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Structure of correlation functions
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Experimental determinations of correlation functions typically involve events of differing particle
number. In order to interpret such data, it is important to relate these measurements to fixed-
number correlations. We exhibit the total correlation function in terms of fixed n correlations and
fluctuations with respect to the average. We note that moments, constructed as integrals of the ap-
propriate correlation functions, can be dominated in the case of broad distributions by cumulant
moments constructed from single-particle density fluctuations.

I. INTRODUCTION

Consider an ensemble composed of subsystems of vari-
able particle number n. We imagine the sample to be
suKciently large that one can define the probabilities q„
to find an n-particle subsystem within which the joint
probability Q„(x„x2, . . . , x„) is defined in some space.
We assume normalizations

jQ„(x„.. . , x„)dx, dx„= 1,
q„= 1 .

Hence the joint probability of finding a system of n parti-
cles which are located at the indicated points is

gin of such behavior.
The present paper analyzes the eft'ect of admixing

di6'erent particle numbers in the construction of correla-
tion functions. It can happen that more or less trivial
contributions overwhelm "true" correlations existing in a
system with fixed particle number. In particle physics
the following well-known example occurs. The variable
x becomes either momentum, or some other measure
such as longitudinal rapidity y =

—,'in(E+p, )j(E —p, ).
Let p', "'(x), p2"'(x, x') be the one- and two-particle density
correlations for fixed n (defined in Sec. II). In terms of
the overall densities pi(x)=g„q„p'i"~(x), p2(x, x')
=g„q„pz"'(x,x') the cumulant correlation functions

C2(x, x')—:p2(x, x') —p, (x)pi(x'),
p„(x„.. . , x„)=q„Q„(x„.. . , x„) . (1.2)

In Eq. (1.1) the integrations of all the x variables are tak-
en over the same "volume" 0,.

Examples include multiparticle production in nuclear
and high-energy physics, where P„=o.„/cr;„ is typically
the probability of charged particle production construct-
ed from the "n-prong" cross section o.„and o.;„ the in-
elastic charged cross section, galaxy counts, and of course
statistical-mechanical systems where the probabilities fol-
low from the Gibbs ensemble. It should be noticed that
our physical format is a little di6'erent from the grand en-
semble of statistical mechanics, from a mathematical
point of view.

It might seem that everything should already be known
about the description of such systems. However, the de-
tailed analysis of particular physical problems produces
specific question, points of view, and conjectures needing
a fresh analysis. A case in point concerns the construc-
tion of higher-order cumulant correlations from two-
particle correlations. A specific formulation apparently
describes galaxy-galaxy correlations, '* cluster-cluster
correlations, as well as multihadron correlations ' ob-
served in high-energy collisions. It is not yet known what
the origin might be for these structures: occurrence in
such di6'erent physical systems points to a statistical ori-

I

C'"'(x, x') =p'"'(, x') —p', "'(x)p',"'( '), (1.4)

=g q„[p~"'(x,x') —p', "'(x)p',"'(x')]

+ g q„[p'i"'(x) —p, (x)]

X [p',"'(x ') —p, (x ')]; (1.5)

C2(x, x') = ( Cz"'(x,x') ) + ( bp„(x)hp„(x') )

where Ap„=p&"' —p& is the single-particle density Auctua-
tion. Here the bracket notation clearly denotes
y„q„e„=(e„).

This example shows how to decompose the "total"
correlation function C2, defined in the obvious way, in
terms of the averages over the fixed multiplicity Cz"' and
the single-particle density Auetuation. The main goal of
this paper is to generalize Eq. (1.6) to higher orders. We
quote the following results:

are connected as follows:

C~(x, x') =gq„p~i"'(x, x') —g q„p~i"'(x) g q p', '(x')

C3(x,x', x")=(C3"'(x,x'x"))+ g (ECi2"'(x,x')bp„(x"))+(hp„(x)bp„(x')bp„(x")),
(3)
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C4(x, x', x",x'")= ( C4"'(x,x', x",x'") ) + g ( bC(3") (x,x', x")b p„(x"'))
(4)

+ g ( EC(2")(x,x')bC~(")(x",x"') ) + g ( C2"'(x,x')bp„(x")bp„(x"') )
(3) (6)

+ (iI)p„(x)hp„(x')lip„(x")bp„(x"'))—y (Ap„(x)bp„(x')) (Ap„(x")kp„(x'"}) .
(3)

(1.8)

In Eqs. (1.7) and (1.8), the fiuctuations b, C'") are referred
to the mean:

/C(n) —C(n) ( C(n) )2 2

gC(n) C(n) ( C(n) )3 3 3 (1.9)

The final terms of Eqs. (1.8) will be recognized as the cu-
mulant moments of the variable Ap„.

