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Two-dimensional, infinitely degenerate Potts-model simulations were performed on four different
lattices at zero and finite temperatures in order to examine the effects of lattice anisotropy and tem-
perature on domain growth. The discrete lattice of the Potts model causes deviations from univer-
sal domain growth behavior by weakening the vertex angle boundary conditions that form the basis
of von Neumann’s law. Smoothing the Wulff plot of the lattice (e.g., by extending spin interactions
to a longer range) or increasing the temperature at which the simulation is performed can overcome
the anisotropy inherent in discrete lattice simulations. Excellent overall agreement (kinetics, topo-
logical distribution, domain size distributions) between the low lattice anisotropy Potts-model simu-
lations and the soap froth suggests that the Potts model is useful for studying domain growth in a

wide variety of physical systems.

I. INTRODUCTION

Many quasi-two-dimensional materials exhibit three-
fold connected, cellular patterns which coarsen in time as
some domains grow and others shrink and disappear.! ™3
The dynamics for curvature driven diffusive coarsening,
assuming 120° vertex angles and minimal surface domain
boundaries, follow a quantitative relation between the
number of sides and rate of domain growth, known as
von Neumann’s law,*

da,
dt

where a, is the area of an n-sided domain and « a
diffusion constant. Domain growth in the low-
temperature, infinitely degenerate Potts model proceeds
by a discrete form of curvature driven domain wall mi-
gration. Empirically, the two-dimensional soap froth and
the Potts model both obey von Neumann’s law.

When domains disappear, their remaining neighbors
gain or lose sides. The manner in which this side redistri-
bution occurs determines the topological evolution of the
pattern. In particular, arbitrary initial patterns evolve
into scaling states in which the topological distribution
functions [P(n), the probability that a domain has n
sides] and the area distribution functions [P(a /{a )), the
probability that a domain has a given fractional area a
with respect to the mean domain area {a )] remain con-
stant, while the length scale increases with time. These
distribution functions depend only on the underlying dy-
namics and the nature of side redistribution. In an ideal-

=k(n —6) (1)
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ized model, all domains would grow according to von
Neumann’s law and all walls would take the form of
minimal surfaces. Side redistribution would result deter-
ministically from this minimal surface constraint.
Weaire and Kermode,> Frost and Thompson,6 Kawasaki,
Nagai, and Nakashima,’” and Soares, Ferro, and Forres?
have studied a variety of explicit approximations to this
ideal.

Qualitatively, the Potts model evolves an initial pattern
into a scaling state in a manner similar to that observed
in real soap froths and metal foils.! This resemblance im-
plies that side redistribution is comparable in the three
cases. However, quantitative comparisons between the
scaling state distribution functions reveal significant
differences, with the Potts-model results intermediate be-
tween those of the metal and the soap froth. Since the
Potts model has become the de facto standard model for
domain growth, it is imperative to delineate the
differences and similarities between the Potts model and
experimental domain growth.

The Potts model (and the foil) differ in two fundamen-
tal ways from the soap froth.’ In the soap froth, the
diffusion of gas across cell walls, which is much slower
than the readjustment of the soap films subject to stress,
drives coarsening of the pattern. Thus the walls of a soap
froth approximate minimal surfaces. In the Potts model
and in metallic grain growth, the basic growth process is
diffusion of atoms across grain boundaries. Since the rate
of diffusion across the boundary (causing grain growth)
and the rate of diffusion along it (causing changes in
boundary shape) are comparable, grain boundaries take
shapes that can be far from ideal minimal surfaces. The
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second difference is that the surface tension of soap froth
is entirely isotropic, whereas the energy per unit length of
a grain boundary in a Potts model or metal depends on
its orientation with respect to a crystal lattice. Just as
thermal fluctuations and entropy effectively decrease the
anisotropy of a Wulff (surface energy versus surface
orientation) plot at elevated temperatures, we expect that
lattice anisotropy effects should decrease with increasing
temperature. Hence the evolution of the Potts model and
metals should become more similar to soap froth at
higher temperatures. Note, however, that the lattice
orientation of a metal varies from grain to grain while the
lattice in the Potts model is homogeneous.

