Frisch calculations of spectral lines, espe-
cially when the latter show strong disagreements with ex-
perimental data (of course these disagreements arise
from various uncontrolled approximations and cannot be
entirely removed through a better representation of the
microfield dynamics). However, it still remains to derive
tractable expressions of the frequency profiles in the
framework of effective-field models. The simple expres-
sions obtained in the BF theory are indeed very specific
to the Kangaroo process.
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APPENDIX A

43

In this appendix, we study the small-time expansion of I (t) and compute its first terms. For this, we start from the
expression (2.16) of I (t) where we split S(k, t) in a "self" part S,(k, t) and a "distinct" part Sz(k, t ) given by

N

pS, ( kt)= f drexp(ik r) X5(r, (t) —r)5(r, (0)—0)),
i=1

(Al)

N

Pgr(k, t)= f drexP(ik r) X 5(r (t)—r)5(r;(0) —0))—P
i,j =1

(A2)

Let I, (t) and I d(t) be the contributions of, respectively,
the self (Al) and distinct (A2) parts of S(k, t) to I (t).
The small-time expansion of I d(t) is easily inferred from
the one of Sd(k, t).

u,„,(I )= f dr h(r)

2

f dk S P(k)
0

(A6)

S,(k, t) = y t'"S,""'(k),
n=0

(A3)

because all the functions S (d"'(k) are integrable with
respect to k. Inserting (A3) in (2.16) and inverting the
sum over n and the integral over k, we then obtain the re-
quired expansion of I d(t),

I d(t)=8e p g t "f dk S(d"'(k),
n=O

(A4)

which contains only even powers of t. The first two terms
in the rhs of (A4) are immediately computed by using the
fact that S d '(k)/p is nothing but the Fourier transform
of the Ursell function h (r) while S d '(k) vanishes [the t
term in the expansion of the full S(k, t) entirely arises
from free motion and does not depend on the interac-
tions]. We find

I,(t) =8~pk, Tu, „,(I )+0(t'), (A5)

where u,„,(I ) is the excess internal energy of the OCP in
units of k& T,

S,(k, t)= f dv p(1u(&)(exp[ik. r&(t)]) ,0 (A7)

where y(u)=(Pm/2n. ) exp( —Pmu /2) is the normal-
ized Maxwellian distribution of the velocities, r&(t) is the
position of particle 1 at time t with the initial conditions
r&(0)=0 and v, (0)=v„and the measure which defines
the average ( )0 is

[the last line of (A6) follows from Parseval's theorem].
The expansion of I,(t) cannot be obtained by a simple

term-by-term integration over k of the expansion of
S,(k, t) in powers of t because the involved functions of k
do not decay when k ~ (x) . For instance, one has
S,' '(k) = 1 which is obviously nonintegrable. This
difficulty reffects the singular behavior of I,(t) when
t ~0 which is linked to the divergence of
I (0)= ( [C(0)] ) (the latter arises from "self" contribu-
tions of particles close to the considered neutral point).
In order to determine this behavior, it is in fact more ap-
propriate to expand S,(k, t) around its "free-gas" expres-
sion exp( k t /2m/3—) First, the .definition (Al) can be
rewritten as

dr& dr~dv2 dv~tp(v2) y(v~)exp[ —PV(O, r2, . . . , r~)]

f dr2 dr+exp[ PV(O, rz, . . . , rN
—)]

Let s, (t) be the deviation from free motion at time t defined through

(A8)

r, (t)=v, t+s, (t) .

Inserting (A9) in (A7) and taking into account that the measure (AS) does not depend on v&, we obtain

S,(k, t) = fdv, (p(u, )exp(ik. v, t)(exp[ik. s&(t)] )0

(A9)

00= f vd, q&(u, )e p(xik. v, t) 1+ g, ([ik.s&(t)]")0
nt (A10)
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The Taylor expansion of s, (t) around t =0 reads

t~ d~s
s, (t) = g, (0)

p
—2P ~ dt~

(Al 1)

[s,(0) and ds, /dt(0) vanish because of the definition (A9)
of s, (t)]. The time derivatives d~s, /dtj'(0) can be calcu-
lated recursively from Newton's equations of motion,

([ik.si(t)]")0 starts at the order t " at least, and the
coefficient of the corresponding term of order t~ is a poly-
nomial in v& with the parity of q. Since, for obvious sym-

metry reasons, ( [ik.s,(t)]")0 is an even (odd) function of
vi if n is even (odd), the above coefficient necessarily van-

ishes if q does not have the same parity as n. Therefore
we get

(A12)

as polynomials in the initial velocities v1, v2, . . . , v~ with
coefficients proportional to gradients of the total interac-
tion potential V evaluated for the initial spatial
configuration (O, rz, . . . , r~). These polynomials are odd
with respect to the change of sign of all the velocities if p
is odd, and they are even otherwise. Taking also into ac-
count the parity of (p( U ) with respect to the change of v in—v, we then see that the short-time expansion of