II. DEFINITIONS
OF CORRELATION FUNCTIONS

p,"'(x,y„. . . , y„)= g 5(x —y; ) . (2.1)

It is convenient to define a set of 5-function density
operators, p, (x), P2(x, x'), p3(x, x', x"), . . . following, for
example, Klimontovich. We shall consider all particles
to belong to one species, e.g., the species of charged parti-
cles (without regard to whether they are plus or minus),
the species of any galaxy (without regard to whether they
are spiral, spherical, etc.). Note that we avoided the
word "identical, " which carries quantum-mechanical
overtones, unnecessary for the present job of connecting
correlation integrals to the counting of particles. Refer-
ence 7 deals with the complications of populations com-
posed of distinct species (for example, if we do distinguish
plus from minus in a charged population). For clarity we
defer these issues to another paper in preparation. Some
applications to charged particle correlations can be found
in Ref. 8.

For notational purposes„ let x, denote points of obser-
vation and y; (i =1,2, . . . , n) the positions of the parti-
cles in the n-particle system. The density operator p& is

I.

Equation (2.1) provides an easy way to count particles in-
side a volume 0 in x space:

f dxp, "'(x,y)=n(A) . (2.2)

Equation (2.1), of course, corresponds to a specific reali-
zation of the n-particle system. By using the probability
Q„(y) we get the average single-particle density

p()")(x)=f dy Q„(y)p,"'(x,y) .

Finally, the total single-particle density is

p, (x)= g q„p', "'(x)

(2.3)

(2.4)

so that

f dx p, (x)= g nq„=(n ) .
n

(2.5)

Proceeding to higher-order density correlation opera-
tors we write

p~"'(x), x2;y)= g' 5(x, —y, )5(x2 —y ), (2.6)

p,"'(x „x2,x, ;y) = g' 5(x, —y;)5(x2 —
y, )

i,j,k =1

X5(x3 yk), (2.7)

etc. , where the prime indicates that i', i' WkWi, etc.
The necessity of this exclusion in constructing sensible
distribution functions for a single species is explained in
detail in Ref. 7.

If we integrate p2"', p3"', . . . , pp over identical ranges
of the x, variables, we find

f dxz f dx2pz"'(x„x2, y)=n(A)[n(A) —1],

f dxi f dxz f dx3p3"'(xi, xz, x3,y)=n(A)[n (A) —1][n(A)—2], (2.8)

f gdx p "'(x„.. . , x;y)=n(A)[n(A) —1] [n(A) —p+1] .

The correlation functions for fixed n and p'"'(x„. . . , x ) are

p,'"'(x„x,)
= f dy Q„(y)p2"'(x, ,x2, y),

p3"'(x „x2,x3 )
—= f dy Q„(y)p3"'(x „xz,x3;y) (2.9)

and the total correlation functions are
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p2(x „x2 ) = g q„p2"'(x „x2),

p3(x, , x2, x3 )= g q„p3 (x ] x2 x3 )
(n) (2.10)

Their integrals [see Eq. (2.8)] yield factorial moments

J dx 1 f dx2p2(xl, x2) = (n(n —1))n,

f Q d xp~( x„.. . , x~)=(n(n —1) . (n —p+1))n .
0,

(2.1 1)

As shown in Eqs. (1.3) and (1.4), one needs to subtract away uncorrelated background densities to exhibit physically
interesting correlations, be they dynamical (due to forces) or statistical (e.g. , due to Bose-Einstein correlations). If
p2(x „x2) factorizes into the product P, (x, )pl(x2) we say that x, and x2 are statistically independent, and C2 vanishes.

