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We consider the time-periodic behavior of oscillator arrays subject to global coupling. Results
are presented for experiments on an electrical circuit comprised of p-n diode junctions, as well as
numerical simulations of an array of iterative maps. In the vicinity of a single-element period-
doubling bifurcation, a large number of periodic attractors coexist, differing by the degree of synch-
ronization of the array. Certain general features of the observed dynamical behavior can be under-
stood using a combination of stability analysis, symmetry considerations, combinatorics, and rela-
tive sizes of the basins of attraction.

I. INTRODUCTION

The study of single nonlinear oscillators is a mature
field. In contrast, far less is known about the behavior of
systems of coupled nonlinear oscillators, though the body
of work on the subject is growing rapidly. As a general
proposition, one expects that systems consisting of many
elements —viewed as a class —will exhibit a far greater
variety and complexity of behavior than their single-
element counterparts. The hope is that this complexity is
not limitless, but rather can be made sense of using a few
unifying concepts.

Broadly speaking, there are two ways of mounting an
attack on systems consisting of N oscillators. The first is
to consider very small numbers of interacting elements
(N =2 or 3), with the goal of characterizing the complex
dynamics (bifurcations, routes to chaos, etc.) that emerge
as a function of the control parameters. ' The second
approach is to jump immediately to the case of very large
N, with the hope of achieving some sort of (presum-
ably statistical) picture of emerging structures. In this
paper, we take this latter approach.

There is presently no general framework for under-
standing large-N systems. Indeed, it is difficult to see
how the geometric insights that help one understand the
single oscillator problem —whose dynamics take place in
a low-dimensional phase space —can be extended to suit
dynamical systems whose phase-space dynamics are high
dimensional. Despite the lack of unifying concepts, a
number of interesting phenomena have been reported in
the literature. These include space-time intermitten-
cy," phase transitions in stimulated activation net-
works, phase organization, ' attractor crowding, ' and
self-organized criticality. ' Aso worth noting is
Huberman's "computing crystal, " which mimics certain
features of associative memory and learning: ' this
work represents a fascinating application of fundamental
concepts from dissipative dynamical systems with many
degrees of freedom. For the most part, the descriptions
of these phenomena are at the level of analogies, drawn
either from other fields (most often condensed-matter
physics), or from archetypical low-dimensional dynami-
cal systems.

In addition, Kaneko has reported extensively on the
phenomenology of coupled arrays of chaotic iterative
maps, including a description of the hierarchical organ-
ization of attractors in phase space. For single attractors,
he introduces the notion of "clustering, " which refers to
the way the array of oscillators partitions into dynamical-
ly coherent subsystems. Clustering is a natural concept
for many degree of freedom systems, and is also central
to the present work. As in Ref. 34, we study globally cou-
pled oscillator arrays, though in a parameter regime far
from any chaotic dynamics.

A feature often encounterd in the study of large-N
problems is the presence of large numbers of coexisting
attractors in the phase space. For example, this occurs in
models of charge-density waves. ' ' Josephson-junction
arrays, semiconductor laser arrays, ' and multimode
lasers, ' as well as the computing crystal. ' Such sit-
uations may also arise when the underlying equations
possess a high symmetry. ' To understand such mul-
tistable systems, one is lead naturally to a statistical
description, an idea we pursue in this paper.

Though the above motivations are general, the scope of
the present work is quite specific. In particular, we
present a combination of experimental and numerical re-
sults for a system of globally coupled nonlinear oscilla-
tors. Experimentally, we study a driven electrical circuit
consisting of up to four diode elements, in which we can
directly control the magnitude of coupling between the
degrees of freedom, near the onset of a period-doubling
bifurcation. Our interest in this case is that, for a system
of N elements, there is a large number of coexisting at-
tractors (of order 2 ). Theoretically, we find that a set of
coupled iterative maps gives a good accounting of the ex-
perimental results. This agreement leads us to study nu-
merically the case of real interest, namely arrays of many
oscillators. We find that the structure of a large number
of coexisting attractors, together with simple combinator-
ic arguments, can account for the statistical dynamical
behavior of the system in the presence of external random
noise.

