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We consider a network of X symmetrically interconnected neurons. Through the procedure of
adiabatic elimination (separation of time scales), the dynamics of a single neuron is obtained, in
closed form, from the system of coupled differential equations that describe the ¹euron problem.
For the deterministic case, our approach yields an explicit form for the single-neuron "self-
coupling term J». The case of noisy neurons containing both Langevin and multiplicative noise
(in the synaptic connections) is also considered.

I. INTRODUCTION

Since the work of Hopfield, ' considerable interest has
been generated in physics and engineering in mathemati-
cal neuron network models having the idealized proper-
ties of their biological counterparts. These informa-
tion processing networks containing relatively simple
constituents have allowed the analysis and also the simu-
lation of thousands of elements. If, furthermore, the
synaptic connections are taken to be symmetric, the mod-
el is equivalent to a spin-glass system and the ideas of
mean-field theory and statistical mechanics may be uti-
lized in the analysis. ' ' It has been recognized that
these admittedly gross oversimplifications of the biologi-
cal arena may indeed represent new insights into the cog-
nitive processes of the brain as well as suggest new non-
linear methods of computing.

In contrast to nonlinear coupled neural networks, there
has been a recent upsurge of interest in single (isolated)-
or few-neuron nonlinear dynamics. In particular, Bab-
cock and Westervelt" have examined simple models in-
volving one or two nonlinear threshold switching ele-
ments, which they model as coupled Hopfield neurons.
By introducing inertial terms in the dynamics they
demonstrate complicated bifurcation behavior including
chaos. Their model of a single neuron with additive and
multiplicative noise terms was considered by Bulsara,
Boss, and Jacobs. ' It was found that multiplicative

noise (in the synapic connection) could suppress the bist-
able character of the deterministic system as well as in-
troduce bistability in the "thermodynamic potential" in
parameter regimes where such behavior might not nor-
mally be expected. Li and Hopfield' have considered the
neural processings in the olfactory bulb. They find that
the oscillatory activities in the bulb (as observed in elec-
trophysiological experiments) may be modeled by a small
group of coupled nonlinear oscillators. There is also a
commonly held belief amongst physicists that simple
models involving only a few degrees of freedom can fre-
quently describe, quite accurately, the dynamics of very
complex systems. An excellent example in which micro-
scopic complexity may be sacrificed in order to obtain the
broader, macroscopic dynamics is afforded by the
renormalization-group approach to second-order phase
transitions; this approach leads to the description of the
universal behavior (in terms of critical exponents) in the
neighborhood of a second-order phase transition. Even
though the Hopfield neuron is an oversimplification of
real neuron behavior, it is expected that some collective
features (which are relatively insensitive to the dynamics
of individual neurons) of real neural networks might be
extracted from it. It is precisely the relationship between
the many-neuron connected model and a single-effective-
neuron nonlinear dynamics that we want to examine
here. In this context it is worth pointing out that Skarda
and Freeman' have evaluated electroencephalograph
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data from the olfactory bulb. They find that many of
their observations may be explained on the basis of sim-
ple "connectionist" models such as that of Hopfield.

In this work, we use the technique of "adiabatic elim-
ination" to obtain the dynamics of a single neuron, in
closed form, from the dynamics of the network. In this
method, a set of fast relaxing variables is identified and
the long-time solutions to their dynamics utilized to form
one or more slow time-scale single-mode dynamic equa-
tions for the relevant (i.e. , "slow" ) variable. We will term
this an e+ectiue neuron in the coupled-neuron system un-
der consideration. The adiabatic method is well known
in the statistical mechanics of strongly interacting sys-
tems as well as quantum optics, both for deterministic
and stochastic dynamics. ' ' In particular, when one
considers generalized Ginzburg-Landau equations for
multimode nonequilibrium systems, one may use the
technique to eliminate a set of "fast" variables in the vi-
cinity of a nonequilibrium phase transition. We are then
left with a set of equations of greatly reduced dimen-
sionality that can be readily treated. An example of the
application of this procedure is the single-mode laser in
which one begins with a set of coupled equations for the
photon field and the atomic populations in the lasing lev-
els of the atoms in the laser cavity. By assuming the
atoms to be in or close to their steady states, one derives
a closed differential equation for the photon number den-
sity. This procedure has been described by Haken. '

For simplicity, we will adopt the deterministic
Hopfield model' of the form

dU, U;
C,. = g J; tanhU—

j wi ji =1 1

Here U; is the potential of the i'" neuron with input ca-
pacitance C; and a leakage current due to the intermem-
brane resistance R;. The simple change of variables
U~/3U, J~~/3a~ Tj transforms Eq. (1) to the basic mod-
el of Ref. 2. The interesting first term on the right-hand
side of (1) represents the (biological) input to the soma
from the other neurons with the characteristic saturation
with potential of their firing rates, taken for simplicity to
be a hyperbolic tangent function. A nice discussion of
this equation is given by Shamma. We will take the
neuron connectivity to be symmetric:

It is the latter condition which focuses upon the question
as to the meaning of a single-neuron effective equation.
Self-excitation is not easily understood, but has been as-
sumed in the literature. '" We wish to understand the
relationship between an eff'ective J;; and the J;& (i%j) and
the other parameters of the network.