The general procedure for removing lower-order correlations is to construct cumulant correlations (as we shall see,
they should be called factorial cumulant correlations in our case) by the well-known construction '

C2(xl&X2 P2 Xl&X2) Pl(xl )Pl(X2)

C3(x, , x2, x3 ) —p3(x, ,x2, x 3 ) —g p2(x „x2 )p, (x3 )+2p, (x, )p, (x2 )p, (x3 ),
(3)

C4(x»x2, x3ix4)=p4(xl)x2, x3ix4) —g p3(xl)X2, X3)pl(x4) —g p2(x»X2)p2(x3~x4)
(4) (3)

+2 X p2(x 1 &x2 )pl(X3 )pl( 4 ) 6pl(x 1 )pl(X2 )pl(X3 )pl(X4)
(6)

(2.12)

In the case of fixed n each symbol is given a superscript (n). In Sec. III we will verify the result that the C vanish if
any variable becomes statistically independent of the others. Hence nonvanishing cumulants imply true statisitical
dependence. Inverting Eqs. (2.12) shows how p is composed of lower-order cumulant correlations

P2 xl'X2 Pl(xl )Pl(X2)+ 2(x1 &x2)

P3 x l~x2~x3) Pl(xl )Pl(X2 Pl(X3)+ 2 2(x1~x2 Pl(X3)+ 3(xl~x2~x3)
(3)

(2.13)
p4(xl, x2, x3 x4) =pl(x1 )pl(x2)pl(x3)pl(x4)+ g C3(x l, x2, x3)pl(x4)

(4)

+ g C2(x„x2)C2(x„x4)+g C2(x„x2)p, (x3)p, (x4)+C4(x„x2,x3,x4) .
(3) (6)

In Sec. III we will construct the specific generating functionals which automatically produce these structures.
We see [Eq. (2.11)] that the integrated density correlations produce factorial moments. Correspondingly integration

of C gives factorial cumulants

f dxl f dx2C2(xl, x2)= (n (n —1) )&—
& n &n,

f dxl f dx2 f dx3C3(xl, x2, x3)=(n(n —l)(n —2)) —3(n(n —1))n(n ) +n2(n )n (2.14)

Denoting the factorial moments (cumulants) by g„(f„)re-
call that the generating functions are"

Q(A, )= g(1 —
A, )"P,= g ( —A, )"g„/r!,

lnQ(A, )= g ( A. )"f„/r! . — (2.15)

Note that a vanishing cumulant C„(i.e., statistical in-
dependence) implies the vanishing of the corresponding
factorial cumulant f„. Also note that for Poissonian
statistics all f„(r~2) vanish, since Q(A, )=e '"'. This
result establishes a link (for our definitions appropriate

for one species of particle) between statistical indepen-
dence of the correlation functions and Poissonian count-
ing statistics. This should be contrasted with the usual
cumulants for Gaussian random variables: in this case all
cumulants beyond the second one vanish.

III. DECOMPOSITION
GF CUMULANT MOMENTS:

GENERATING FUNCTIONAL TECHNIQUES

A straightforward application of generating functional
methods allows the derivation of Eqs. (1.7)—(1.9). Define
Z„[A,] by
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Z„[A,]—= J dy Q„(y)exp i Jdx A(x)p~i"'(x, y) (3.1)
From Eq. (3.6) we now derive (writing 5g„ /5A,
=$„5In/„/5A, )

Change of notation T. o save space we no longer exhibit
the coordinates x, ,x2, . . . but simply write 1,2, . . .
For example, A, (x i ) ~A, i, C2(xi, x2) ~C2(1,2), etc.

The density correlations follow from

521nz 5 lnZ„5 In/„5 lnZ„

5~,SX,
= ~ ~" ~" 5~,5~,

5»'Z„[X]

5A, ), , 5A,
= i»'& p "'(x, )

Xp "'(x~), . . . , p "'(x ))

(3.2)

(3.10)

Note that we can replace Z„by g„=Z„/Z in the second
term of Eq. (3.10) since 5/5A. zg„q„g„)=5/M2(1) =0.