While lattice anisotropy is unquestionably present in
the Potts model, the main features of domain growth
(e.g., the temporal scaling of domain size) are unaffected
by small changes in anisotropy. In fact, the overall agree-
ment between the evolution of a soap froth and a Potts
model starting from similar conditions is very good.
However, T =0 Potts-model simulations carried out by
Glazier, Anderson, and Grest"® show a consistently
slower transition from order to disorder than the froth.
Even in the scaling state, the Potts model consistently
yields wider side and area distributions than the soap
froth. In addition, Potts-model domain boundaries tend
to lie preferentially along low-energy crystalline axes. In
this paper we examine in detail the effects of lattice an-
isotropy and temperature on Potts-model coarsening to
try to understand the origin of these discrepancies.

II. THE POTTS MODEL

Potts-model simulations of domain growth have been
discussed in other publications.!°"!® The Potts Hamil-
tonian is

# J(i,j)%’,j’) : 80“"‘)0”""" @
where J is a positive constant, § is the Kronecker delta
function, 1=o0; =N, denotes the orientation of the
spin at site (7,), N, is the number of domains in the sys-
tem at the beginning of the simulation, and (i,j),(i’,j’)
represents (7,7),(i’,j') neighbors. Evolution proceeds by
a Monte Carlo procedure in which a spin is selected at
random and converted to a new random orientation with
probability p =e “AE/kT where AE is the change in sys-
tem energy produced by the reorientation. After each re-
orientation attempt, time is incremented by 1/N, Monte
Carlo steps (MCS), where N, is the number of lattice
spin sites in the system. At T > T, the system is disor-
dered, while at T < T, a well-defined domain structure
evolves. At T =0, these domains are simply connected;
however, at finite temperatures small domains may nu-
cleate within a larger domain. In order to alleviate the
effects of these fluctuations, we quench each finite tem-
perature simulation to 7 =0 for a short time prior to
enumerating the domain size and side distributions.
Since the average number of sides per domain {n ) =6 for
simply connected domains, the duration of the quench is
adjusted such that 5.98<(n)<6.02. Similarly, to
prevent domain coalescence, domains are numbered so
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that no two domains have identical spins, resulting in an
infinitely degenerate system.

We study the anisotropy of the Potts model by per-
forming identical simulations on a variety of lattices with
different anisotropies and at a variety of temperatures.
We characterize the anisotropy by the ratio of the
highest- to the lowest-energy domain boundary orienta-
tions. The highest possible anisotropy occurs for the
nearest-neighbor honeycomb lattice. However, steady
state domain growth does not occur on this lattice at any
temperature. We therefore confine our study to the
nearest- and next-nearest-neighbor square lattices [s(1)
and s(1,2), respectively] and the nearest- and next-
nearest-neighbor triangular lattices [¢(1) and #(1,2), re-
spectively] at T=0, T=1T,, and T=2T,.'"!® The lat-
tice anisotropies 1 for these lattices are 7,;,=1.414,
Ns1,2=1.116, 7,;,=1.154, and 7, ,=1.057." All
runs employ 200X200 lattices with periodic boundary
conditions. All simulations were performed by quench-
ing from T>>T, to T <T, at 0 MCS, and we average ten
independent simulations to produce each complete run.

III. KINETICS

The basic measure of the evolution of domain structure
is the average domain size as a function of time. Any sys-
tem obeying von Neumann’s law reaches a scaling state
in which

(a()V2—(a(0)) o=yt , (3a)
{a(t)) <t® (3b)

where Eq. (3b) is valid for {a (¢)) >>(a(0)), y is a posi-
tive constant, and a=1. Deviations from a=1 are com-
mon experimentally and indicate the presence of addi-
tional effects besides ideal von Neumann’s law coarsen-
ing; for example, finite fluid fraction in soap froths?>2!
and impurities in metals®?? result in lower growth rates
at long times and hence lower exponents. Generally, the
domain growth exponent a gradually increases as the sys-
tem approaches steady state.?’