In Sec. II we use the adiabatic elimination procedure to
obtain the effective-neuron equation. This is compared to
the results of Babcock and Westervelt. " Approximate
solutions are obtained and compared to numerical in-
tegration. In Sec. III we turn to the solution with noise,
both Langevin and multiplicative. ' ' We set
Jj Jj +6Jj where 5J; . is a noise source. In addition,
we add to the right-hand side of (1) a random current

source F ( t ). With these additions, Eq. (1) becomes a sys-
tem of coupled stochastic differential equations. The adi-
abatic elimination is carried out, in a stochastic context,
on the associated Fokker-Planck equation for the case of
two coupled neurons. The generalization of these results
to larger networks of neurons, however, is complicated
by the fact that the Fokker-Planck equation in two or
more dimensions cannot be easily solved in the steady
state because of detailed balance considerations. We con-
sider the three-neuron case explicitly, and invoke a local
Gaussian approximation' to obtain the steady-state solu-
tion of the Fokker-Planck equation for the fast neurons.
The details of the calculation are relegated to the Appen-
dix. Thereafter it becomes a simple matter to write
down, formally, the ¹ euron result. Specifically, we
write down the stochastic diff'erential equation for a sin-
gle neuron in a "bath" of X-1 fast neurons (these neurons
are assumed to have relaxed to their steady states on a
much faster time scale than the slow neuron). The equa-
tion takes into account the details of the synaptic cou-
pling between all the neurons as well as the additive and
multiplicative noise (in the synaptic couplings) in the net-
work. The results obtained are compared to the single-
neuron stochastic model generalization' of the (deter-
ministic) Babcock-Westervelt model. " Finally, some
comments are made in Sec. IV.

II. DETERMINISTIC EFFECTIVE NEURON

and obtain

Ui
C& U& = — +J&2 tanhU2+ Ji3 tanhU3

Ri

U~=R2(J2, tanhU, +J23 tanhU3),

U3 =R 3 (J3& tanh U& +J3z tanh Uz ) .

(3a)

(3b)

(3c)

Since the R; (i =2, 3) are small by definition, we may take
the tanh in the steady solutions, Eqs. (3b) and (3c), and
use the approximation

tanh( R,J," tanh U; +R;J;I, tanh Uk )

R 'Jj'tanh Uj +R, J;k tanh Uk (4)

Since Eqs. (3b) and (3c) are linear in tanhU; (i =2, 3), one
may solve for these variables in terms of tanh U& and sub-
stitute the result into (3a). The result is a closed equation
for U& in which the variables U2 and U3 have been adia-
batically eliminated:

Let us consider Eq. (1). For simplicity of notation, we
will consider a three-neuron network; the results may be
readily generalized to N neurons. We focus on the neu-
ron i = 1 and assume that the other two neurons may re-
lax to a steady state on a much shorter time scale' than
the i = 1 neuron. To do this, we assume R, «R,
(i =2, 3). Thus we may set

dU;
=0, i =2, 3
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Ci Ui=—Ui 2+(J)2R2+J)3R3
Ri

+2J,zJz3J»R2R3)D ' tanhU, ,

0.16—

0.02 —
)

where D = 1 —J23R 2R 3. We may further simplify the
above equation by dropping terms of 0 (R2R3). Then we
obtain

Ui 2+(J,zR2+ J,3R3) tanhU, ,
Ri

which may be readily generalized to yield

U N

C, U, = — + g Jf R tanhU,
Ri J

ro

-0.12
0
0
O
(Ac -0.26—
E

0)o
-0.40

-0.54

-3.00
I

-1.81
I

-0.61
I

0.58
I

1.78
I I

2.97

Ui +Ji i tanh Ui
Ri

where the self-connection is

NJ„=g J~R) .
J =2

This is the single-neuron equation written by Babcock
and Westervelt. " The Hebb rule for storing
memories' ' is the initial assignment

M

J;, =x ' g gt'P,
p=1

and J, may be positive or negative. From (8) we see that
Ji i )0 consistent with the work of Babcock and
Westervelt. " It should be noticed that the self-term need
not be assumed but depends on the assignment of the pa-
rameters of connectivity and resistance to the other neu-
rons.