I

([ik s,(t)]")'=
k "t "g P~&(vi)t ~, n even

7p=0

k"t "+' g Pt„'z(vi)t, n odd
p=0

(A13)

where R„'&(vi) is a polynomial in vi with coefficients
which depend on n and k; is n is even (odd), P~ z(vi) is
even (odd) in vi and of order 2p (2p + 1). Using (A13) in
(A10) and inverting the discrete sums and the integration
over vi, we find the required expansion of S,(k, t) as

k 2"t4" I 2n+1t4n+3
S,(k, t)=exp( k t /2m—/3) 1+g, g Q~„(kt)t + g(2n)! 0

" „0 (2n + 1)! g Q~„+,(kt)t (A14)

where Q~z„(kt) [Q(„+,(kt)] is an even (odd) polynomial in kt of order 2p (2p + 1) defined through
3/2

f dviexp( —Pmvi/2)P~ k(v, )exp(ikt. v, )=exp( —k t /2m()Q~(kt) . (A15)

[The Fourier transform of a Gaussian multiplied by a polynomial has the same structural form and Q~(kt) does not de-
pend on k because of the rotation invariance of the system. ] The replacement of S, (k, t) by (A14) in (2.16) together with
a term-by-term integration over k and the variable change u =kt/(2mP)' finally give

t'"g t~l'f du exp( —u~)u~"Q~~„[(2mP)' u]
2 " (2m )"

(2m )"++, g t "+ g t ~ du exp( —u )u "+'Q~z„+, [(2mP)' u] . (A16)

The Laurent expansion (A16) of I,(t) contains only
odd powers of t, and its singular 1/t term is entirely
determined by the free motion. At a given order in t, one
has to collect a finite number of contributions in the
discrete sums over n and p. For instance, the linear term
arises from the two contributions (2n =2, p =0) and

(2n +1=1,p =0). Using the Taylor expansion (All) of
s, (t), we find after a little algebra

Pj j(v, )= X (vj Vj )()r Vj )V(0rj, . . . , rjj)ljj

Using (A17) and (A18) in (A15) we find

Q i[(2 mP)'~ u ]=to u/[9(2mP)'~ ] and Qz[(2mP)'~ u]= —to~/12mP, from which we easily compute the relat-
ed Gaussian integrals over u involved in (A16). The re-
sulting expression for I,(t) is

2t2
1+ +O(t ) . (A19)

72

The expression (2.18) for the full I (t) is obtained by add-
ing (A19) to (A5).

and

g 2A.

18

', ([k.V, V(0 ..
4m

1
CO

12mP

(A17)

(A18)

APPENDIX B

The three-pole expression of S(k, co) is

S3p( k, co )

z3p(k)coo(k)[co, i(k) —co~i(k)]

sr[co r3p(k)[co ~'ii(k)] +[~ ~oi(k)1

(B1)
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leo . ~ol(k)
co — c—oco, ((k)+ i =0,

r3p(k 1 3Pi~', . ~or(k)
co + co—co„(k) i- =0

1 3p(k) 73p(k)

The three roots of (82) take the form

(82)

(83)

where the frequencies coo(k), cooI(k), co»(k) and the relaxa-
tion time r3p(k) are given in the text. The rational frac-
tion in co (81) has three pairs of complex-conjugate poles
which are the roots of

l
CO

~
+C02 +C03 =

+3P
(85)

~1~2+co]co3+co2co3 coft(k)

where u, dg, y are real positive numbers, while their com-
plex conjugates co)= —co2, F)z= —co), co3= —

A@3 are the
three roots of (83). The expression (3.23) of y directly
follows from the usual Cartan method for solving third-
degree equations. The expression (3.25) for 5 and (3.26)
for a are then readily obtained by writing

CO )
=O,' + l 6

CO2
= 0!+ i6,

Ct)3 —l f
(84) The three-pole expression of S(k, t) is given by the

Fourier transform with respect to co of (Bl), i.e., (for
t &0)

oo ~,'(k) [~»(k) —~,', (k) ]S3p(k, co) = dco exp(icot )
OO 777 3p(k)(co coi)(co —coi)(co co3)(co co2)(co co3)(co co3)

2icoo(k)[co[I(k) —coo(k) ]
r3p(k)

exp(ico~ t )

1 =i (coj coj. ) g (coj COI )(co& cot)
1 (Wj)

(86)

where we have used Cauchy's theorem together with
Jordan's lemma. The substitution of the roots co&, m2 c03

by their forms (84) in (86) finally leads to the expression
(3.21) for S3p(k, t).