Figure 1 shows the temporal evolution of the mean
domain area {a ). Inthe #(1,2), s(1,2), and 7(1) lattices
at all temperatures, the rate of growth of {a) increases
monotonically in time to a value consistent with the
large-system asymptotic exponent a=1.'3 For the s(1)
lattice, theory predicts that zero temperature domain
growth halts when the domain vertices absorb all intial
wall curvature; however, domain wall fluctuations which
occur at any finite temperature enable domain growth to
proceed to completion.!?*2> Figure 1 shows that
domain growth stops at approximately 10> MCS in the
s(1) system at T'=0 and does not recommence during
the 10° MCS of the simulation. In contrast, the rate of
domain growth in the s (1) lattice at 27, increases mono-
tonically to a rate consistent with « =1 in a manner simi-
lar to the 7(1,2), s(1,2), and ¢(1) lattices. The T =1T,
s (1) lattice is an interesting intermediate case. Domain
growth halts for a long interval but eventually resumes
and reaches a scaling state consistent with a=1.
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Presumably, this stagnant period is the time required for
thermal nucleation of a sufficient density of kinks on the
domain walls to balance the kink or curvature absorption
at vertices.

The presence of the finite initial domain size term
(a(0)) in Eq. (3a) guarantees that the slope of the
log,o{a) versus log,,t plots must increase to a at long
times. While the simulations on all of the lattices have
the same intial domain size, the prescaling region in Fig.
1(a) depends on both lattice anisotropy and temperature,
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FIG. 1. Kinetics of Potts-model domain growth. (a) Mean
domain area vs time for s(1) and #(1) at T=0, 17T,, and 2T,
and s(1,2) and #(1,2) at T=0. (b) Effect of lattice anisotropy
on early time domain growth at T=0. (c) Effect of temperature
on early time domain growth in the (1) lattice,
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so there is clearly an effect of the discrete lattice for
which the continuum growth law represented by Eq. (3)
does not account.

We show the effect of lattice anisotropy on domain
growth in Fig. 1(b). Assuming that the anisotropy is not
too large for domain growth to occur [see s(1) at T =0 in
Fig. 1(a)], increases in lattice anisotropy decrease the
growth rate at early time (¢ < 10> MCS). Following this
very early growth rate dependence on lattice anisotropy,
the domain coarsening rate becomes independent of an-
isotropy; hence, all of the curves in Fig. 1(b) are parallel
at later times (¢ > 10> MCS).

We show the effect of temperature on domain growth
in Fig. 1(c) where we plot the domain growth kinetics for
the ¢(1) lattice at T =0, 1T,, and 27T,. At the earliest
times (¢ <10> MCS), the domains of the highest-
temperature system grow the fastest. Then, at intermedi-
ate times, the growth kinetics cross over (around
t =2 X 10* MCS) to temperature-independent behavior.

Since all of the simulations tend to the same scaling be-
havior at long times or large domain sizes, the discrete-
ness of the lattice is unimportant to domain growth kinet-
ics in the long-time regime. In contrast, at early times,
decreasing lattice anisotropy or increasing temperature
tend to reduce the kinetic effects of lattice discreteness
and increase growth rates. Likewise, the discreteness of
the atomic lattice in grain growth, in effect, decreases
with increasing temperature, as evinced in the experimen-
tally observed increase in grain growth exponents with
increasing temperature.2® However, as Figs. 1(b) and 1(c)
demonstrate, temperature and lattice anisotropy are not
equivalent variables.