Change of notation. In order to save writing we denote
the average over q„by brackets & ). Hence Eq. (3.10) be-
comes

Likewise lnZ„generates the cumulant moments:

5»'lnZ„[ k] —
» Cp (xi)x2, . . . , xp )

) ~ ~ ~ ) p g O

If we now average over n, we And

Z [k]= g q„Z„[A.]

(3.3)

(3.4)

5~)nZ 5 lnZ„5 ln»„5(n»„}

From Eq. (3.11) we now derive Eq. (1.7) as A, ,
—+0:

C2((,2)=(C~"'((,2)}+(5p„(()5p,(2)} .

(3.11)

(3.12)

lnZ [2(, ] (3.5)

which generates density correlations p (x, , . . . , x ), and It is now straightforward to evaluate higher-order terms;
in third order we find [see (3.11)]

5 lnZ 1 5Zn 5 lnZ„

n n 1

(3.6)

which generates cumulants C in terms of the total p .
The reader should work out a few examples to confirm
this.

Since lnZ generates complete cumulants and lnZ, fixed
n cumulants, we can find the relation between the two
sets beginning with

53(nZ 51n», 5)n»„5)n»
51,5A, ~5k, , "

5A, , 5A,2 5&3

5 In'„5 in/„
+~(»" 55 5252

5 1nZ„
Pl (3.13)

g„—=Z„/Z . (3.7)

5 In/„51nZ„
5A, , 5A, ,

5 lnZ
5A, ,

~ i[pI"'(1)—p, (1)]=imp„(1),
A. ~O

(3.g)

As it turns out, in/„ is an important generating function-
al in its own right. Note that

C3(1,2, 3)= & C3"'(1,2, 3) )

+ y & aC',"'(1,2)Si „(3))
(3)

+ & bp„(1)bp„(2)bp„(3)); (3.14)

where the (3) denotes three terms in the summation over
permutated labels. Setting A, , =0 in Eq. (3.13), we derive
the result

5 In(„5 lnZ„

5k, 5A, ~ 5A, ,5A.2

5 lnZ
5A, ,5A, 2

~C; (1,2) =C'; (1,2) —&C',"'(1,2) & . (3.15)

~ i~[C~2"'(1,2) —C~(1,2)],
A, ~O

(3.9)

5 In/„ ~C'"'(l, 2, . . . , m) —C (1,2, . . . , I ) .
1 I

The emerging pattern by which the full cumulant C~ is
expressed as fixed n quantities and deviations from the
averages of lower densities and correlations becomes still
more evident in fourth order. From the relation

541nz 5 lnZ„5 in/„5 In/„5 In(„5 In(„
5~,5~,5X,u, ,

=
"5~,5~,5~,5~, +~ " u, ,

"
5~,5~,5X,

+~ "5~,5~, 5~,5i,
51ng'„5 In/„5~in('„5 in/„51ng„51ng„5 In/„

5X, 5X,5i, " 5X, 5X, 5~, 5X,

taking A, , ~0 and using Eq. (3.9), we find the expression

(3.16)
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C4(1,2, 3, 4) = & C4"'(1,2, 3,4) &+ g & hp„(1)[C3"'(2,3,4) —C3(2, 3,4) &

(4)

+ g & [C2"'(1,2) —Cz(1, 2)][C~"'(3,4) —C~(3,4)] &

(3)

+ g& bp„(1)bp„(2)[C~"'(3,4) —C2(3, 4)] &+ & bp„( l)bp„(2)bp„(3)bp„(4) & .
(6)

Now using Eqs. (3.12), (3.14), (3.15), and (1.9) to eliminate Cz and C& from Eq. (3.17) we find

C4(1,2, 3,4) =
& C4'"'(1,2, 3,4)+ g & bC(3") (1,2, 3)bp„(4) &+ g &

bC(z") (1,2)ACz(") (3,4) &

(4) (3)

+g & ECz"'(1,2)bp„(3)bp„(4) &+ & bp„(1)hp„(2)bp„(3)bp„(4) &

(6)

—g & &p( I )&p(2) & & &p„(3)&p„(4)& .
(3)

(3.17)

(3.18)

Now one can write down higher-order expansions by inspection. Note that the last two terms are just the cumulants
formed from the variable Ap„. To sharpen the meaning of these expansions, suppose that the first q density moments
were to factorize (statistical independence in the n-particle sector)

p&"'(1,2) =p'("'(1)pI"'(2),

p(ll)(123)p(ll)(1)p(n)(2)p(ll)(3)
(3.19)

p,'"'(1,2, 3, . . . , q ) =p)"'(1)pI"'(2). . . p~"'(q) .