The two-neuron problem has been considered by
Hopfield and, earlier, by Andronov, Vitt, and Khaikin '

in connection with the analysis of an electron tube trigger
circuit. An analysis of the phase Rows indicates that
J,2RiR~=1 is a bifurcation point. For J,2RiR~) 1,
U, =U2=0 becomes an unstable fixed point with two
stable attracting points away from the origin. It can easi-
ly be understood that in this case the single-efFective-
neuron mode is a motion in the potential valley joining
these fixed points seen in Eq. (3); the fast motion is trans-
verse to the valley (see Fig. 1).

Some comments are now made concerning the analytic
solution to the effective equation, which is the problem of
integrating Eq. (7):

2cU, (t)+L2 2cU, (0)+L2
UI(t) = Ul(0)

2cU, (t)+L3 ' 2cUi(0)+L3

Xexp
i i

(12)

This is written for U, (t) )0, the piece for U, (t) (0 being
obtained via the replacement L23 —+ —L23. Here we
have defined

L, —:J„c(J„c —4c)

L2—:—(J„c —4c)' (1+L,),
L3—= (J&tc —4c)' (1 L&) . —

(13)

This has behavior similar to the original integral in (10)
except that the fixed point at the origin remains a stable

1.85—

1.68

1.52

1.36

FIG. 1. Effective 1D deterministic potential. Solid curve
reprents the numerical integration results; the dashed curve
represents the analytic approximation [using Eq. (11)].
(R2, R i C),c,Jll ) =(0.125, 1,4, 2).

f dUi Ji i R i tanh Ui Ui R, Ci
(10)

The left-hand side is easy to evaluate numerically, but
seemingly intractable analytically. One may make the re-
placement

1.03
0.05

I

1.04
I

2.03
I I I I I

3.02 4.01 5.00

/tanhx
/

=
1+cx

c being an adjustable parameter. The solution (10) may
then be written in the form

FIG. 2. Deterministic time dependence of U&(t). Solid curve
represents numerical integration [Eq. (10)]; dashed curve
represents the analytic approximation [Eqs. (11) and (12)].
Same parameters as in Fig. 1.
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attractor, although very local, for J ] &R &R z ) 1 as is
shown in Fig. 1. It has the advantage that the integral
may be easily performed. Figures 1 and 2 show the re-
sults for two neurons. The effective one-dimensional po-
tential is shown in Fig. 1 and a comparison of the time-
dependent solutions is shown in Fig. 2. Here we have set
(R &C&, c,Rz) =(1,4, 0. 125). The solid curve indicates the
numerical integration results of Eq. (10) and the other
curve has been obtained using the approximation (11).

III. STOCHASTIC EFFECTIVE NEURON

and

Ui JF, ( U), Uq) = — + tanhUq,
R iC] C]

Uz JF~(U„U~):—— + tanhU, ,
RqCq C~

B,(U~)=— tanh U~+C2 C2
1

(20)

Noise is important in the modeling of neural net-
works. 6, &o, zz For biological modeling the inclusion of
noise sources is essential in the description. This has also
lead to the fruitful use of (Ising-like) spin-glass analogies
in this area. '

Let us first introduce noise into a two-neuron system
(the reason for this apparent limitation will become clear)
and carry out the stochastic counterpart of the deter-
ministic adiabatic elimination. ' ' In Eq. (1) we allow
the connectivity of the neurons to Auctuate:

J»(r) =J+5J,(r),
J~, (t) =J+5J,(t),

(14)

where 5J&(t) and 5Jz(t) are taken to be white noise hav-
ing zero mean and uncorrelated:

(5J, (t)5J~(0) ) =0,
(5J, (r)5J, (0) ) = (5J,(r)5J, (0) ) =o'5(t), (15)

5(t) being the Dirac delta function. In addition, an addi-
tive (i.e., Langevin) white background current Iluctuation
F(t) having zero mean, variance o, , and uncorrelated
with the multiplicative Auctuations is assumed:

(F(t) ) =0= (F(t)5J,.(t)), i =1,2
(F(&)F(0))= '.o(5)r.

The two-neuron coupled stochastic differential equations
now take the form

P(U„U„t)=h (2~1, t)g (l, t),
with

f h(2~1, t)dU~=I= f g(l, t)dU, .

(21)

Here h (2~ 1, t)—:h ( Uz ~ U„t) is to be interpreted as a con-
ditional probability density function to find Uz given U, .
Substituting (21) into the original Fokker-Planck equa-
tion (18), one may obtain (the procedure is outlined in
Ref. 15) the separate equations

—h (2~1,t)= — [F~(U„U~)h (2~1, i)]
a a

2

Q2+—B~(U, ) h(2~1, t)
BU

(22)

—g(l, t)=-a
Bt [F, ( U, )g ( l, t)]

a

1

1+— [D, ( U, )g ( l, t)],
2 aU',

(23)

where we introduce the quantities

B~(U, )—= tanh U, +
Cq C~q

We assume neuron "2" to be statistically rapidly varying
and "slaved" by neuron "1."' ' Let