Although we focus on a relatively narrow range of cir-
cumstances in this paper, our ultimate goal is to gain
some general understanding of the behavior of N globally
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FIG. 1. Experimental realization of a globally coupled oscil-
lator array. The diodes are Motorola MR1122, L =680 pH,
co=2.25X10 sec ', and R =143 Q. This value of R includes
the inductor dc resistance.

coupled oscillators. However, since our theoretical
description relies on coupled iterative maps, it is impor-
tant to make direct contact with more obviously realistic
systems. This connection is provided by the diode array
(see Fig. 1). This circuit has been well characterized in its
single oscillator form. ' It consists of a p-n junction
diode, an inductor, and a resistor connected in series with
a sinusoidal voltage source. One can construct a globally
coupled system of oscillators by connecting any number
N of these diode-inductor-resistor resonators in parallel
and placing this network in series with a coupling resis-
tor. The series resistor plays the important role of cou-
pling the current in any one branch with the currents in
all of the other branches.

The contents of this paper are as follows. In Sec. II we
introduce the model map equations, whose form is ap-
propriate near a period-doubling bifurcation point. A
stability analysis of the map array is performed in Sec.
III; one finds that there are some 2 distinct attractors,
which are naturally classified according to their syrnme-
try type. The stability calculation is checked against nu-
merical simulations. In addition to the straightforward
issue of stability boundaries, we consider a different, sta-
tistical characterization in Sec. IV. This measure, which
is perhaps more appropriate when dealing with large-N
systems, concerns the probability of finding the system in
a particular "macroscopic" state, irrespective of the
oscillator-by-oscillator details which determine a specific
attractor. In Sec. V we turn to experimental measure-
ments on the circuit depicted in Fig. 1, and make corn-
parisons with the behavior of the iterative map array in
Sec. VI. Section VII provides a summary of our findings
and conclusions.

II. MODEI. MAP EQUATIONS

In an effort to analyze arrays like that in Fig. 1 in a rel-
atively simple way, we begin by considering a set of cou-
pled iterative maps of the form

x/, f (x/„~)+&g(xi, . . . , x~),

Now, in general, one cannot expect that a set of coupled
ordinary differential equations —such as the ones describ-
ing realistic physical systems like the circuit array —will

be "reducible" to a corresponding set of coupled iterative
maps. [Rather, there is a natural connection between the
Row in M-dimensional phase space and an (M —1)-
dimensional iterative map. The reduction of the sort im-
plied by the above equation is from an M-dimensional
Aow to a (M —N)-dimensional map. ] Nevertheless, for
the purposes of the present study, we are motivated to
take the map array seriously, based on the following pic-
ture. First, we have a set of N identical elements —in our
experiment these are p -n junctions —which depend on an
external control parameter, which we call the local stress
parameter. Second, we have direct control of a parame-
ter which governs the coupling between the degrees of
freedom —this is the resistor in series with the junction
array —so that A, =0 corresponds to the uncoupled prob-
lem. Now, in the uncoupled case, we can imagine study-
ing the Poincare return map of each oscillator separately,
and of course in this limit the dynamics will be captured
correctly by the map array. As the coupling parameter is
varied away from zero, we anticipate the effect to corre-
spond to a simple perturbation of the "individual" maps.

It is in this spirit that we consider a map array as a
model for the coupled oscillator systems like the diode ar-
ray. In what follows, we will focus on the case where the
uncoupled maps undergo a period-doubling bifurcation at
+=a'. Without loss of generality, we can take the bifur-
cation point for the uncoupled maps to occur at x =0,
+*=0. Thus both o. and A, can be considered small pa-
rarneters.