In this case the generating function factorizes and C'"'=0 for p =2, 3, . . . , q, i.e., there are no cross terms. The surviv-

ing terms in the b p cumulants are [P indicates the distinct permutations of the pairs (12) (34)]

C,(bp) =
& bp„(1)bp„(2) &

=
& p', "'(1)p',"'(2) &

—p, (1)p,(2),
C3(&p) =

& &p„(1)&p„(2)&p„(3)&,

C (&p) =
& &p„(1)&p„(2)&p„(3)&p„(4)& —y & &p„(1)&p„(2)& & &p„(3)&p„(4)& .

(3.20)

thefor C4 1sThe generating functional
in+„q„exp[i J dx A(x)bp„(x)].

The lesson of Eqs. (3.19) and (3.20) is that euen in the
absence of true correlations in the n particle sector, t-he

mixing of diferent n inherent in the definition of the C
induces a nonzero, often large component In such cas.es,
the physical significance of the correlations is nearly trivi-
al, following from the single-particle density fIuctuation
averaged over the number probability q„.

pf Q dx,.C'"'(x „.. . , x~ ) =( —1)~ '(p —1)!n, (4.1)

f p

Q dx;C (x, , . . . , x )=I(: (4.2)

where K is the ordinary cumulant moment of order p
[see Eq.(3.20)]. The ordinary moments (M and cumulant
moments K are related by the generating functions

M(k)= g e "P„= g ( —A. )"p /n!,
n =1

(4.3)
IV. INTEGRAL PROPERTIES;

RELATION TO MOMENTS

In Sec. II we observed the relation between factorial
moments and certain integrals over the variables appear-
ing in the correlation functions. (By choosing more gen-
eral integration domains, quite a variety of correlations
can be obtained. ) Here we show that knowledge of the
moments puts strong constraints on the relative magni-
tude of the contributions of the individual terms on the
right-hand sides of Eqs. (1.6)—(1.8). In fact, the latter will
be seen to be, in essence, a local version of an expansion
of factorial cumulant moments in terms of cumulant mo-
ments. '

Our exposition depends on the identities

Qo gp
=noln(1 —

A, )= —no g
—:g ( —

A. )"f /p! .
p=1

(4.4)

InM(A, )—:g (
—

A, )"K„/ !n.
n=1

These definitions are to be constrasted with their factorial
counterparts defined in Eq. (2.15). If we take P„=5„„
the averaged factorial cumulant moment reduces to Eq.
(3.1); we write

ln g (1—
A. )"P„=ln(1—

A, )
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These relations immediately lead to Eq. (4.1). A corol-
lary of Eq. (4.1) follows:

dx, b, C

f„ in Eq. (4.8) vanish. Hence the only role of the right-
hand side is to cancel. On the other hand, if the y are of
order unity, as for a broad distribution, then there is an
ordering of numerical significance expressed in Eqs. (4.8).

&n &'

f3 2

(n) (n)
f4

(n)4

3

( ) Y2 Y3

6 11 6
Y2 ( ) y3 Y4

(4.8)

For convenience we have defined the reduced cumulants

K, /(n )i'as y, :

=( —1) '(p —1)!(n —(n ) ) . (4.5)

Integration of Eqs. (1.6)—(1.8) leads to [using Eqs. (4.1)
and (4.2)]

f,=(n (n —1) &
—(n &'= —(n &+K2,

f3=(n(n —1)(n —2)) —3(n(n —l))(n )+2(n )

=2(n ) —3E2+K3,
(4.6)

f4= (n(n —1)(n —2)(n —3) )

—4(n(n —l)(n —2))(n ) —3((n —(n )) )

+2&( —
& ))'&( &' —6( ')

= —6(n )+4X2K2 —K3+E4 .

Here the cumulant moments are

K3 = ( ( n —( n ) ) = ( n ) —3 ( n ) ( n ) +2 ( n ), (4.7)

K =4((n —(n ) ) ) —3((n —(n ) ) )

Although the correlation functions have dynamical
significance, they are subject to the normalization condi-
tions, Eqs. (4.1) and (4.2).