U)
C, U, = — +[J+5J,(r)]tanhU, +F(r),

Ri F, (U, )—= — + G(U, ),Ui J
R )C] C)

(24a)

C~U~=—
Uq +[J+5J,(r)]tanhU, +F(r) . 2

Di(Ui)—= Ci [o,+o H(Ui)]—: B)(Ui), (24b)
1

BP
at

a [F,( U„U~)P] — [F~( U„U~)P]
1

BP BP+ iB (U ) + 'B (U )—'aU' ' » aU1 2

~a () P+
C)Cq BU)BUq

(18)

In the Ito interpretation' the corresponding two-
dimensional Stratonovich-Fokker-Planck equation' ' '

for the probability density function P =P( U, , Uz, t) is— H(U, )—:f h(2~1) tanh UzdU~

G(U, )=f h(2~1)tanhUzdUz .

(24c)

(24d)

In the above integrals, h (2~1) represents the long-time
solution obtained by setting the left-hand side of (22)
equal to zero (the variable U, is treated as a constant
when obtaining this solution, since Uz relaxes on a far
shorter time scale). This solution is readily seen to be a
Gaussian in Uz (assuming vanishing probability flux at
the boundaries Uz =+~ ):
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h (2~ 1)=K 'exp
2C

o

o ~2
D, (U, )= + J R2tanh U, . (32)

U2 JU2
X — + tanhUI

2R 2C2 C2
, (25)

Uq =JR2tanh UI, (26)

which coincides with the maximum of the Gaussian dis-
tribution in U2. The steady-state value (26) may also be
obtained by equating the drift term F2 in (22) to zero.
The integration procedure is equivalent (there is, howev-
er, some subtlety involved) to the method of steepest des-
cents. The scaling R, «R „which was used in Sec. II
in connection with the deterministic calculation, is here
invoked to justify the approximation to the integrals.
Carrying out the procedure outlined above, we obtain, to
the order ( U2 —U2 ) in the Taylor expansion, the expres-
sions

F, ( UI ) = — + tanh U2 — tanh U2sech U2
RICI CI 2A

and
(27)

K being the normalization constant. The above solution
is used in evaluating the integrals appearing on the right-
hand side of (23), thereby reducing the latter to an
effective-one-neuron Fokker-Planck equation. This pro-
cedure will be carried out below. The diffusion coefficient
is positive but not constant. This is due to the multiplica-
tive noise and may be lead to qualitatively interesting re-
sults. ""

To integrate the terms containing h(2~1) in (23), we
complete the square in (25) and expand the hyperbolic
functions in the integrands, about the steady-state value

In the expression (27) for F(U, ), the lowest term in the
steepest descents expansion [this term is the second term
on the right-hand side of (27)] dominates. In the expres-
sion for D, ( U, ), however, higher-order terms may need
to be retained in order to improve the accuracy of the ap-
proximation. We will return to this point later.

The equivalent single-neuron Stratonovich stochastic
differential equation which would lead to the Fokker-
Planck equation (23) is' ' '

=F(U, ) —— D, (U, )+[D,(U, )]'i g(t),
dt ' 4 dUI

g(t) being white noise having zero mean and unit vari-
ance. To this order, Eq. (33), with D (IU& ) given by (32),
has the form of the stochastic differential equation as-
sumed by Bulsara, Boss, and Jacobs' in their construc-
tion of a stochastic generalization to the single-neuron
model of Babcock and Westervelt. " It is important to
point out that in the work of Ref. 12, a Auctuating self-
coupling term J;;(t) was assumed a priori, leading to
steady-state distribution functions that were dependent
on the strength of the (multiplicative) fluctuations in
J;;(t). Such self-coupling terms have been excluded from
the current analysis. We see, from (28), that there are im-
portant additional terms in the effective-one-neuron
"self-diffusion. " This will be examined below. Also, the
term of O(o ) and the explicit form of the coefficients
were not known in this approach.

Numerical integrations of Eqs. (27) and(28) were per-
formed (on an Apollo DN4500 work station) and com-
pared with the analytic approximations developed in this
section. In Figs. 3 —5 we plot (as a function of R 2) the in-

oa o.
D, (U, )= + tanh U2+ sech U2

2A -5.2—

X(sech U2 —2tanh U2)

where

(28)
-8.9—

C2/R 2

o. tanh U +o-
(29)

Consistent with Sec. II, we take

o. R2 ((C2 . (30)

UI J R2
F, (U, )= — + tanhU,

RICi CI
(31)