More specifically, for the local dynamics f (x) we use
the normal form appropriate for (supercritical) period
doubling42

f (x)=( —1+a)x+Px +yx + .

where a is a small parameter, but 13 and y are order uni-
ty. Meanwhile, we require that the coupling function
g (x i, . . . , x/v ) retains the permutation symmetry
relevant to global coupling. In particular, recall that the
correct scaling requires that a —O(x ); if we similarly
take A, -a —O(x ), then only the terms in g that are con-
stant or linear in x contribute:

g =5+gN 'g x
J

where 6 and g are coefficients of order unity. The factor
of N ' has been included so that the coupling term
remains bounded as N grows large. This is naturally tied
to the global nature of the coupling term; for a finite-
range coupling, such as nearest neighbor, no such factor
would be necessary. In particular, we note that this scal-
ing ensures that the fully symmetric state is independent
of N.

Thus our model equations become

x/, ~( —1+a)x/, +Pxk+yx/,

+A,6+A,gN 'gxj+O(xk) .
J

If this model correctly describes the coupled oscillator ar-
ray at all, we expect it to do so when both A, and o, are
small parameters. Thus our first step is to understand the



2642 LARRY FABINY AND KURT WIESENFELD 43

basic structure of the uncoupled problem, and then fol-
low the effect of "turning on" the coupling parameter A, .

The uncoupled problem has a fixed point at x& =0, for
all parameter values, which corresponds to the in-phase
period-one solution. This solution exhibits a bifurcation
at ca=0, beyond which there are 2 ' distinct stable
period-2 orbits (in addition to the now unstable period-1
orbit). This multiplicity arises because, relative to x„
each oscillator may be either in phase or out of phase
with x, . (There are, of course, a number of other unsta-
ble orbits as well, corresponding to solutions in which
any number of the xk are zero. ) It is convenient to label
these many states according to some macroscopic mea-
sure. In particular, for a period-2 state in which the X
elements have broken into synchronized groups of m and
(N —m), we introduce the "excess" I =2m —N. Conse-
quently, when exactly half of the oscillators are in each
phase of the period-two oscillation, I =0. In fact, I may
be thought of as labeling the symmetry of the different or-
bits beyond the bifurcation point. Our goal is to follow
these orbits when k is varied away from zero: we find
that orbits of different symmetry have different stability
ranges.

What are the questions we will try to answer? First,
we will look at the stability ranges of orbits having
different I: we will be able to directly compare predic-
tions based on the maps with data from the electrical cir-
cuit. This will give us a handle on the degree to which
the coupled maps can be taken seriously as a model for
the physical system. It also gives us a way to calibrate
the map parameters e and A, with the experimental pa-
rameters. We will then turn to a more ambitious prob-
lem, which concerns the fact that there are (for large N)
exponentially many coexisting attractors. In an effort to
get a gross handle on the ensuring behavior, we will try
to make a connection between the sharing of phase space
in the noise-free system with the statistical behavior of
the system in the presence of noise. In particular, we will
follow the probability of finding the system in a state cor-
responding to any particular symmetry value I, as a
function of the local stress parameter u and the coupling
parameter A. .

the stress p and the coupling strength e. We can calcu-
late the fixed points corresponding to period-2 orbits of
the original system, and determine their stability proper-
ties. We find that the excess I is an important factor in
determining the stability of a given solution.

Our first task is to find the fixed points of Eq. (4). It is
easy to see what these are for the special case e=O. in
this case, below the bifurcation point (p (0) there is only
the one solution x, =x2= =x~=0, while above the
bifurcation point (p) 0) we can independently choose x&
to be any of the three values 0 or +&p, so that there are
3 solutions. It is also clear that all of these latter solu-
tions, which have xk =0 for any k, are saddle points,
while the remaining 2 solutions are stable for some
range of m. In what follows, we are interested in com-
puting these 2 solutions, and their stability properties,
for E&0. To do this, we set

x =x+, j=1,2, .. .m

x =x, j=m +1, . . . , E

x =(1+@)x —x +—mx++ (N —m)x—
iV

for x+ and x . We are interested in the solutions where
neither x+ nor x is zero. For I =0 or +X we easily
find the exact solutions. The other solutions may also be
found in closed form, by introducing the variables
u =x+ +x and v =x+ —x, which leads to a cubic po-
lynomial in u

2

u —(2p —e )u + —,
' (2p —e) + 3 u

2le p=0 .