IV. EFFECTS OF LATTICE ANISOTROPY
ON DISTRIBUTIONS

Scaling state domain edge and domain area distribu-
tions are shown in Figs. 2(a) and 2(b), respectively. The
curves display significant noise due to the small number
of domains present in the scaling state (approximately
350); however, the curves for the systems which grow
normally [z(1,2), s(1,2), and #(1) at all temperatures and
s(1) at T=2T,_] appear very similar in shape. In con-
trast, edge and area distributions for the systems which
experience some degree of lattice pinning [s(1) at T =0
and }T,] are fundamentally different from the rest. Since
the stable pinned domain on the square lattice is a square,
the edge distributions for s(1) at T=0 and 4T, show no
domains with n <4. Likewise, the area distribution for
the T =0 square lattice is truncated at an area close to
the mean area. The area distribution of the scaling state
T =1T, square lattice is intermediate between the pinned
T =0 case and the normally growing T =2T, case. Thus
the domain edge and domain area distributions provide
insight into the essential characteristics of growing and
pinned lattices; however, they are not helpful for investi-
gating different growing lattices.

Therefore, instead of focusing on the actual domain
edge and domain area distributions, we avoid inadequate
scaling state statistics by concentrating on the moments
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of the distributions. We define the mth topological mo-
ment (i.e., the moment of the number of edges per
domain),

% Pn)n—{(n))" 4)

n=3

P (T)

and the mth domain area moment,
pm( = [ “Pla/(a))a/Ca)—1)"d(a/(a)) ()

where m is an integer with 1 <m <4.

In Fig. 3 we plot the moments of the late time topolog-
ical distributions u,,(7T) for each lattice type. In particu-
lar, Fig. 3 shows the second through fourth moments of
the topological distributions for domain growth simula-
tions performed on the s (1) lattice (at T =2T,), the £(1)
lattice (an average of the T'=0 and T =1T, data), the
s(1,2) lattice (at T'=0) and the £(1,2) lattice (at 7" =0).
We determine each moment based upon data from 10
simulations at ¢t =10°> MCS. (In order to improve statis-

At (12)T=0
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FIG. 2. Domain topology and area distributions for s(1) and
t(1)at T=0, 1T, and 2T, and s(1,2) and #(1,2) at T=0. (a)
Domain edge distributions. (b) Domain area distributions. Ex-
cept for s(1) at T =0, all data are taken in the scaling state;
sample size is about 350 domains. Systems which grow normal-
ly [all except s(1) at T=0 and %Tc] exhibit similar distribu-
tions.
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FIG. 3. Effect of lattice anisotropy on the moments of scaling
state domain topology distributions. (a) u(T). (b) us(T). (c)
u4(T). All moments decrease with decreasing anisotropy. Er-
ror bars indicate approximate range of fluctuations during the
scaling state. Open circles denote the best experimental values
for the two-dimensional soap froth.

tics we often made use of the scaling state temporal in-
variance of the distributions by averaging the 10° MCS
data with data taken at 5X 10* MCS.)

All three moments increase monotonically with in-
creasing anisotropy. For the sake of comparison with ex-
perimental data, we also show the moments for the topo-
logical distribution obtained from soap froth experi-
ments. The soap froth results are in good overall agree-
ment with the simulation data on the #(1,2) lattice. This
is not surprising since the anisotropy for soap froth
should be identically unity (i.e., isotropic) and the 7(1,2)
has the smallest anisotropy of any of the lattices investi-
gated (i.e., about 1.06). The experimental topological mo-
ments obtained by Fradkov, Kravchenko, and Shvindler-
man for two-dimensional grain growth in Al+10~* Mg
foil at 460 °C are substantially larger than all correspond-
ing scaling state Potts-model values, but are close to the
values obtained for s(1) at T=1T,.>’ The large values
of the moments may reflect an equilibration itransient,
growth retardation due to the interaction of the grain
boundaries with the surface, retardation due to impurity
drag, or inherent anisotropy associated with the atomic
lattice.
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FIG. 4. Effect of lattice anisotropy on the moments of scaling
state domain area distributions. (a) uy( A). (b) us( A). (c) py( A4).
All moments decrease with decreasing anisotropy. Error bars
indicate approximate range of fluctuations during the scaling
state. Open circles indicate best experimental values for the
two-dimensional soap froth.