In this case, the higher-order terms in the above expan-
sion increase as powers of o. R2/C2 and may be neglect-
ed. We also observe that setting tanhU2= U2 as in Sec.
II leads to the simplified expressions

cp I
-10.7— I

I
I
I

-12.5 l
I

—I

-14.4 I

0.001
I I I

0.020
I

0.039
I I I I 1

0.058 0.077

R2

I

0.096

FIG. 3. The integral H( U& ) defined in (24c) as a function of
R2 for U1= 1.0. Solid curve represents exact (i.e., numerical
evaluation of the integral), data points represent full steepest
descents approximation (28), dashed curve represents 1owest-
order steepest descents approximation (32).
(C,J,o.„a ):—(1,1,0.01,0. 1).
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-5.2— -2.60—

-7.0— -3.52

-8.9—

-10.7

~) I
I

-12.5 —&

I
I
I

I
-14.4

0.001 0.020
I I I

0.040

R2

I

0.059
I I

0.079 0.098

-4.43

(9
C

-5.35

-6.26

-7.18 $
0.001

I

0.020
I

0.040

R2

I

0.059
I I I I

0.079 0.098

FIG. 4. Same as Fig. 3 with o =0.01.

tegral H(U, ) defined in (24c); the multiplicative noise
variance o. is varied in these plots. The solid curves
show the results of numerically evaluating the integral
H( U, ), for a fixed value of U, . The full steepest descents
approximation of Eq. (28) (shown as large data points)
agrees very well with the numerical calculation, however,
the approximation (32), shown as the dotted curves, does
not appear to be very good. Hence the diffusion term
D, (U, ) is well represented by retaining two significant
orders in the expansion, as has been done in (29). Howev-
er, the drift term F, ( U, ) is well approximated by the first
order in the steepest descents expansion [i.e., the second
term on the right-hand side of (31)]. This is apparent in
Fig. 6 where we have plotted the integral 6 ( U& ) defined
in (24d), together with the steepest descents approxima-
tion (27) (large data points). On the scale of this figure
the curve corresponding to the lowest-order approxima-
tion, given by the second term on the right-hand side of
(31), cannot be separated from the solid curve. The
effects of varying Rz and C2 are seen in Figs. 7—11. In

FIG. 6. The integral G(U&) defined in (24d) as a function of
R& for U& =1.0. Solid curve represents numerical integration
and data points represent the steepest descents approximation
(27)(C2~J~og~o):(01~1~001~001)

Figs. 7 and 8 we plot the integrals H ( U, ) and G ( U, ), re-
spectively, as functions of the multiplicative noise vari-
ance o. . Note the scale of Fig. 8; the drift term is con-
stant as a function of o on the scale of the figure. In
Figs. 9—11, we plot the numerically evaluated integral
H(U&) together with the approximation obtained by
representing H ( U, ) by the second term within the large
parentheses on the right-hand side of (28), i.e., we set

H(U, )= sech Uz H(U, ) . ——
2A

This expression is plotted (dotted curve) in Figs. 9—11.
In these figures, the complete steepest descents expression
[obtained by retaining all of Eq. (28)] coincides with the
solid curve and is not shown. It is apparent that, for a

-9.1—

-5.2—

-10.1

-7.0—

-11.2

x.'

-12.3

-10.7

-12.5 —I
I
I
I
I

-14.4
0.001 0.020 0.040

I I I

0.059
I

0.079 0.098

-13.3

-14.4
-11.5 -9.4 -7.3

In a2

I

-5.2
I

-3.0 -0.9

R2

FIG.5. Same as Fig. 3 with o. =0.001.

FIG. 7. The integral H( U& ) as a function of the multiplica-
tive nosie variance o. . (C~,R2, U„J)=—(1,0.001, 1, 1) and o., =0
(solid curve); 0.0001 (dashed curve); and 0.001 (data points).
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-7.18 -6.8—

-7.18 -8.3

-7.18

(3

-7.18

9 8

x
C

-11.4

-7.18 -12.9

-7.18
-8.48 -6.97 -5.45

In a2
-3.94 -2.42 -0.91

-14.5
-11.5 -9.4 -7.3

In a2
-3.0 -0.9

FIG. 8. The integral G(U& ) as a function of the multiplica-
tive noise variance o. for a, =0.001,0.0001. The two curves
are not separable on the scale of the figure (note the scale on
vertical axis). Other parameters are the same as in Fig. 7.

given Rz, increasing the additive noise variance o.„im-
proves the agreement between the function H( U, ) and
the exact integral H ( U& ) (solid curve).

The procedure discussed above for two neurons can, in
principle, be carried forward to three or more neurons.
However, there is a serious, well-known problem, namely
that the Fokker-Planck equation for higher dimensions
cannot be guaranteed to have a steady solution. ' ' '

The well-known detailed balance conditions for a station-
ary solution of the Fokker-Planck equation describing the
fast variables are cumbersome. Even an attempt to prove
detailed balance in three dimensions using MACSYMA has
not been enlightening.

-4.4—

FIG. 10. Same as Fig. 9 with R2=0.001.