Before analyzing specific examples we reexpress Eqs.
(4.5) in terms of "reduced" moments f /(n )t' and

y =re /(n&&.

V. APPLICATIONS

I'(n +k) (n /k)"
I (n)I (k) (1+n /k)" +" (5.1)

We have seen that the expansion of the correlation
function in terms of Cz"' and the lower-order fluctuations
AC'"' has a very simple structure. The corresponding
moment expressions relate the factorial cumulants yz(Q).
In fact, each term [see, for example, (3.18)] integrates to a
particular cumulant moment.

The sum rule (4.1) provides a quantitative constraint
on the relative magnitude of the various terms in the ex-
pansion in terms of averages over q„. In many cases the
results are nonintuitive. One might expect that the pth-
order correlation would be dominated by C'"'. For
"broad" distributions, the opposite is the case, as we shall
prove in a specific example, the negative binominal distri-
bution. For such broad distributions, in the limit of large
( n ), the dominating terms in the cumulant are the
single particle -bp cumulants (3.20). Hence knowledge of
the global P„(Q) and bp„=p„—p, determines the basic
form of C in suitable limits

Let us analyze the case of negative binomial distribu-
tion, which plays a useful role in describing final state ha-
dronic multiplicity data. " ' For this system the usual
variable upon which the correlation function depends is
the longitudinal rapidity variable y =

—,
' ln(E +p 2 ) /

(E —p, ), with E =(p +m )'~ and p, the longitudinal
(i.e., parallel to the c.m. collision axis) momentum. y is
additive under a change of (longitudinal) reference
frames; the phase space interval d p=dyd p~ for each
particle, p~ being the transverse momentum, which at
high energies is typically (except for scarce jets) confined
to a few hundred MeV/c in magnitude.

It is well established that for a wide range of rapidity
acceptance b, Y (~Q of the general discussion of this pa-
per) and reaction types ( e + — e,pp, pp, pir, ) the
probability P„of finding n charges in b, Y agrees (except
for the 900-eV UA5 Collaboration data' ) with the nega-
tive binomial distribution (NBD)

&n'& —(n &'

(n )'
(n ) —3(n )(n )+2(n )

(n &'

(n ) —4(n ) (n ) —3(n ) +12(n ) —6(n )
X4 (n)'

(4.9)

Now we see that Eqs. (1.6)—(1.8) lead directly to the ex-
pression of the normalized factorial cumulants f„/(n )"
as an expansion in normalized cumulant moments y .

The manner in which Eqs. (4.8) are satisfied depends
completely on the nature of the underlying probability
distribution P„. If P„ is Poisson, M(k)=e '"' and all

kk
( )PI&

Ic —I —kx

(k —1)!
(5.2)

Although the differences between (5.1) and (5.2) can be

The cell parameter k can be any real number, depending
on the particular dynamical context in which it arises. "
The earliest physics derivation seems to be that of
Planck, ' who composed k Bose-Einstein distributions of
equal average occupancy n/k. [For k =1, (5.1) reduces
to the geometric distribution n "(1+n)"+', which coin-
cides with a thermalized Bose-Einstein distribution when
1/n =exp(E/kT) —1.] Equation (5.1) has a nice scaling
form for large n, (n ). If we set x =n/(n ) and let
n ~(x&, k and x fixed, we get
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Q(A)= 1+
k

(5.3)

which is just the product of k independent Bose-Einstein
sources with average population n/k. The factorial cu-
mulants f defined by

lnQ =
pI fp (5.4)

lead to the NBD value

fp (p —I )!
&n &P kP-' (5.5)

In the limit k~ oo, Q(A, )~e (") approaches the Pois-
son limit, and f —+0, p ) 1, as noticed earlier.

The first several ordinary reduced cumulant moments
are

(5.6)

&4 6 7 12 1
X4 + + +

(n &' k' k'(n) k&n &' &n &'

Clearly, when (n )/k))1 (5.6) reduces to the factorial
cumulant values (5.5). From (4.8) we see that this implies
that the "true" n-particle correlations contribute negligi-
bly to the integrated cumulant.