so that the oscillator array decomposes into two groups,
of size m and X —m, respectively. We define l for this
solution by 2m N, so th—at I =0 when m =N/2. The
next step is to substitute Eq. (5) into Eq. (4), and solve the
resulting algebraic equations

x+ =(1+p)x+ —x+ +—mx++ (N —m)x—E 6'

III. ANALYSIS OF MODEL

x„~(1—2a —2AP5)x„—2(y+P )x„'

—2A, gN 'gx +O(xk) . (3)

By rescaling, this can be written in the following general
form:

xk —+(1+@)xk xk+ g xj
J

(4)

The coupled map equations depend on two parameters:

One could begin to study the above model equations as
they stand. Moreover, because we are interested in the
period-doubled regime, it is easier to study the second
iterate of the coupled maps. Applying Eq. (2) twice, the
new map equations are

However, it is more convenient to solve Eqs. (6) by ex-
pressing the answer as an expansion in e. Sufficient accu-
racy is obtained by taking the expansion to second order,
so that

E I E I 3 I
x+ —p + —+

p p

3
x — p + + +

2p&~2 ~ 4

Of course, Eq. (8) represents a whole multiplet of solu-
tions, wherein any m of the x& are equal to x+, and the
remaining xk are equal to x, so that the multiplet con-
tains N!Im!(N —m )! symmetry-related solutions.

To determine the stability range of these solutions, we
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linearize Eq. (4) about the fixed point Eq. (8). This leads
to the matrix equation

where gk is the deviation of xz from its fixed point value,
and M is an N XN coefficient matrix. The eigenvalues A, ;
of M determine the stability of the fixed point; stability
requires ~A, , ~

(1 for all i A.lthough there are N eigenval-
ues in all, the symmetry of the problem allows one to
make a transformation that greatly simplifies the
analysis. Specifically, one can introduce the following
change of variables

N

0 r ~ ~ ~ ~ ~ ~ ~ e

j=m+1

kk 9k 1k+ lr k lr ~ ~ ~ r m

k =m+1, . . . , N 1. —

This transformation very nearly diagonalizes the linear-
ized problem: the resulting matrix is now reduced to a
single 2X2 block —corresponding to mixing between =
and 4—and is otherwise diagonal. The symmetry there-
by leads to only a small number of distinct eigenvalues:
to second order in e, these are

r 3~'r r
A, =1—2p —3e—————1 ——

N 2 p N N

r 3~'r rk2= 1 —2p+ 3e—+———1+—
N 2 p N N

2

(9)

3 e IA3= 1 —2@+—,'e(1+x)+——
2 p N

3 e I
A,„=1 —2@+—,

' e( 1 —~ ) +——
2 p

2

1+—5
K

5
1 ——

K

where x.=(1+241 /N )' . The first two eigenvalues
correspond to the coordinates gk and gk, which have
multiplicity m —1 and N —m —1, respectively. The last
two eigenvalues correspond to the remaining 2 X 2 block.

From Eqs. (9), the stability boundaries in the p-e plane
can be determined readily, for any choice of I /N. The
special case of I =N deserves a closer look. When all of
the oscillators are in phase, the fixed points are given ex-
actly by x+ ——V'p, +e. This gives us a check for the sta-
bility results based on the second-order expressions, Eqs.
(8) and (9), at least for this special case. Although the
differences are not critical for small N, the deviation from
the exact results become more substantial for large-N sys-
tems. We also note that this state has only two (distinct)
eigenvalues, since the simplifying transformation requires
only = and gk, and not 4 and pk. As we shall see in Sec.
IV, this has important consequences for the relative sta-
bility of this state, compared with the other period-2
solutions.

More generally, we can compare the analytic expres-
sions for the stability boundaries, for any I, with its cor-

FIG. 2. Analytical stability diagram for N =2.

responding numerical simulation. The simulation con-
sists of selecting a particular p-e pair, then inserting a
range of initial conditions for the (xk ). For each set of
initial conditions, Eq. (4) is iterated a sufficient number of
times until the iterates settle down to an attractor. This
attractor is either a steady state corresponding to a par-
ticular value of I, or some higher period solution. (That
is, for some parameter values, fixed point solutions may
coexist with other, time-dependent, solutions. ) Repeating
this procedure yields a stability diagram in the p-e plane.