(5J, .(t) ) =0,
(5J; (t)5Jki(0) ) =5;k5 ter; 5(t). cr, =o;, . "

(34)

where 6,b is the Kronecker delta and the Langevin noise
terms F(t) are defined in a manner analogous to (16)

As an alternative, we have adopted a local Gaussian
approximation procedure, ' ' ' which effectively as-
sumes a steady-state solution of the potential form in the
neighborhood of the elliptic points of the single-neuron
potential. With this assumption, the results are, as we
shall see, similar to the above discussion for two neurons
and the generalization to X neutrons becomes transpar-
ent.

Let us outline the procedure for three neurons. We
take i =2, 3 to be the slaved neurons, i = 1 being the slow
neuron (i.e., R2 3 «R, ). The multiplicative noise terms
in the dynamics are defined, for i,j =1,2, 3, according to

-6.0—

7 5

C

-9.1—

-10.6—

-12.1

rrrrrrr
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(they are assumed to be the same in each neuron). The
above restrictions are not essential to the calculation;
however, they do simplify it considerably. The three-
dimensional Fokker-Planck equation for the probability
density function P =P(U&, Uz, U3, t) may be written in

the form

aP a
[F,(U„U~, U3)P]+ —,

' +B;(U~~; )

As in the two-neuron case we assume a decomposition of
the probability density function of the form

P(U„U„U„r)=h (2, 3~1,t)g(l, r),

where the conditional density function h =h(2, 3 I, t)
may be shown to satisfy a Fokker-Planck equation of the
form

where

0P+o, g (C, C, )

1+J

F (U„U~, U3)=— U; + g J; tanhU
i ij

lWJ

1
B, ( U, ~, ) = g o.; tanh U +cr,l JWI CP 1J

lWJ

(36)

Bh

at
a

[F~( U„U~, U3 )h ]— [F3(U, , U~, U3 )h]
2 0U3

Bh , Bh+ ,'Bz(U—»U3) + ~B3(U, , U~)
aU,' ' '

aU',

Bh+
C,C, aU, aU, ' (37)

and the single-neuron Fokker-Planck equation may be
written as

—U) a'
+F,~( U, )+F,3( U, ) g (1,t) +-

RiCi 2 ()U~)

2 2 2oa
~

+
~ B,~(U, )+

~ B,3(U, ) g(l, t)
Q2 C2 C2

where (j =2, 3)

F& (U& ) —=J&.C&
' f h (2, 3~1)tanhU dUzdU3, (39)

and

B, (U, )=f h(2, 3 1)tanh U dU~U3 . (40)

h (2, 3~1)=E 'exp( —Z), (41a)

where the potential function Z is defined to be a two-
dimensional Gaussian:

Z:—a(U~ —U~) +b(U~ —U~)(U3 —U3)+c(U3 —U3)

As in the two-neuron calculation, the above integrals are
to be evaluated with the stationary solution h (2, 3~1) ob-
tained by solving (37) in the taboo limit with U& held
constant. However, as discussed above, such a solution
cannot be obtained with the same facility as in the 1D
case. Accordingly, we assume that, in the neighborhood
oj the steady states Uz and U3, the following Gaussian
potential solution to (37) exists:

have, throughout this work, assumed that the fast neu-
rons relax to their steady states on a time scale that is
much shorter that that which governs the slow neuron
dynamics.

The deterministic three-neuron steady-state equations
are given by Eqs. (3b) and (3c) with tanhU~ and tanhU3
given by (4). Alternatively, we may find the deterministic
steady states by equating to zero, the drift terms I'z and
F3 in the Fokker-Planck equation (37). It is important to
notice here that because of our choice of correlation
statistics [Eqs. (34)], the stochastic problem admits of the
same steady states as the deterministic one. In general,
however, the stochastic steady states, in the presence of
multiplicative noise, are functions of the noise variance
and do not coincide with the deterministic ones. Neglect-
ing products of the form R,J,. for i,j &1 [this is
equivalent to assuming weak coupling between the fast
neurons; the assumption is not necessary for the analysis
to proceed, but does permit one to write down an analytic
expression for the steady state U analogous to the two-
neuron result (26)] we readily obtain

(41b)
Uj RjI]jtanh U& J' =2 3 (42)

E being a normalization constant. Such a solution is for-
mally obtained by a Taylor-series expansion of (37) (in the
steady state) to second order, about the deterministic
steady states Uz and U3 determined from the drift terms
in the Fokker-Planck equation. Then, the coefficients
a, b, c are obtained by equating the coefficients of the
second-order derivatives evaluated at the steady
states. ' ' ' ' We will evaluate below the integrals in
(39) and (40) for given a, b, c; the computation of the
coefficients themselves is outlined in the Appendix. The
form (41) of the solution is certainly reasonable since we

The integrals in (39) and (40) are done, as earlier, by in-
troducing the expansions (j =2, 3)

tanhU. =tanhU +( U~
—UJ. )sech U~

—
( U. —U ) sech U tanh U.J J J J

and

tanh U. =tanh U +2(U —U )sech UJ. tanhU~

+(U —U ) (sech U —2sech U tanh U. ) .