APPENDIX C

In the Brissaud-Frisch model, the microfield C(t) is as-
sumed to evolve according to a stepwise constant sto-
chastic process: C(t) jumps from E; to E, +, at the jump-
ing time t;+ &, and remains constant between two succes-
sive jumping times. The jumping times t; are uniformly
and independently distributed with density v(E;, ), while
the constants E; are random vectors chosen independent-
ly with the same probability distribution W "(E). This
process is known as the Kangaroo process [the simplified
version in which v(E) reduces to a constant v is called the
Poisson-step process]. The corresponding Fokker-Planck
equation which governs the evolution of P "(Et~EoO)
reads

aP'"(Et
I E,O)

at
= —v(E)P "(Et~EOO)

+Q(E)fdE'v(E')P "(E't~EOO),

(Cl)

P "(EO~Eoo)= W "(E )fi(E—E ) . (C3)

The choice (C2) for Q(E) guarantees that the stationary
solution of (Cl) (apart from an irrelevant multiplicative
constant) indeed is W "(E)W."(Eo). Equation (Cl) can
be solved by means of Laplace transformation. If we
define

P "(E,EO;s)= f dt P "(Et~EOO)exp( st)—(C4)

with

R (Eo,s ) = f d E v(E)P "(E,Eo, s ) . (C6)

The multiplication of each side of (C5) by v(E) followed
by an integration over E provides a self-consistent equa-
tion for R(EO;s ), the solution of which is

R (Eo', s ) =

with

v(EO)W "(Eo)

[s+v(ED)l 1 ~~ ( )
"

(C7)

and take into account the initial condition (C3), the La-
place transformation of (C 1) leads to

W'"(E, ) R(E„.s)Q(E)
P (E,Eo, s )= 5(E—Eo)+s+v E s+v E

(C5)

with

v(E) W "(E)

f d E'v(E') W "(E') (C2)

( v) "=fdE v(E) W "(E),
2 2 EdE W (E) .(s+v) s+ v(E)

(C&)

and the initial condition at t =0 Replacing R (Eo', s ) by (C7) in (C5) we finally obtain
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W (Eo)
P "(E,EO', s ) = 5(E—Eo)+s+v E

v(E)v(EO)W "(E)W "(Eo)

V2
( )BF [s+v(E)][s+v(EO)](s+v)

(C9)

In order to find a simple closed analytic expression for P "(Et
~ EiiO), we make the approximation

(v /(s+v)) "=((v) ") /(s+ (v) ") [the latter is an identity in the Poisson-step process where v(E) is constant].
The second term in the rhs of (C9) then becomes a rational fraction in s which is the Laplace transform of a linear com-
bination of exponentials in t. The corresponding expression for P "(Et~Eo0) is

PB"(Et~E&0)= W "(Eo)exp[ v(E—O)t ]5(E—Eo)

(E )[ (E)—( &"] (E)[ (E ) —( &'"]
+ W "(E)W "(Eo) 1 — „exp[ v(E)—t ]

— „exp[ v(EO)t—]
v "[v(E)—v(EO)] v "[v(EO)—v(E)]

(C 10)

= —v(E) f d EOE EOP "(Et~EOO), (Cl 1}

where we have used that fdE'v(E')P "(E't~EoO) only
depends on the modulus Eo (and on t of course). Taking
into account the initial condition

dE,E.E '" EO E,O =~'W'" &, (C12)

which follows from (C2), we easily integrate the linear or-
dinary differential equation (Cl 1) as

f d EoE.E+BF(Et~EOO) =E'W "(E)exp[ —v(E )t] .

The Fourier transformation of (C10) with respect to E
and Eo leads to the expression (4.18) for A, " with
PBF(E) 4~E 2 WBF(E )

The covariance I "(t) can be directly computed from
(Cl) without explicitly solving this equation for
P "(Et~EOO). Indeed, if we multiply each side of (Cl) by
E.E0 and integrate the resulting equality over E0, we ob-
tain

f dEOE-EOP "(Et~EOO)
Bt

dv(E)
dE

v(0) =—

E2PBF(E)
4e p(2m@m )'~

3 I 3/2 P

(C16)

(C17)

The integration of the ordinary differential equation
(C16) with the initial condition (C17) leads to the expres-
sion (4.12) for v(E). This expression is indeed monotonic
and always positive. When E~ ~, v(E) diverges: this
behavior is compatible with the physical fact that large
fields are produced by charges close to the considered ra-
diator and consequently vary rapidly in time.