In order to get an idea as to how well these approxima-
tions can be trusted, we consider the case of N =2. Fig-
ure 2 shows the stability diagram of the map array. On
the scale of this figure, the second-order results are virtu-
ally indistinguishable from those obtained by direct nu-
merical iteration, suggesting that we can take seriously
the analytic expressions given by Eqs. (9). It is somewhat
surprising that the agreement extends out to parameter
values of order unity for both e and p, this wide range of
agreement is possibly fortuitous, but in any event is unim-
portant for our present purposes. This is because the va-
lidity of the iterative map array as a model of real sys-
tems, e.g., the circuit array, was predicated on an expan-
sion in terms of the small parameters e and p.

IV. DYNAMICS OF LARGER ARRAYS

We turn now to the behavior of arrays composed of
more than two elements. The resulting dynamical system
typically has many coexisting attractors. We focus on
two particular issues: the stability ranges of the various
period-2 attractors and the competition between these
many attractors for available phase space, e.g., the rela-
tive sizes of the basins of attraction.

As N becomes increasingly large, there can be several
overlapping regions of I stability, i.e., regions over which
solutions corresponding to different values of I stably
coexist. Typically, one finds that for small values of e, all
period-2 solutions are stable just beyond the onset of the
period-doubling bifurcation. As a control parameter is
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varied, these solutions lose stability in some order which
depends on I . Figure 3 compares the analytic and nu-
merical stability limits as a function of e) 0 for X =44,
when p=0. 5. (Note that, quite generally, the stability
boundaries of I solutions are identical; for convenience
we only quote those for positive I .)

With one exception, the stability range is a decreasing
function of I —that is, states corresponding to two
groups of nearly equal number have a greater range of
stability than states dominated by one phase. Thus, for
this sign of coupling the dynamics selects against large-
scale synchronization of the array.

There is an exception to this rule: strikingly, it is the
extreme case in which all of the oscillators are synchron-
ized. Mathematically, the reason for this is that the ei-
genvalue responsible for the instability for all the other I
solutions does not exist for the case of m =X [cf. the dis-
cussion following Eq. (9)j. Consequently, the bifurcation
of this exceptional solution is fundamentally different
than the others. This behavior is especially noteworthy
since, in most applications of oscillator arrays, one is in-
terested in stabilizing the solution with the greatest de-
gree of synchronization. In this sense, the exceptional
stability of the fully synchronized solution is especially
welcome.

While an understanding of the stability limits can be
useful in determining when each of the different I solu-
tions will be directly observable, it says nothing about the
relative probability of finding the system in an orbit cor-
responding to a particular I . For given values of stress
and coupling where solutions corresponding to several
(and possibly all) values of I are stable, we now ask the
following: which solutions are most probable? On the
face of it, this is a complicated theoretical issue, since the
answer depends on both the multiplicity of solutions for a
given I, the size of the basins of attraction, and the relax-
ation rate of the dynamics in the vicinity of each attrac-
tor. While the multiplicity is easily determined by simple

combinatoric considerations, determining the basin sizes
is far more dificult. On the other hand, the relative
probabilities are readily determined numerically by
searching the N-dimensional space of initial conditions
Ixk ) and iterating the coupled map equations. In this
way, a measure of the basin size of corresponding to each
value of I is found as a function of p and e.

The numerical results showing basin size versus e for
X =4 are depicted in Fig. 4. The most noticeable feature
is that the more negative e value tends to favor the I =0
states; that is, tends to favor the equal distribution of os-
cillator phases. Meanwhile, increasingly positive values
of e tend to force all oscillators into the same phase, cor-
responding to the

~
I

~

=4 states.
Finally, we turn to numerical simulations for X =44,

which reveal an interesting and unexpected feature. The
results for the relative basin size are depicted in Fig. 5,
for the extreme cases I =0 and I

~
=44, only. As for the

smaller array, the evenly divided solutions I =0 suffer a
gradual decrease in their share of the phase space, as e in-
creases. On the other hand, the relative basin size of the
completely in-phase solution is utterly negligible, except
in a narrow range of coupling strength e, where its share
reaches fully 10% of the available phase space. Recalling
that there are 473 of the I =0 period-2 solutions in all, as
compared with only one

~

I
~

=44 solution, it is surprising
that the in-phase attractor is observed with any non-
negligible weight at all. The narrowness of this peak is
also unexpected, insofar as the in-phase states are stable
for all e down to zero.