(43)
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The integrals in (39) and (40) now become

Fi ( Ui ) = (tanh U&
—3 'tanh U sech2U. )

}
(44a)

though the coefficients a, b, c, . . . in the (N —1)-body
steady-state solution may not be easy to obtain, if all or-
ders in o R /C are required].

IV. SUMMARY AND DISCUSSION

B&~(U, )=tanh UJ+ A~. '(sech U —2sech U tanh U ),
(44b)

where the stationary quantities U. are expressed in terms
of the slow neuron variable U, by (42) and

A 2
' =2c(4ac b )—

A3 ' =2a(4ac b)— (45)

U =—
}

U} +C, ' g J, . A, ~(U, )
R, C,

&,, (U, )
4C2 J QU J

N
+ (o', + g o',,B,, (U, ))' 'g'(t),

j=2
(46)

where, once again, g(t) is white noise having zero mean
and unit variance, and we have defined

2 &z(Ui )—= f h (2, 3, . . . , N~ 1)tanhUJdUzdU3 . . dU&,

B,j(Ui)=—Jh(2, 3, . . . , N~1)tanh U, dU2dU3 dU~ .

(47)

These coefficients are given, for the three-neuron case, by
(44a) and (44b). For the general case, expressions of the
form (44) may be computed for the integrals above [al-

The coefficients a, b, c have been evaluated in the appen-
dix. The conditional probability density function (40a)
then assumes the same form as (25) for the two-neuron
case, with Z being a local "potential" for this case, in the
sense of (25) for the two-neuron case.

A calculation similar to the above may be carried out
for the case of four neurons. In this case one obtains ex-
pressions similar to (44) for the integrals Fi (U, ) and
& &~. ( Ui ) (j =2, 3,4) with additional correction terms that
are of higher order in cr R /C and may be neglected. The
local equilibrium solution analogous to (41) now contains
three additional unknown parameters which may be com-
puted in a manner analogous to the calculation (described
in the Appendix) for the three-neuron case. This calcula-
tion is, however, quite tedious and will not be reproduced
here.

The Fokker-Planck equation (39) for g(l, t) now con-
tains the explicit forms (39) and (40) in the drift and
diffusion terms. Corresponding to it, one may write
down the Stratonovich stochastic differential equation in
the form used in (33) for the two-neuron case. However,
rather than do so, we will write down by inspection the
stochastic differential equation corresponding to the N-
neuron case (the i —1 neuron is assumed to be the slow
neuron in this case):

In this work, the deterministic effective-single-neuron
equation has been obtained by adiabatically eliminating
the fast coordinates. The result is Eqs. (7) and (8), which
are of the form assumed by Babcock and Westervelt»
and others. The self-connection term, J» depends on the
synaptic connections J} for j ) 1 and resistances of the
other neural elements. It is positive. In a sense, the sin-
gle neuron must be understood as the dominant mode of
relaxation of the coupled neurons, much like a mode of a
lattice oscillation or an effective electron in a semicon-
ductor. With the assumptions R & }«R }, we have
identified this dominant mode within the framework of
our theory. Of course, other methods might be used, e.g.,
an alternate approximate diagonalization via nonlinear
transformations of the coupled nonlinear equations (1).
This would lead to a discrete eigenvalue spectrum with
the lowest (nonzero) eigenvalue defining the dominant
longtime relaxing mode, the effective single neuron. If we
interpret the single neuron in this fashion, then the addi-
tion of inertial terms and possible "external" sinusoidal
driving to achieve "exotic" nonlinear dynamic effects,
such as chaos, is premature. If, on the other hand, in Eq.
(1) we were to include by assumption a J;; term initially
(as suggested by Hopfield and carried out by Bulsara,
Boss, and Jacobs' ), then the strong coupling added terms
in (8) would act as a "renormalization" of that self-
coupling. The precise nature of this renormalization of
the self-coupling term for the general case in which it is
allowed to fluctuate is under investigation.

If both additive and multiplicative noise terms are in-
cluded, as we believe natural, the resulting effective-
single-neuron stochastic differential equation is given by
(20) for two neurons and the generalization to N neurons
has been given by (46). The adiabatic elimination for the
higher-dimension stochastic case is hampered by the ina-
bility to find steady-state solutions to Fokker-Planck
equations of the form (37) in two or more dimensions.
With the local Gaussian assumption, we have obtained
solutions in terms of the coefficients a, b, c, which may be
readily obtained (see the Appendix) for the three-neuron
case. The extension of this procedure to X neurons may
be carried forth in principle; in practice, considerable
difficulty may be encountered (in the absence of any fur-
ther simplifying assumptions on the noise and other neu-
ron parameters) in evaluating these coefficients.