In Fig. 4 we plot the moments of the domain area dis-
tributions u,,( A4) as a function of lattice anisotropy for
the same times and temperatures employed in Fig. 3.
The moments tend to increase monotonically with the
lattice anisotropy, although the scatter in the data is
much more pronounced than for the topological mo-
ments.” Comparison with the soap froth data again
shows that best agreement is obtained in the limit that
the lattice anisotropy tends to one. Unfortunately, the
moments of the Al thin film area distributions are not
available.

V. EFFECTS OF TEMPERATURE ON DISTRIBUTION

We plot the moments of the topological and domain
area distributions as a function of temperature for #(1) in
Figs. 5(a) and 5(b), respectively. The topological and area
moments are less strongly affected by changes in temper-
ature than by changes in anisotropy (see Figs. 3 and 4), so
that u,(T) and p,( A) are essentially independent of tem-
perature. Nonetheless, u;(7) shows a small decrease
with increasing temperature, while the error in u,(7T) is
too large to draw any conclusions. Similarly, u;( 4) ex-
hibits a slight decrease and u4( 4) shows a strong de-

It is important to note that while the second moment
of the domain area distribution changes by approximately
1% with temperature (over 0= T /T, = 2), it increases by
about 15% when the lattice anisotropy is raised from 1 to
1.414. Similarly, the second moment of the topological
distribution changes by 1% and 35%, respectively, as the
temperature and anisotropy increase. Therefore lattice
anisotropy is the more significant factor in determining
the time invariant properties of the domain structure. As
a consequence, it is imperative to select a lattice anisotro-
py and temperature for domain growth simulations that
correspond to those of the experimental system. *!!

VI. DISCUSSION AND CONCLUSIONS

von Neumann’s law [Eq. (1)] implies that topological
considerations dictate domain growth Kkinetics. More-
over, the local curvature of a domain wall controls its ve-
locity. These two apparently unrelated features of
domain growth are connected through the boundary con-
dition that domain walls meet at angles which are deter-
mined by the domain wall energetics. The difference be-
tween the angles (6, and 6,) at which the domain wall
meets a line drawn between its two end points defines the
integral or total domain wall curvature (K =6,—6,) and
hence the net domain wall velocity (v < K —see Ref. 9).
In an isotropic system, domain walls meet at 120°; hence
a six-sided domain has zero net curvature and therefore
neither grows nor shrinks. However, the discreteness of
a lattice precludes a true, continuum vertex angle bound-
ary condition. Therefore, in an anisotropic system, the
orientational anisotropy may prevent domain walls which
lie in preferred (low-energy) orientations from moving.
In this case, domain vertices may stabilize at nonequili-
brium angles, invalidating the fundamental assumptions
of the von Neumann construction. Thus, when the lat-
tice anisotropy is too large, the vertex boundary condi-
tions are no longer strong enough to produce curvature
in domain walls and domain growth stops. As the lattice
anisotropy decreases below this threshold, there is an in-
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creasing tendency to satisfy the energetic angular condi-
tions at the vertices. In the limit that the anisotropy goes
to unity, this tendency becomes infinitely strong, i.e., a
boundary condition.

While lattice anisotropy changes the domain vertex
characteristics, increasing temperatures do not affect the
vertex constraints. Instead, thermal activation allows the
domain walls to fluctuate out of the high symmetry direc-
tions associated with minima in the orientation depen-
dence of the domain wall energy. Therefore thermal
effects counteract the domain wall pinning tendency of
the anisotropic lattice. This suggests that increasing tem-
perature and decreasing lattice anisotropy both favor the
satisfaction of the equilibrium vertex angular conditions
and von Neumann’s law, although by very different
mechanisms.