The origin of this effect can be understood by correlat-
ing this with the stability results of Fig. 3. While the gra-
dual decline for I =0 is due to an actual shrinking of the
size of the individual basins of attraction, the growth for
~I

~

=44 is due to successive instabilities of the intermedi-
ate I orbits. As an instability point is approached, the
basins do not diminish to zero; rather, a substantial
volume of phase space is "orphaned" at the bifurcation
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FIG. 3. Upper stability boundary in e for different solutions,

labeled by excess I, for N =44 and p=0. 5. The solid symbols
represent the second-order result deduced from Eq. (9); the open
symbols represent direct numerical iteration of the model map
Eq. (4).

FICz. 4. Relative probability of finding the map array in a
period-2 orbit of a given I, as a function of —e', N =4, p =0.5.
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FIG. 5. Relative probabilities of finding the map array in the
period-2 orbits I =0 and 44 as a function of e; N =44, p =0.5.

point, and one finds that this volume is always added to
the I ~=44 basin. A close look at Fig. 5 reveals the
discrete jumps in the ~1

~

=44 curve as it increases. Of
course, this basin size suddenly drops to zero at its own
point of instability.

V. EXPERIMENTAL REALIZATION
OF A GLOBALLY COUPLED SYSTEM

We return now to the experimental realization of a glo-
bally coupled oscillator array, shown in Fig. 1. The par-
ticular nonlinear circuit studied here has been well
characterized in its single oscillator form.

The coupled differential equations describing the multi-
ple oscillator circuit can be written in the following gen-
eral form:

dI
L = V, sincot RI —V —R,—g Ik,

/c =1

dV =f(I, t), j =1,2, . . . , N
dt

(10)

where I and V are the current and voltage of the jth
junction, L is the series inductance, R is the series resis-
tance, V, is the driving voltage amplitude, co is the driv-
ing frequency, and R, is the coupling resistance. The
specific functional relationship between the junction
current and voltage, Eq. (11), depends on the particular
diode model chosen. Good agreement with experimental
results has been achieved for N = 1 and 2 by numerically
integrating these equations, but this approach becomes
less practical for large X.

Consider first the case of a single oscillator. For low
driving voltages, the circuit responds nearly sinusoidally,
oscillating at the drive frequency. As the amplitude of
the driving voltage is increased, a succession of period-
doubling bifurcations will occur, eventually leading to
chaos. ' The case of two coupled oscillators behaves

0

-50-

r

a

-100
0.5

Vq fV)

1.5

FIG. 6. Experimental stability diagram for N =2.

somewhat differently. As the drive amplitude is in-
creased from a low value, the circuit initially experiences
a single period doubling; however, depending on the driv-
ing frequency, it can then undergo a Hopf bifurcation,
leading to quasiperiodic oscillations. Thereafter, still oth-
er instabilities are observed. For the purposes of the
present work, we will restrict ourselves to a parameter re-
gime where only the first period-doubling bifurcation is
relevant; consequently, secondary instabilities such as the
Hopf bifurcation will not be a factor.

For reasons of theoretical convenience, one would like
to construct the coupled circuit with N identical resona-
tors. Obviously, this is not possible in a strict sense; nev-
ertheless, without too much trouble one can find reason-
ably matched elements, to within about 10%%uo variation.
This spread in parameters did not prove to be critical to
the experimental results, and the circuit's behavior
seemed well described by equations that treat the ele-
ments as identical.