The new stochastic differential equation (46) for the
single-neuron dynamics is significantly different from the
intuitive effective equation' written down as the stochas-
tic generalization of the deterministic model. " The prin-
ciple difference may be seen in a comparison of Eqs. (28)
and (32); in general, when evaluating the integrals in the
diffusion term the second-order steepest descents contri-
bution must be retained. For the drift term, the lowest-
order contribution suffices. Figures 9—11 show this
difference. It has been shown, however, that the form of
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the stochastic difFerential equation considered by Bulsara,
Boss, and Jacobs' may be obtained from the theory of
this paper under certain approximations; these were
spelled out in Sec. III. In a later publication, the impact
of multiplicative noise, and, specifically, the steady-state
solutions to the general one-neuron stochastic differential
equation (46) will be examined in detail. Comments re-
garding the physical meaning of the single stochastic neu-
ron may be made in a manner completely analogous to
the deterministic case discussed above. We reiterate that,
due to the choice of correlation statistics for the multipli-
cative noise adopted in this work, as well as the condi-
tions that are necessary for the adiabatic elimination, the
Fokker-Planck equations (22) and (37) describing the fast
neurons admit of steady-state solutions that correspond
to their deterministic counterparts. This is not the case if
the statistics (34) are made more general; the stochastic
steady states U && will then depend on the multiplicative
noise and may have to be determined numerically.

Finally, we wish to point out that the additive noise
(having variance cr, ) plays an important role in the
theory. It has previously been observed' ' that pure
multiplicative noise (i.e., zero additive noise) can lead to
non-normalized (i.e., unphysical) probability density
functions. In some electronic systems (e.g., the rf super-
conducting quantum interference device) external
Langevin noise introduces multiplicative Auctuations into
the system dynamics; such a mechanism might reason-
ably be expected to provide one of the sources for the
multiplicative nosie discussed in this work. Under these
conditions, it might well be unphysical to consider the
system as influenced by purely multiplicative Auctuations.
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In writing down the above coefficients, we have replaced
U~ and U3 by their steady-state values given by (42).
Furthermore, we have assumed that sech U = 1 in keep-
ing with the conditions of the adiabatic elimination uti-
lized throughout this work. The system (A3) is readily
solved:

with F defined in (36). We now evaluate the condition
(Al) for the cases (tz,I3):—(2, 2), (2,3), and (3,3). This
leads to a linear system in the variables
(2a /5, b/5, 2c/6):

a +b —=32a b
1 g 1 g
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APPENDIX

3

g (a V p+at3 V = —[B t3]„. (A 1)

We discuss the evaluation of the coefficients a, b, c of
Sec. III. To the quadratic order' ' we have the condi-
tion (a, I3=2, 3),

a( b, 0 b) 0

0 b& ci, 6, = B b& c&

ap b3 cp C b3 c&

a, W 0 a, b]

hb= 0 B c), 6, =— 0 b~ B
az C cz a~ b3 C

2a ~ )~ b ~ )~ 2c
1 a& g 1 b& g 1 c

where we define the determinants,

(A5)

Here we define

u lj

a'Z(U, , U, )

BU, aU, -

SS

2c —b
V=u (A2)

where b,:—4ac —b . The matrix a is [r)F /c)U

Z being the potential function (41b) and the subscript
"ss" denoting that the corresponding quantity is evalu-
ated in the steady state. The matrix Vis defined by

A, A, —bb)0. (A6)

A detailed proof of the inequality (A6) may be carried
out. For the purpose of this paper, we wish to point out
that, for the limiting special case Cz =C3 C,
2 =B =C = cr, /C, t—he condition (A6) reduces to the
condition

In order for the solution (41) to be normalizable, the ellip-
tic condition 6&0 must be satisfied. In terms of the
above solutions, one readily writes this condition in the
form
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2a =
b, h, —hb

b=
b,,A, —hb

(A7)

R2+R3 1/2

2
&(R,R, )

This inequality is always satisified except for the special
case R2=R3. The elliptic condition (A6) thus holds for
the simple case considered here.

From the system (A5) we may now calculate the
coefficients a, b, c:

Chandrasekhar has solved a two-dimensional Fokker-
Planck equation that is somewhat simpler than our Eq.
(37). Although he does not make the assumptions leading
to the solution (41) (his Fokker-Planck equation admits of
a potential solution), the final form of his solution bears a
striking resemblance to our solution (41) with the
coefficients a, b, c given by (A7). A calculation along simi-
lar lines may be carried for the four- (one slow and three
fast) neuron case. In this case, the potential function Z
introduced in (4lb) contains terms in (U~ —U4) and three
additional coefficients must be evaluated following the
procedure outlined above. The details of this calculation
(which may be extended to the case of X neurons) are not
reproduced here.
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