Of all of the lattices examined in the present study, the
s (1) lattice has the highest anisotropy. At 7 =0, only a
small degree of domain growth occurs before the domain
walls become pinned. The #(1) lattice has the next larg-
est anisotropy, but it undergoes domain growth at all
times. Therefore we conclude that the critical lattice an-
isotropy for domain growth in two dimensions 7, lies be-
tween 1.157 and 1.414. We expect steady state domain
growth to occur for all lattices with 17 <7, and to be pre-
cluded at T =0 for all lattices with > 7,.

However, it is known that the s(1,2) lattice with un-
equal first and second neighbor bond strengths pins
domain growth at T =0, even though its Wulff plot an-
isotropy can be less than 7., depending on the ratio of the
bond strengths.?® This observation suggests that the
effective lattice anisotropy must be carefully defined for
the pathological case of zero temperature. Because the
energy of a T =0 system must monotonically decrease by
the fastest path, in a lattice with nonuniform bond
strengths, the more energetic bonds are preferred to the
less energetic ones. Thus domain growth is governed and
limited by growth on the sublattice of higher-energy
neighbors. If that sublattice pins, the lower-energy sub-
lattice will be insufficient to impart fluctuations to the
domain walls, and domain growth will cease. Because
the s(1,2) lattice with unequal first and second neighbor
bond strengths is composed of two interpenetrating s(1)
sublattices, it pins domain growth at 7T =0 with an
effective anisotropy of 7.=17,>7.. Therefore the
Wulff plot anisotropy 1 of a lattice is equivalent to the
effective system anisotropy at 7' =0 only for lattices with
uniform bond strengths; in other lattices, the effective an-
isotropy is the Wulff plot anisotropy of the sublattice of
the highest-energy bonds.

The initial stages of domain growth proceed faster with
increasing temperature or decreasing anisotropy (see Fig.
1), in agreement with the above analysis of the effects of
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these variables on equilibrium vertex angles. Nonethe-
less, temperature plays only a minor role in domain
growth provided n <7,.. That domain size is independent
of temperature at late times (in the scaling regime) and
that the domain size and topology distributions depend
only weakly on temperature support this conclusion. For
n>17,., temperature plays the crucial role of effectively
decreasing the lattice anisotropy.

The connection between domain topology and lattice
anisotropy is due to the importance of the equilibrium
vertex properties. Therefore we expect the width of the
topological distributions to depend sensitively on the an-
isotropy. The presence of large widths of the grain topol-
ogy distributions in thin metal films suggests that the an-
isotropy of the atomic lattice is large. !> It is important to
note, however, that this type of anisotropy is very
different from that of the Potts model. In the Potts mod-
el, the anisotropy is due to the topology of an underlying
lattice shared by all domains, while in the atomic case,
each grain has a unique lattice orientation and the grain
boundary energetics are sensitive to the atomic lattice
orientations on both sides of the grain boundary. Addi-
tionally, the presence of impurities or solute atoms is
known to impede boundary migration in metals.? As
shown above for the Potts model, however, such slow
growth is consistent with increased topological distribu-
tion width.

The excellent overall agreement (kinetics, topological
distribution, domain size distributions) between the low
lattice anisotropy Potts-model simulations and the soap
froth suggest that the Potts model is a useful analog sys-
tem for studying domain growth in a wide variety of
physical systems. Additionally, the similarity between
soap froth evolution, grain growth, and Potts-model
domain growth demonstrate the universality of domain
growth in highly degenerate systems and the general ap-
plicability of the von Neumann construction. A discrete
lattice causes deviations from universal domain growth
behavior by weakening the vertex angle boundary condi-
tions which form the basis of von Neumann’s law. The
anisotropy inherent in discrete lattice simulations can be
overcome by smoothing the Wulff plot of the lattice (e.g.,
by extending spin interactions to longer range) or by
elevating the temperature at which the simulation is per-
formed.
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