Although the performance of the coupled circuit de-
pends on several parameters, we will focus on the effects
of the coupling resistance R, and the driving amplitude
V, . The other parameters will be fixed so that the first
period-doubling region is accessible. In particular, we
can identify the quantity V, as a "local stress" parameter
which drives a single element through an instability, and
the quantity R, as a "global coupling" parameter which
governs the strength of the interaction between elements
(so that R, =0 recovers the uncoupled problem).

In order to test most fully the correspondence between
the circuit and the iterative map model, it is handly to
have both "positive" and "negative" coupling. In princi-
ple, this requires that the coupling resistance R, can take
on both positive or negative values. In our experiments,
the case of negative resistance is achieved by replacing
the coupling resistor with a negative impedance convert-
er (NIC). The NIC is an operational amplifier circuit
which changes the impedance Z seen by the remainder of
the circuit into an equivalent impedance of —Z.

Figure 6 shows the results of measurements on the
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diode circuit for X =2. The general form of the two sta-
bility regions I =0 and 2, as well as their relationship to
each other, bears a qualitative similarity to Fig. 2. Con-
sider first the case of a small positive resistance R, . As
the drive voltage V, is increased from zero past the bifur-
cation point, the circuit period doubles into the out-of-
phase I =0 orbit, as this is the only stable orbit. If the
coupling resistance is instead small and negative, as V, is
increased from zero the circuit period doubles into the
in-phase I =2 orbit at a driving voltage less than the un-
coupled bifurcation point Vo.

Stability diagrams can also be constructed for larger-N
circuits. However, we turn instead to the statistical mea-
sure introduced in Sec. IV, examples of which are depict-
ed in Figs. 4 and 5. This description, based on the rela-
tive probability of finding the array in a particular "mac-
roscopic state, " seems to us a more natural way of quan-
tifying systems containing very large numbers of oscilla-
tors, or, alternatively, systems where it is not feasible to
monitor each degree of freedom separately.

Theoretically, we focused on the total size of the basins
of attraction corresponding to a given I . In our circuit it
is not possible to set arbitrary initial values for current
and voltage. However, we can simulate this situation by
applying an uncorrelated noise source to each of the indi-
vidual oscillators. This noise is turned on and off, and
the final state of the circuit is observed. Repeating this
measurement will produce the basin size information.
Although X independent noise sources should be em-
ployed, as a practical matter one noise source is sufficient
if a relative time delay in the noise signal greater than the
correlation time of the noise is introduced between oscil-
lators, as shown in Fig. 7. This is a cheap and efficient
way to ensure that the instantaneous noise in any oscilla-
tor is uncorrelated with the noise in any other oscillator.

Figure 8 shows the total basin size corresponding to
different values of

~
I as a function of R, for the circuit

with % =4. Note that the sum of the basin sizes add up
to 100%, since there are no other attractors in this pa-
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FIG. 8. Relative probability of finding the circuit in a
period-2 orbit of a given I, as a function of R„N =4, V, =1.0
V.

rameter regime. In order to find the basin size per attrac-
tor, one should divide by the multiplicity for that value of
~l ~. We chose to monitor the total basin size, since it is
most relevant to the measurement of some bulk (or mac-
roscopic) quantity associated with the array, e.g. , the to-
tal current.

VI. COMPARISON BETWEEN
EXPERIMENT AND THEORY

To compare the behavior of the coupled map equations
with the behavior of the circuit, we need to make a con-
nection between the map parameters p and e and the cir-
cuit parameters V, and R, . As a general proposition, p
and e should be expressed as functions of both V, and R„
however, we will approximate the map stress p as a func-
tion only of the circuit stress V„and the map coupling e

as a function of the circuit coupling R, :

p, =F(V, ),
e=G(R, ) .

NOI SE

Delay

We expect that this is a reasonable approximation, based
on physical grounds: indeed, our map model was
motivated by the distinct roles played by the local stress
and the global coupling parameters.