The identities of Eq. (4.8) are, for the NBD,

2

k

6
k

1

( ) y2

2
(n)'

3

( )
yz+y3 ~

6 11 6

( )3+( )2y2
&

&y3+y4

(5.7)

For (n ) ))k, f /( n )p=.yp and the difFerence terms are

seen in careful data analysis, the form (5.2) is very useful.
We note that these results are already known from semi-
classical photocount theory of Gaussian random fields
from Mandel's 1959 paper. ' In the photon case k would
be the number of independent polarizations, or laser
modes.

For hadronic multiparticle phenomenology the physi-
cal meaning of k is not understood. The UA5 Collabora-
tion (Ref. 14) has found that k varies with the squared
c.m. energy s =8' as k '= A +B lns for given hY.
Thus the scaling law (5.2) is violated at sufficiently high
energy. In addition, k decreases. Typical values are
k =3, (n ) =30 for c.m. energy of 540 GeV, b, Y=10.
For small b Y, k decreases, e.g., for BY=1, k=1.7. At
lower energies, characteristic of earlier Fermilab and
CERN Intersecting Storage Ring experiments,
k=(n) =10.

The factorial moment generating function [see Eq.
(2.15)] for (5.1) is

—k

of 0 (1/( n ) ). Hence in this domain little can be learned
about correlations from mixed-number data, which are
dominated by fluctuations in the single-particle density.
In particular, we note Eqs. (3.19) and (3.20) give a sub-
stantial total correlation even when fixed n correlations
vanish. We also note the relation of k to the second-
order cumulant

f2
d

C2(31 X2) 1

(
(5.8)

To summarize, for high-energy and nuclear applications,
high-energy, large multiplicity, large hY acceptance tells
us little about true fixed n correlations. At lower energy,
all terms contribute and a careful analysis is required to
disentangle the components.

The distribution of galaxy counts also has a broad dis-
tribution. Hubble' found a log-normal distribution for
counts in 6 X6 photographic plates. We found' that
conditional counts (probabilities in Zwicky clusters)
obeyed a negative binomial or the gamma distribution of
Eq. (5.2) with (n ) =100, k=6. Saslaw and Hamilton
have recommended' a different but similar distribution
for galaxy counts.

The main results of this paper are based on combina-
toric identities. While trivial in this physical sense, the
identities have powerful implications. Clearly, to see
nontrivial effects the observation volume must be chosen
small enough that the average particle number is not too
large compared to some measure of the width of the dis-
tribution (k for the NBD).

There exist many aspects of higher-order correlations
that invite further investigation. For example, classical
systems have phase space distribution functions coupled
by the Bogoliubov-Born-Green-Kirkwood- Yvon hierar-
chy. ' What does the present analysis imply for this
problem? Secondly, in the standard statistical mechanics
we can construct the cluster expansions of Ursell, Mayer,
and others. For both short- and long-range forces ' there
is a systematic procedure to expand all physical quanti-
ties in terms of two-particle potentials, correlation func-
tions, etc. Presently such simplicity does not exist for the
example systems mentioned above, hadrons and galaxies.

Nevertheless, an appealing conjecture' about the
form of the higher cumulant correlations has been rather
successful both for galaxy distributions and multihadron
distributions. In astronomy one speaks of the "hierarchi-
cal model" and in hadronics of the linked pair approxi-
mation (LPA). The idea is simply to compose the pth cu-
mulant as a (symmetrized) product of p —1 linked (no
closed loops) two-particle cumulants. Although it was
our interest in the LPA that drew our attention to the
analysis of the present paper, we have so far not succeed-
ed in connecting the two approaches. We hope to pursue
such connections elsewhere.

The integral (moment) relations discussed in this paper
were restricted to the specially simple case that each vari-
able was integrated over the same range A. There are
many interesting generalizations of this technique. For
example, correlations between different parts of the phase
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space are related to suitably chosen integration domains.
If we partition Q into subspaces (e.g. , M identical ones,
with increasing M} it is possible to test for scaling, possi-
bly fractal behavior from moment data rather than direct
correlation functions. We refer the reader to Ref. 5 for
current examples of these ideas.
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