APPENDIX D

In this appendix, we derive the exponentiated-response
form (4.15) of H(l). Our starting point is the exact ex-
pression (2.26) for H(l). Using a coupling-parameter in-
tegration technique, we rewrite the latter as

~2
H(l)=exp — f dA, f drpgi(r)q&(r), (Dl)

2m/3 o

with

We then infer
(C13) 3xy(r) = 1+

y6 p
2 (D2)

I "(t)=fdEE W "(E)exp[ v(E)t] . —(C14)
Let us determine a function v(E) which corresponds to

the choice (4.11) of I "(t). Assuming a priori that v(E) is
monotonic, we can rewrite (C14) as

and pgi(r) is the one-body density of the particles sub-
mitted to the external potential Aq&(r)/(2mI3 ) created by
a fictitious scatterer fixed at the origin. For a system of
free particles, gz(r) reduces to exp[ —Ay(r)/(2mP)] and
then one easily finds from (Dl) the free expression (4.14)
of H(l). For the present system of interacting particles,
we shall introduce an approximate form of gz(r) which
interpolates between exact results at small and large dis-
tances and takes into account a neutrality constraint.

The small-distance behavior of g&(r) can be obtained
from

(C15)

where E(v) is the inverse function of v(E) [v(E(v) }=v].
We see that (C15) does reduce to (4.11) if we impose

I "(t)=f dv E (v)P "(E(v))exp( vt), —BF dE(v)
v(0) d v

A,y(r) N
N exp — dr2 dr~exp —f3V(r, r2, . . . , r&) — g y(r~)2m 2mP,

~ ~ ~

N

dr, . dr~exp —PV(r, , . . . , r~) — g g(r, )
2mP,

(D3)
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by expanding V(r, r2, , r~ ) in Taylor series around
V(0, r~, . . . , rz ). This gives

where we have used the charge, dipole and Stillinger-
Lovett second-moment sum rules for S(ir' —

r~ ),

A,q)(r )
gi (r) -const X exp

2m/3
(D4) fdr'S(ir' —

r~ )=0,

fdr'(r' —r)S(ir' —ri)=0, (D7)
For studying the large-distance behavior of gi (r), we use
the perturbative expansion of [g&(r) —1] in powers of
A.y(r)/(2m/3 ),

gz(r) —1 = — f dr'S(
~

r' —r~ )y(r')+ 0(& ) .
2m/3

(D5)

gi(r) —1 —
2 2

V' y(r)2

Smm/3 e p

9A, 2x
2am/3'pr ' r' (D6)

Strictly speaking, the integral in the rhs of (D5) as well as
all the other spatial integrals involved in the expansion
diverge because the singularity of q&(r') at the origin is
nonintegrable. However, these term-by-term divergent
contributions can be resummed into a finite one involving
the Mayer function exp[ —Ay(r)/(2m/3)] —1. Taking
into account the exponential decay of all the intrinsic
particle correlations of the system (at A, =O), the latter
contribution also decays exponentially when r ~ 00 .
Since y(r') decays algebraically when r'~ ae, the region
r close to r in the integral in (D5) gives algebraic contri-
butions to [g&(r)—1]. Expanding y(r') in Taylor series
around y(r), we obtain

f dr'(r' —r) S(ir' —ri)=
2vr/3e p

(these sum rules are reviewed by Martin '). The terms
0(A, ) in (D5) also give algebraic contributions to
[gi(r) —1], but the latter decay faster than the leading
contribution (D6) of the linear term. The lack of ex-
ponential clustering for g&(r) is due to the non-
Coulombic nature of the external potential Ay(r)/(2m/3 )
and is linked to the algebraic nature of the dynamical
screening (see Ref. 30). Finally, we have the overall neu-
trality sum rule

fdr[g, (r) —1]=0 (DS)

valid for any value of k. This sum rule, which holds for a
wide class of localized inhomogeneities (see, for instance,
Ref. 21), can be inferred from the first Born-Green-Yvon
(BGY) equation combined with clustering assumptions
which are indeed satisfied here.

The exact behaviors (D4) and (D6) together with the
sum rule (DS) provide constraints for the choice of the
approximate g&(r). We set

gi (r)=exp. — +Ci 1 —expER( Ae Ae

2m/3r 2Ci m/3r

6ka

Ci m/3 r
(D9)

where the constant C& is determined by imposing g& (r) to satisfy the neutrality constraint (D8). This simplified iso-
tropic form of gi (r) does behave as the isotropic terms (which do not depend on x) in the asymptotic behaviors (D4)
and (D6). In order to take into account anisotropic effects, we replace the spatial integral in (Dl) by

23e 1+ arg sinh 3
d

1
(D10)

a 2&3 o r4

where the coefficient [1+(arg sinh&3)/(2&3)] is the ratio of the corresponding integrals evaluated with the free ex-
pressions associated to external potentials A,y(r)/(2m@ ) and Ael(2m/3 r ),, respectively. This finally leads to the ex-
pression (4.15) for H (l).
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