For the uncoupled maps, the period-2 bifurcation point
occurs at p=0. If we let Vo be the driving voltage at the
circuit's corresponding bifurcation, then p can be written
as

FIG. 7. Schematic of circuit with noise added to array, to
sample a range of initial conditions, using a Micronetics noise
module ( V„,= 1.0 V, noise correlation time less than 10 ns) and
circuit delay time ~=200 ns.

p= g c (V, —Vo)
j=0

where the coefficients are such that V, ) Vo for p) 0. In
a similar manner, one can express e as an expansion in
R, . The sign of e relative to R, is crucial: does R, )0
correspond to positive or negative e? This can be deter-
mined by comparing numerical and experimental stabili-
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ty plots for two oscillators as depicted in Figs. 2 and 6.
As noted in Sec. V, the circuit data of Fig. 6 enjoy only

a qualitative similarity to the map predictions of Fig. 2.
Note, however, that Fig. 6 shows the raw data, without
any attempt to scale the experimental parameters V, and
R, to the corresponding model parameters e and p. Nat-
urally, such scaling leads to better agreement; however,
for our purposes we are not interested in establishing de-
tailed quantitative correspondence between the experi-
ment and the model iterative maps.

More specifically, a basic similarity of behavior can be
seen if R, is identified with —e. Thus a small negative e
first will produce a I =0 orbit when p is increased past
zero, while a small positive e will produce first a I =2 or-
bit while p is still negative. Therefore a positive value of
e shifts the bifurcation point to a lower value of stress p,
just as a negative value of R, does for the circuit. The
foregoing suggests that we have, for small e

e= —aR, ,

where a is a positive constant.
Of greater interest is the case N )2, to which we now

turn. We compare the basin size computation for the
map array (Fig. 4), with the randomly perturbed circuit
measurements (Fig. 8). Recall that negative values of e
correspond to positive values of R, . The figures indicate
that the map model predicts the dynamical response of
the circuit quite well. In particular, we see that positive
R, (negative e) tends to more evenly distribute the rela-
tive phases between oscillators (lower

~

I ~), while negative
R, (positive F) tends to force greater synchronization of
the group as a whole (higher

~
I ~).

The correspondence between the map model and the
experimental results was quite good for X =2, 3, and 4,
even without scaling the stress parameters p and V, . Al-
though the stability limits depend substantially on p and
V„we find that the basin sizes are not greatly affected as
the stress is varied within a stability range. Rather, it is
the coupling term which plays the greater role in deter-
mining basin size.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have investigated a specific example
of a feature common in oscillator arrays, namely the ap-
pearance of large numbers of coexisting attractors. A

simple yet useful picture of the systems studied is that
they consist of local degrees of freedom —controlled to a
local stress parameter —subject to a coupling between de-
grees of freedom, whose strength is independently con-
trolled. The coupling studied was global, in which all os-
cillators are coupled to all others, with equal strength.
Such coupling occurs in both electrical circuits and mul-
timode laser systems: here we constructed a parallel ar-
ray of p-n junction diode oscillators, though of fairly
small size, up to Ã =4. In addition, we introduced a set
of coupled iterated maps, which enabled us to understand
certain features of the circuit array, and also allowed us
to consider (numerically) the behavior of much larger ar-
rays.

We focused on the vicinity of a single period-doubling
bifurcation point, for which the system can have as many
as 2N —1 coexisting periodic attractors. Inevitably, with
so many coexisting states, one is lead to consider some
kind of statistical description of the dynamical system.
We found it convenient to label certain classes of attrac-
tors according to their symmetry, or (what amounts to
the same thing here) their degree of synchromzation. A
combination of straightforward linear stability analysis,
together with measurements of the relative sizes of the
various basins of attraction, revealed some interesting
and understandable behavior. Of particular interest are
some circumstances that especially favor the completely
in-phase solution: for example, for 2%=44, we find this
state can attract fully 10% of all initial conditions. This
is somewhat unexpected insofar as this occurs when it
coexists with 473 other stable periodic orbits.

In fact, it is possible to choose the parameters p and e
such that the completely in-phase period-2 solution is the
only stable solution. That is, not only are all of the other
period-2 solutions unstable, but there are no attractors of
any other type. The in-phase state is therefore globally
attracting —that is, its basin occupies 100% of the phase
space.
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